ffmpeg/libavcodec/h264.c
Michael Niedermayer fb4e434cfb h264: log debug output for slightly truncated streams
Signed-off-by: Michael Niedermayer <michaelni@gmx.at>
2012-06-02 15:37:20 +02:00

4712 lines
187 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#define UNCHECKED_BITSTREAM_READER 1
#include "libavutil/imgutils.h"
#include "libavutil/opt.h"
#include "internal.h"
#include "cabac.h"
#include "cabac_functions.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "h264.h"
#include "h264data.h"
#include "h264_mvpred.h"
#include "golomb.h"
#include "mathops.h"
#include "rectangle.h"
#include "thread.h"
#include "vdpau_internal.h"
#include "libavutil/avassert.h"
// #undef NDEBUG
#include <assert.h>
const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 };
static const uint8_t rem6[QP_MAX_NUM + 1] = {
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
};
static const uint8_t div6[QP_MAX_NUM + 1] = {
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
};
static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = {
PIX_FMT_DXVA2_VLD,
PIX_FMT_VAAPI_VLD,
PIX_FMT_VDA_VLD,
PIX_FMT_YUVJ420P,
PIX_FMT_NONE
};
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra4x4_pred_mode(H264Context *h)
{
MpegEncContext *const s = &h->s;
static const int8_t top[12] = {
-1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0
};
static const int8_t left[12] = {
0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED
};
int i;
if (!(h->top_samples_available & 0x8000)) {
for (i = 0; i < 4; i++) {
int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]];
if (status < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"top block unavailable for requested intra4x4 mode %d at %d %d\n",
status, s->mb_x, s->mb_y);
return -1;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + i] = status;
}
}
}
if ((h->left_samples_available & 0x8888) != 0x8888) {
static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 };
for (i = 0; i < 4; i++)
if (!(h->left_samples_available & mask[i])) {
int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]];
if (status < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"left block unavailable for requested intra4x4 mode %d at %d %d\n",
status, s->mb_x, s->mb_y);
return -1;
} else if (status) {
h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status;
}
}
}
return 0;
} // FIXME cleanup like ff_h264_check_intra_pred_mode
/**
* Check if the top & left blocks are available if needed and
* change the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma)
{
MpegEncContext *const s = &h->s;
static const int8_t top[7] = { LEFT_DC_PRED8x8, 1, -1, -1 };
static const int8_t left[7] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 };
if (mode > 6U) {
av_log(h->s.avctx, AV_LOG_ERROR,
"out of range intra chroma pred mode at %d %d\n",
s->mb_x, s->mb_y);
return -1;
}
if (!(h->top_samples_available & 0x8000)) {
mode = top[mode];
if (mode < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"top block unavailable for requested intra mode at %d %d\n",
s->mb_x, s->mb_y);
return -1;
}
}
if ((h->left_samples_available & 0x8080) != 0x8080) {
mode = left[mode];
if (is_chroma && (h->left_samples_available & 0x8080)) {
// mad cow disease mode, aka MBAFF + constrained_intra_pred
mode = ALZHEIMER_DC_L0T_PRED8x8 +
(!(h->left_samples_available & 0x8000)) +
2 * (mode == DC_128_PRED8x8);
}
if (mode < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"left block unavailable for requested intra mode at %d %d\n",
s->mb_x, s->mb_y);
return -1;
}
}
return mode;
}
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
int *dst_length, int *consumed, int length)
{
int i, si, di;
uint8_t *dst;
int bufidx;
// src[0]&0x80; // forbidden bit
h->nal_ref_idc = src[0] >> 5;
h->nal_unit_type = src[0] & 0x1F;
src++;
length--;
#if HAVE_FAST_UNALIGNED
#if HAVE_FAST_64BIT
#define RS 7
for (i = 0; i + 1 < length; i += 9) {
if (!((~AV_RN64A(src + i) &
(AV_RN64A(src + i) - 0x0100010001000101ULL)) &
0x8000800080008080ULL))
#else
#define RS 3
for (i = 0; i + 1 < length; i += 5) {
if (!((~AV_RN32A(src + i) &
(AV_RN32A(src + i) - 0x01000101U)) &
0x80008080U))
#endif
continue;
if (i > 0 && !src[i])
i--;
while (src[i])
i++;
#else
#define RS 0
for (i = 0; i + 1 < length; i += 2) {
if (src[i])
continue;
if (i > 0 && src[i - 1] == 0)
i--;
#endif
if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {
if (src[i + 2] != 3) {
/* startcode, so we must be past the end */
length = i;
}
break;
}
i -= RS;
}
// use second escape buffer for inter data
bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0;
si = h->rbsp_buffer_size[bufidx];
av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE);
dst = h->rbsp_buffer[bufidx];
if (dst == NULL)
return NULL;
if(i>=length-1){ //no escaped 0
*dst_length= length;
*consumed= length+1; //+1 for the header
if(h->s.avctx->flags2 & CODEC_FLAG2_FAST){
return src;
}else{
memcpy(dst, src, length);
return dst;
}
}
// printf("decoding esc\n");
memcpy(dst, src, i);
si = di = i;
while (si + 2 < length) {
// remove escapes (very rare 1:2^22)
if (src[si + 2] > 3) {
dst[di++] = src[si++];
dst[di++] = src[si++];
} else if (src[si] == 0 && src[si + 1] == 0) {
if (src[si + 2] == 3) { // escape
dst[di++] = 0;
dst[di++] = 0;
si += 3;
continue;
} else // next start code
goto nsc;
}
dst[di++] = src[si++];
}
while (si < length)
dst[di++] = src[si++];
nsc:
memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
*dst_length = di;
*consumed = si + 1; // +1 for the header
/* FIXME store exact number of bits in the getbitcontext
* (it is needed for decoding) */
return dst;
}
/**
* Identify the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
static int decode_rbsp_trailing(H264Context *h, const uint8_t *src)
{
int v = *src;
int r;
tprintf(h->s.avctx, "rbsp trailing %X\n", v);
for (r = 1; r < 9; r++) {
if (v & 1)
return r;
v >>= 1;
}
return 0;
}
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n,
int height, int y_offset, int list)
{
int raw_my = h->mv_cache[list][scan8[n]][1];
int filter_height = (raw_my & 3) ? 2 : 0;
int full_my = (raw_my >> 2) + y_offset;
int top = full_my - filter_height;
int bottom = full_my + filter_height + height;
return FFMAX(abs(top), bottom);
}
static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n,
int height, int y_offset, int list0,
int list1, int *nrefs)
{
MpegEncContext *const s = &h->s;
int my;
y_offset += 16 * (s->mb_y >> MB_FIELD);
if (list0) {
int ref_n = h->ref_cache[0][scan8[n]];
Picture *ref = &h->ref_list[0][ref_n];
// Error resilience puts the current picture in the ref list.
// Don't try to wait on these as it will cause a deadlock.
// Fields can wait on each other, though.
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
(ref->f.reference & 3) != s->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
if (refs[0][ref_n] < 0)
nrefs[0] += 1;
refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
}
}
if (list1) {
int ref_n = h->ref_cache[1][scan8[n]];
Picture *ref = &h->ref_list[1][ref_n];
if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
(ref->f.reference & 3) != s->picture_structure) {
my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
if (refs[1][ref_n] < 0)
nrefs[1] += 1;
refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
}
}
}
/**
* Wait until all reference frames are available for MC operations.
*
* @param h the H264 context
*/
static void await_references(H264Context *h)
{
MpegEncContext *const s = &h->s;
const int mb_xy = h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
int refs[2][48];
int nrefs[2] = { 0 };
int ref, list;
memset(refs, -1, sizeof(refs));
if (IS_16X16(mb_type)) {
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
} else if (IS_16X8(mb_type)) {
get_lowest_part_y(h, refs, 0, 8, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 8, 8, 8,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else if (IS_8X16(mb_type)) {
get_lowest_part_y(h, refs, 0, 16, 0,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
get_lowest_part_y(h, refs, 4, 16, 0,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
} else {
int i;
assert(IS_8X8(mb_type));
for (i = 0; i < 4; i++) {
const int sub_mb_type = h->sub_mb_type[i];
const int n = 4 * i;
int y_offset = (i & 2) << 2;
if (IS_SUB_8X8(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_8X4(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 4, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, refs, n + 2, 4, y_offset + 4,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else if (IS_SUB_4X8(sub_mb_type)) {
get_lowest_part_y(h, refs, n, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
get_lowest_part_y(h, refs, n + 1, 8, y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
} else {
int j;
assert(IS_SUB_4X4(sub_mb_type));
for (j = 0; j < 4; j++) {
int sub_y_offset = y_offset + 2 * (j & 2);
get_lowest_part_y(h, refs, n + j, 4, sub_y_offset,
IS_DIR(sub_mb_type, 0, 0),
IS_DIR(sub_mb_type, 0, 1),
nrefs);
}
}
}
}
for (list = h->list_count - 1; list >= 0; list--)
for (ref = 0; ref < 48 && nrefs[list]; ref++) {
int row = refs[list][ref];
if (row >= 0) {
Picture *ref_pic = &h->ref_list[list][ref];
int ref_field = ref_pic->f.reference - 1;
int ref_field_picture = ref_pic->field_picture;
int pic_height = 16 * s->mb_height >> ref_field_picture;
row <<= MB_MBAFF;
nrefs[list]--;
if (!FIELD_PICTURE && ref_field_picture) { // frame referencing two fields
ff_thread_await_progress(&ref_pic->f,
FFMIN((row >> 1) - !(row & 1),
pic_height - 1),
1);
ff_thread_await_progress(&ref_pic->f,
FFMIN((row >> 1), pic_height - 1),
0);
} else if (FIELD_PICTURE && !ref_field_picture) { // field referencing one field of a frame
ff_thread_await_progress(&ref_pic->f,
FFMIN(row * 2 + ref_field,
pic_height - 1),
0);
} else if (FIELD_PICTURE) {
ff_thread_await_progress(&ref_pic->f,
FFMIN(row, pic_height - 1),
ref_field);
} else {
ff_thread_await_progress(&ref_pic->f,
FFMIN(row, pic_height - 1),
0);
}
}
}
}
static av_always_inline void mc_dir_part(H264Context *h, Picture *pic,
int n, int square, int height,
int delta, int list,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int src_x_offset, int src_y_offset,
qpel_mc_func *qpix_op,
h264_chroma_mc_func chroma_op,
int pixel_shift, int chroma_idc)
{
MpegEncContext *const s = &h->s;
const int mx = h->mv_cache[list][scan8[n]][0] + src_x_offset * 8;
int my = h->mv_cache[list][scan8[n]][1] + src_y_offset * 8;
const int luma_xy = (mx & 3) + ((my & 3) << 2);
int offset = ((mx >> 2) << pixel_shift) + (my >> 2) * h->mb_linesize;
uint8_t *src_y = pic->f.data[0] + offset;
uint8_t *src_cb, *src_cr;
int extra_width = h->emu_edge_width;
int extra_height = h->emu_edge_height;
int emu = 0;
const int full_mx = mx >> 2;
const int full_my = my >> 2;
const int pic_width = 16 * s->mb_width;
const int pic_height = 16 * s->mb_height >> MB_FIELD;
int ysh;
if (mx & 7)
extra_width -= 3;
if (my & 7)
extra_height -= 3;
if (full_mx < 0 - extra_width ||
full_my < 0 - extra_height ||
full_mx + 16 /*FIXME*/ > pic_width + extra_width ||
full_my + 16 /*FIXME*/ > pic_height + extra_height) {
s->dsp.emulated_edge_mc(s->edge_emu_buffer,
src_y - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/, full_mx - 2,
full_my - 2, pic_width, pic_height);
src_y = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
emu = 1;
}
qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
if (CONFIG_GRAY && s->flags & CODEC_FLAG_GRAY)
return;
if (chroma_idc == 3 /* yuv444 */) {
src_cb = pic->f.data[1] + offset;
if (emu) {
s->dsp.emulated_edge_mc(s->edge_emu_buffer,
src_cb - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cb = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
}
qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
src_cr = pic->f.data[2] + offset;
if (emu) {
s->dsp.emulated_edge_mc(s->edge_emu_buffer,
src_cr - (2 << pixel_shift) - 2 * h->mb_linesize,
h->mb_linesize,
16 + 5, 16 + 5 /*FIXME*/,
full_mx - 2, full_my - 2,
pic_width, pic_height);
src_cr = s->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize;
}
qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); // FIXME try variable height perhaps?
if (!square)
qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
return;
}
ysh = 3 - (chroma_idc == 2 /* yuv422 */);
if (chroma_idc == 1 /* yuv420 */ && MB_FIELD) {
// chroma offset when predicting from a field of opposite parity
my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1));
emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1);
}
src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) +
(my >> ysh) * h->mb_uvlinesize;
src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) +
(my >> ysh) * h->mb_uvlinesize;
if (emu) {
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cb = s->edge_emu_buffer;
}
chroma_op(dest_cb, src_cb, h->mb_uvlinesize,
height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7);
if (emu) {
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize,
9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh),
pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */));
src_cr = s->edge_emu_buffer;
}
chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */),
mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7);
}
static av_always_inline void mc_part_std(H264Context *h, int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
MpegEncContext *const s = &h->s;
qpel_mc_func *qpix_op = qpix_put;
h264_chroma_mc_func chroma_op = chroma_put;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
} else { /* yuv420 */
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
}
x_offset += 8 * s->mb_x;
y_offset += 8 * (s->mb_y >> MB_FIELD);
if (list0) {
Picture *ref = &h->ref_list[0][h->ref_cache[0][scan8[n]]];
mc_dir_part(h, ref, n, square, height, delta, 0,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
qpix_op = qpix_avg;
chroma_op = chroma_avg;
}
if (list1) {
Picture *ref = &h->ref_list[1][h->ref_cache[1][scan8[n]]];
mc_dir_part(h, ref, n, square, height, delta, 1,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_op, chroma_op, pixel_shift, chroma_idc);
}
}
static av_always_inline void mc_part_weighted(H264Context *h, int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
h264_weight_func luma_weight_op,
h264_weight_func chroma_weight_op,
h264_biweight_func luma_weight_avg,
h264_biweight_func chroma_weight_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
MpegEncContext *const s = &h->s;
int chroma_height;
dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
if (chroma_idc == 3 /* yuv444 */) {
chroma_height = height;
chroma_weight_avg = luma_weight_avg;
chroma_weight_op = luma_weight_op;
dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize;
} else if (chroma_idc == 2 /* yuv422 */) {
chroma_height = height;
dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize;
} else { /* yuv420 */
chroma_height = height >> 1;
dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize;
}
x_offset += 8 * s->mb_x;
y_offset += 8 * (s->mb_y >> MB_FIELD);
if (list0 && list1) {
/* don't optimize for luma-only case, since B-frames usually
* use implicit weights => chroma too. */
uint8_t *tmp_cb = s->obmc_scratchpad;
uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift);
uint8_t *tmp_y = s->obmc_scratchpad + 16 * h->mb_uvlinesize;
int refn0 = h->ref_cache[0][scan8[n]];
int refn1 = h->ref_cache[1][scan8[n]];
mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0,
dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1,
tmp_y, tmp_cb, tmp_cr,
x_offset, y_offset, qpix_put, chroma_put,
pixel_shift, chroma_idc);
if (h->use_weight == 2) {
int weight0 = h->implicit_weight[refn0][refn1][s->mb_y & 1];
int weight1 = 64 - weight0;
luma_weight_avg(dest_y, tmp_y, h->mb_linesize,
height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize,
chroma_height, 5, weight0, weight1, 0);
} else {
luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height,
h->luma_log2_weight_denom,
h->luma_weight[refn0][0][0],
h->luma_weight[refn1][1][0],
h->luma_weight[refn0][0][1] +
h->luma_weight[refn1][1][1]);
chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][0][0],
h->chroma_weight[refn1][1][0][0],
h->chroma_weight[refn0][0][0][1] +
h->chroma_weight[refn1][1][0][1]);
chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn0][0][1][0],
h->chroma_weight[refn1][1][1][0],
h->chroma_weight[refn0][0][1][1] +
h->chroma_weight[refn1][1][1][1]);
}
} else {
int list = list1 ? 1 : 0;
int refn = h->ref_cache[list][scan8[n]];
Picture *ref = &h->ref_list[list][refn];
mc_dir_part(h, ref, n, square, height, delta, list,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put, chroma_put, pixel_shift, chroma_idc);
luma_weight_op(dest_y, h->mb_linesize, height,
h->luma_log2_weight_denom,
h->luma_weight[refn][list][0],
h->luma_weight[refn][list][1]);
if (h->use_weight_chroma) {
chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][0][0],
h->chroma_weight[refn][list][0][1]);
chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height,
h->chroma_log2_weight_denom,
h->chroma_weight[refn][list][1][0],
h->chroma_weight[refn][list][1][1]);
}
}
}
static av_always_inline void mc_part(H264Context *h, int n, int square,
int height, int delta,
uint8_t *dest_y, uint8_t *dest_cb,
uint8_t *dest_cr,
int x_offset, int y_offset,
qpel_mc_func *qpix_put,
h264_chroma_mc_func chroma_put,
qpel_mc_func *qpix_avg,
h264_chroma_mc_func chroma_avg,
h264_weight_func *weight_op,
h264_biweight_func *weight_avg,
int list0, int list1,
int pixel_shift, int chroma_idc)
{
if ((h->use_weight == 2 && list0 && list1 &&
(h->implicit_weight[h->ref_cache[0][scan8[n]]][h->ref_cache[1][scan8[n]]][h->s.mb_y & 1] != 32)) ||
h->use_weight == 1)
mc_part_weighted(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put,
weight_op[0], weight_op[1], weight_avg[0],
weight_avg[1], list0, list1, pixel_shift, chroma_idc);
else
mc_part_std(h, n, square, height, delta, dest_y, dest_cb, dest_cr,
x_offset, y_offset, qpix_put, chroma_put, qpix_avg,
chroma_avg, list0, list1, pixel_shift, chroma_idc);
}
static av_always_inline void prefetch_motion(H264Context *h, int list,
int pixel_shift, int chroma_idc)
{
/* fetch pixels for estimated mv 4 macroblocks ahead
* optimized for 64byte cache lines */
MpegEncContext *const s = &h->s;
const int refn = h->ref_cache[list][scan8[0]];
if (refn >= 0) {
const int mx = (h->mv_cache[list][scan8[0]][0] >> 2) + 16 * s->mb_x + 8;
const int my = (h->mv_cache[list][scan8[0]][1] >> 2) + 16 * s->mb_y;
uint8_t **src = h->ref_list[list][refn].f.data;
int off = (mx << pixel_shift) +
(my + (s->mb_x & 3) * 4) * h->mb_linesize +
(64 << pixel_shift);
s->dsp.prefetch(src[0] + off, s->linesize, 4);
if (chroma_idc == 3 /* yuv444 */) {
s->dsp.prefetch(src[1] + off, s->linesize, 4);
s->dsp.prefetch(src[2] + off, s->linesize, 4);
} else {
off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize;
s->dsp.prefetch(src[1] + off, src[2] - src[1], 2);
}
}
}
static av_always_inline void hl_motion(H264Context *h, uint8_t *dest_y,
uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func(*qpix_put)[16],
h264_chroma_mc_func(*chroma_put),
qpel_mc_func(*qpix_avg)[16],
h264_chroma_mc_func(*chroma_avg),
h264_weight_func *weight_op,
h264_biweight_func *weight_avg,
int pixel_shift, int chroma_idc)
{
MpegEncContext *const s = &h->s;
const int mb_xy = h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
assert(IS_INTER(mb_type));
if (HAVE_THREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
await_references(h);
prefetch_motion(h, 0, pixel_shift, chroma_idc);
if (IS_16X16(mb_type)) {
mc_part(h, 0, 1, 16, 0, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
} else if (IS_16X8(mb_type)) {
mc_part(h, 0, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, 8, 0, 8, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 4,
qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
weight_op, weight_avg,
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
pixel_shift, chroma_idc);
} else if (IS_8X16(mb_type)) {
mc_part(h, 0, 0, 16, 8 * h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, 4, 0, 16, 8 * h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
pixel_shift, chroma_idc);
} else {
int i;
assert(IS_8X8(mb_type));
for (i = 0; i < 4; i++) {
const int sub_mb_type = h->sub_mb_type[i];
const int n = 4 * i;
int x_offset = (i & 1) << 2;
int y_offset = (i & 2) << 1;
if (IS_SUB_8X8(sub_mb_type)) {
mc_part(h, n, 1, 8, 0, dest_y, dest_cb, dest_cr,
x_offset, y_offset,
qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
} else if (IS_SUB_8X4(sub_mb_type)) {
mc_part(h, n, 0, 4, 4 << pixel_shift, dest_y, dest_cb, dest_cr,
x_offset, y_offset,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, n + 2, 0, 4, 4 << pixel_shift,
dest_y, dest_cb, dest_cr, x_offset, y_offset + 2,
qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
&weight_op[1], &weight_avg[1],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
} else if (IS_SUB_4X8(sub_mb_type)) {
mc_part(h, n, 0, 8, 4 * h->mb_linesize,
dest_y, dest_cb, dest_cr, x_offset, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
mc_part(h, n + 1, 0, 8, 4 * h->mb_linesize,
dest_y, dest_cb, dest_cr, x_offset + 2, y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
} else {
int j;
assert(IS_SUB_4X4(sub_mb_type));
for (j = 0; j < 4; j++) {
int sub_x_offset = x_offset + 2 * (j & 1);
int sub_y_offset = y_offset + (j & 2);
mc_part(h, n + j, 1, 4, 0,
dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
&weight_op[2], &weight_avg[2],
IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
pixel_shift, chroma_idc);
}
}
}
}
prefetch_motion(h, 1, pixel_shift, chroma_idc);
}
static av_always_inline void hl_motion_420(H264Context *h, uint8_t *dest_y,
uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func(*qpix_put)[16],
h264_chroma_mc_func(*chroma_put),
qpel_mc_func(*qpix_avg)[16],
h264_chroma_mc_func(*chroma_avg),
h264_weight_func *weight_op,
h264_biweight_func *weight_avg,
int pixel_shift)
{
hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 1);
}
static av_always_inline void hl_motion_422(H264Context *h, uint8_t *dest_y,
uint8_t *dest_cb, uint8_t *dest_cr,
qpel_mc_func(*qpix_put)[16],
h264_chroma_mc_func(*chroma_put),
qpel_mc_func(*qpix_avg)[16],
h264_chroma_mc_func(*chroma_avg),
h264_weight_func *weight_op,
h264_biweight_func *weight_avg,
int pixel_shift)
{
hl_motion(h, dest_y, dest_cb, dest_cr, qpix_put, chroma_put,
qpix_avg, chroma_avg, weight_op, weight_avg, pixel_shift, 2);
}
static void free_tables(H264Context *h, int free_rbsp)
{
int i;
H264Context *hx;
av_freep(&h->intra4x4_pred_mode);
av_freep(&h->chroma_pred_mode_table);
av_freep(&h->cbp_table);
av_freep(&h->mvd_table[0]);
av_freep(&h->mvd_table[1]);
av_freep(&h->direct_table);
av_freep(&h->non_zero_count);
av_freep(&h->slice_table_base);
h->slice_table = NULL;
av_freep(&h->list_counts);
av_freep(&h->mb2b_xy);
av_freep(&h->mb2br_xy);
for (i = 0; i < MAX_THREADS; i++) {
hx = h->thread_context[i];
if (!hx)
continue;
av_freep(&hx->top_borders[1]);
av_freep(&hx->top_borders[0]);
av_freep(&hx->s.obmc_scratchpad);
if (free_rbsp) {
av_freep(&hx->rbsp_buffer[1]);
av_freep(&hx->rbsp_buffer[0]);
hx->rbsp_buffer_size[0] = 0;
hx->rbsp_buffer_size[1] = 0;
}
if (i)
av_freep(&h->thread_context[i]);
}
}
static void init_dequant8_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant8_coeff[i] = h->dequant8_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
64 * sizeof(uint8_t))) {
h->dequant8_coeff[i] = h->dequant8_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q];
int idx = rem6[q];
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
h->pps.scaling_matrix8[i][x]) << shift;
}
}
}
static void init_dequant4_coeff_table(H264Context *h)
{
int i, j, q, x;
const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
for (i = 0; i < 6; i++) {
h->dequant4_coeff[i] = h->dequant4_buffer[i];
for (j = 0; j < i; j++)
if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
16 * sizeof(uint8_t))) {
h->dequant4_coeff[i] = h->dequant4_buffer[j];
break;
}
if (j < i)
continue;
for (q = 0; q < max_qp + 1; q++) {
int shift = div6[q] + 2;
int idx = rem6[q];
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
h->pps.scaling_matrix4[i][x]) << shift;
}
}
}
static void init_dequant_tables(H264Context *h)
{
int i, x;
init_dequant4_coeff_table(h);
if (h->pps.transform_8x8_mode)
init_dequant8_coeff_table(h);
if (h->sps.transform_bypass) {
for (i = 0; i < 6; i++)
for (x = 0; x < 16; x++)
h->dequant4_coeff[i][0][x] = 1 << 6;
if (h->pps.transform_8x8_mode)
for (i = 0; i < 6; i++)
for (x = 0; x < 64; x++)
h->dequant8_coeff[i][0][x] = 1 << 6;
}
}
int ff_h264_alloc_tables(H264Context *h)
{
MpegEncContext *const s = &h->s;
const int big_mb_num = s->mb_stride * (s->mb_height + 1);
const int row_mb_num = 2*s->mb_stride*FFMAX(s->avctx->thread_count, 1);
int x, y;
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode,
row_mb_num * 8 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count,
big_mb_num * 48 * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base,
(big_mb_num + s->mb_stride) * sizeof(*h->slice_table_base), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table,
big_mb_num * sizeof(uint16_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table,
big_mb_num * sizeof(uint8_t), fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1],
16 * row_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table,
4 * big_mb_num * sizeof(uint8_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts,
big_mb_num * sizeof(uint8_t), fail)
memset(h->slice_table_base, -1,
(big_mb_num + s->mb_stride) * sizeof(*h->slice_table_base));
h->slice_table = h->slice_table_base + s->mb_stride * 2 + 1;
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy,
big_mb_num * sizeof(uint32_t), fail);
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy,
big_mb_num * sizeof(uint32_t), fail);
for (y = 0; y < s->mb_height; y++)
for (x = 0; x < s->mb_width; x++) {
const int mb_xy = x + y * s->mb_stride;
const int b_xy = 4 * x + 4 * y * h->b_stride;
h->mb2b_xy[mb_xy] = b_xy;
h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * s->mb_stride)));
}
s->obmc_scratchpad = NULL;
if (!h->dequant4_coeff[0])
init_dequant_tables(h);
return 0;
fail:
free_tables(h, 1);
return -1;
}
/**
* Mimic alloc_tables(), but for every context thread.
*/
static void clone_tables(H264Context *dst, H264Context *src, int i)
{
MpegEncContext *const s = &src->s;
dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * s->mb_stride;
dst->non_zero_count = src->non_zero_count;
dst->slice_table = src->slice_table;
dst->cbp_table = src->cbp_table;
dst->mb2b_xy = src->mb2b_xy;
dst->mb2br_xy = src->mb2br_xy;
dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * s->mb_stride;
dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * s->mb_stride;
dst->direct_table = src->direct_table;
dst->list_counts = src->list_counts;
dst->s.obmc_scratchpad = NULL;
ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma,
src->sps.chroma_format_idc);
}
/**
* Init context
* Allocate buffers which are not shared amongst multiple threads.
*/
static int context_init(H264Context *h)
{
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0],
h->s.mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1],
h->s.mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail)
h->ref_cache[0][scan8[5] + 1] =
h->ref_cache[0][scan8[7] + 1] =
h->ref_cache[0][scan8[13] + 1] =
h->ref_cache[1][scan8[5] + 1] =
h->ref_cache[1][scan8[7] + 1] =
h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE;
return 0;
fail:
return -1; // free_tables will clean up for us
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
static av_cold void common_init(H264Context *h)
{
MpegEncContext *const s = &h->s;
s->width = s->avctx->width;
s->height = s->avctx->height;
s->codec_id = s->avctx->codec->id;
s->avctx->bits_per_raw_sample = 8;
h->cur_chroma_format_idc = 1;
ff_h264dsp_init(&h->h264dsp,
s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
ff_h264_pred_init(&h->hpc, s->codec_id,
s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
h->dequant_coeff_pps = -1;
s->unrestricted_mv = 1;
s->dsp.dct_bits = 16;
/* needed so that IDCT permutation is known early */
ff_dsputil_init(&s->dsp, s->avctx);
memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t));
memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t));
}
int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size)
{
AVCodecContext *avctx = h->s.avctx;
if (!buf || size <= 0)
return -1;
if (buf[0] == 1) {
int i, cnt, nalsize;
const unsigned char *p = buf;
h->is_avc = 1;
if (size < 7) {
av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
return -1;
}
/* sps and pps in the avcC always have length coded with 2 bytes,
* so put a fake nal_length_size = 2 while parsing them */
h->nal_length_size = 2;
// Decode sps from avcC
cnt = *(p + 5) & 0x1f; // Number of sps
p += 6;
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(nalsize > size - (p-buf))
return -1;
if (decode_nal_units(h, p, nalsize) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding sps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Decode pps from avcC
cnt = *(p++); // Number of pps
for (i = 0; i < cnt; i++) {
nalsize = AV_RB16(p) + 2;
if(nalsize > size - (p-buf))
return -1;
if (decode_nal_units(h, p, nalsize) < 0) {
av_log(avctx, AV_LOG_ERROR,
"Decoding pps %d from avcC failed\n", i);
return -1;
}
p += nalsize;
}
// Now store right nal length size, that will be used to parse all other nals
h->nal_length_size = (buf[4] & 0x03) + 1;
} else {
h->is_avc = 0;
if (decode_nal_units(h, buf, size) < 0)
return -1;
}
return size;
}
av_cold int ff_h264_decode_init(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
MpegEncContext *const s = &h->s;
int i;
ff_MPV_decode_defaults(s);
s->avctx = avctx;
common_init(h);
s->out_format = FMT_H264;
s->workaround_bugs = avctx->workaround_bugs;
/* set defaults */
// s->decode_mb = ff_h263_decode_mb;
s->quarter_sample = 1;
if (!avctx->has_b_frames)
s->low_delay = 1;
avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
ff_h264_decode_init_vlc();
h->pixel_shift = 0;
h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
h->thread_context[0] = h;
h->outputed_poc = h->next_outputed_poc = INT_MIN;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
h->prev_poc_msb = 1 << 16;
h->prev_frame_num = -1;
h->x264_build = -1;
ff_h264_reset_sei(h);
if (avctx->codec_id == CODEC_ID_H264) {
if (avctx->ticks_per_frame == 1)
s->avctx->time_base.den *= 2;
avctx->ticks_per_frame = 2;
}
if (avctx->extradata_size > 0 && avctx->extradata &&
ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size) < 0) {
ff_h264_free_context(h);
return -1;
}
if (h->sps.bitstream_restriction_flag &&
s->avctx->has_b_frames < h->sps.num_reorder_frames) {
s->avctx->has_b_frames = h->sps.num_reorder_frames;
s->low_delay = 0;
}
return 0;
}
#define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
static void copy_picture_range(Picture **to, Picture **from, int count,
MpegEncContext *new_base,
MpegEncContext *old_base)
{
int i;
for (i = 0; i < count; i++) {
assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
IN_RANGE(from[i], old_base->picture,
sizeof(Picture) * old_base->picture_count) ||
!from[i]));
to[i] = REBASE_PICTURE(from[i], new_base, old_base);
}
}
static void copy_parameter_set(void **to, void **from, int count, int size)
{
int i;
for (i = 0; i < count; i++) {
if (to[i] && !from[i])
av_freep(&to[i]);
else if (from[i] && !to[i])
to[i] = av_malloc(size);
if (from[i])
memcpy(to[i], from[i], size);
}
}
static int decode_init_thread_copy(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
if (!avctx->internal->is_copy)
return 0;
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
return 0;
}
#define copy_fields(to, from, start_field, end_field) \
memcpy(&to->start_field, &from->start_field, \
(char *)&to->end_field - (char *)&to->start_field)
static int decode_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src)
{
H264Context *h = dst->priv_data, *h1 = src->priv_data;
MpegEncContext *const s = &h->s, *const s1 = &h1->s;
int inited = s->context_initialized, err;
int i;
if (dst == src)
return 0;
err = ff_mpeg_update_thread_context(dst, src);
if (err)
return err;
// FIXME handle width/height changing
if (!inited) {
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
// copy all fields after MpegEnc
memcpy(&h->s + 1, &h1->s + 1,
sizeof(H264Context) - sizeof(MpegEncContext));
memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
if (s1->context_initialized) {
if (ff_h264_alloc_tables(h) < 0) {
av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
context_init(h);
/* frame_start may not be called for the next thread (if it's decoding
* a bottom field) so this has to be allocated here */
h->s.obmc_scratchpad = av_malloc(16 * 6 * s->linesize);
}
for (i = 0; i < 2; i++) {
h->rbsp_buffer[i] = NULL;
h->rbsp_buffer_size[i] = 0;
}
h->thread_context[0] = h;
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb + (24 * 16 << h->pixel_shift));
}
// extradata/NAL handling
h->is_avc = h1->is_avc;
// SPS/PPS
copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers,
MAX_SPS_COUNT, sizeof(SPS));
h->sps = h1->sps;
copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers,
MAX_PPS_COUNT, sizeof(PPS));
h->pps = h1->pps;
// Dequantization matrices
// FIXME these are big - can they be only copied when PPS changes?
copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
for (i = 0; i < 6; i++)
h->dequant4_coeff[i] = h->dequant4_buffer[0] +
(h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
for (i = 0; i < 6; i++)
h->dequant8_coeff[i] = h->dequant8_buffer[0] +
(h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
h->dequant_coeff_pps = h1->dequant_coeff_pps;
// POC timing
copy_fields(h, h1, poc_lsb, redundant_pic_count);
// reference lists
copy_fields(h, h1, ref_count, list_count);
copy_fields(h, h1, ref_list, intra_gb);
copy_fields(h, h1, short_ref, cabac_init_idc);
copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1);
copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1);
copy_picture_range(h->delayed_pic, h1->delayed_pic,
MAX_DELAYED_PIC_COUNT + 2, s, s1);
h->last_slice_type = h1->last_slice_type;
h->sync = h1->sync;
if (!s->current_picture_ptr)
return 0;
if (!s->dropable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset = h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
return err;
}
int ff_h264_frame_start(H264Context *h)
{
MpegEncContext *const s = &h->s;
int i;
const int pixel_shift = h->pixel_shift;
if (ff_MPV_frame_start(s, s->avctx) < 0)
return -1;
ff_er_frame_start(s);
/*
* ff_MPV_frame_start uses pict_type to derive key_frame.
* This is incorrect for H.264; IDR markings must be used.
* Zero here; IDR markings per slice in frame or fields are ORed in later.
* See decode_nal_units().
*/
s->current_picture_ptr->f.key_frame = 0;
s->current_picture_ptr->sync = 0;
s->current_picture_ptr->mmco_reset = 0;
assert(s->linesize && s->uvlinesize);
for (i = 0; i < 16; i++) {
h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * s->linesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * s->linesize * ((scan8[i] - scan8[0]) >> 3);
}
for (i = 0; i < 16; i++) {
h->block_offset[16 + i] =
h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * s->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
h->block_offset[48 + 16 + i] =
h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * s->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
}
/* can't be in alloc_tables because linesize isn't known there.
* FIXME: redo bipred weight to not require extra buffer? */
for (i = 0; i < s->slice_context_count; i++)
if (h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad)
h->thread_context[i]->s.obmc_scratchpad = av_malloc(16 * 6 * s->linesize);
/* Some macroblocks can be accessed before they're available in case
* of lost slices, MBAFF or threading. */
memset(h->slice_table, -1,
(s->mb_height * s->mb_stride - 1) * sizeof(*h->slice_table));
// s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding ||
// s->current_picture.f.reference /* || h->contains_intra */ || 1;
/* We mark the current picture as non-reference after allocating it, so
* that if we break out due to an error it can be released automatically
* in the next ff_MPV_frame_start().
* SVQ3 as well as most other codecs have only last/next/current and thus
* get released even with set reference, besides SVQ3 and others do not
* mark frames as reference later "naturally". */
if (s->codec_id != CODEC_ID_SVQ3)
s->current_picture_ptr->f.reference = 0;
s->current_picture_ptr->field_poc[0] =
s->current_picture_ptr->field_poc[1] = INT_MAX;
h->next_output_pic = NULL;
assert(s->current_picture_ptr->long_ref == 0);
return 0;
}
/**
* Run setup operations that must be run after slice header decoding.
* This includes finding the next displayed frame.
*
* @param h h264 master context
* @param setup_finished enough NALs have been read that we can call
* ff_thread_finish_setup()
*/
static void decode_postinit(H264Context *h, int setup_finished)
{
MpegEncContext *const s = &h->s;
Picture *out = s->current_picture_ptr;
Picture *cur = s->current_picture_ptr;
int i, pics, out_of_order, out_idx;
s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264;
s->current_picture_ptr->f.pict_type = s->pict_type;
if (h->next_output_pic)
return;
if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) {
/* FIXME: if we have two PAFF fields in one packet, we can't start
* the next thread here. If we have one field per packet, we can.
* The check in decode_nal_units() is not good enough to find this
* yet, so we assume the worst for now. */
// if (setup_finished)
// ff_thread_finish_setup(s->avctx);
return;
}
cur->f.interlaced_frame = 0;
cur->f.repeat_pict = 0;
/* Signal interlacing information externally. */
/* Prioritize picture timing SEI information over used
* decoding process if it exists. */
if (h->sps.pic_struct_present_flag) {
switch (h->sei_pic_struct) {
case SEI_PIC_STRUCT_FRAME:
break;
case SEI_PIC_STRUCT_TOP_FIELD:
case SEI_PIC_STRUCT_BOTTOM_FIELD:
cur->f.interlaced_frame = 1;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM:
case SEI_PIC_STRUCT_BOTTOM_TOP:
if (FIELD_OR_MBAFF_PICTURE)
cur->f.interlaced_frame = 1;
else
// try to flag soft telecine progressive
cur->f.interlaced_frame = h->prev_interlaced_frame;
break;
case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
/* Signal the possibility of telecined film externally
* (pic_struct 5,6). From these hints, let the applications
* decide if they apply deinterlacing. */
cur->f.repeat_pict = 1;
break;
case SEI_PIC_STRUCT_FRAME_DOUBLING:
// Force progressive here, doubling interlaced frame is a bad idea.
cur->f.repeat_pict = 2;
break;
case SEI_PIC_STRUCT_FRAME_TRIPLING:
cur->f.repeat_pict = 4;
break;
}
if ((h->sei_ct_type & 3) &&
h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
} else {
/* Derive interlacing flag from used decoding process. */
cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE;
}
h->prev_interlaced_frame = cur->f.interlaced_frame;
if (cur->field_poc[0] != cur->field_poc[1]) {
/* Derive top_field_first from field pocs. */
cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
} else {
if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
/* Use picture timing SEI information. Even if it is a
* information of a past frame, better than nothing. */
if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM ||
h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
cur->f.top_field_first = 1;
else
cur->f.top_field_first = 0;
} else {
/* Most likely progressive */
cur->f.top_field_first = 0;
}
}
cur->mmco_reset = h->mmco_reset;
h->mmco_reset = 0;
// FIXME do something with unavailable reference frames
/* Sort B-frames into display order */
if (h->sps.bitstream_restriction_flag &&
s->avctx->has_b_frames < h->sps.num_reorder_frames) {
s->avctx->has_b_frames = h->sps.num_reorder_frames;
s->low_delay = 0;
}
if (s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT &&
!h->sps.bitstream_restriction_flag) {
s->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1;
s->low_delay = 0;
}
for (i = 0; 1; i++) {
if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
if(i)
h->last_pocs[i-1] = cur->poc;
break;
} else if(i) {
h->last_pocs[i-1]= h->last_pocs[i];
}
}
out_of_order = MAX_DELAYED_PIC_COUNT - i;
if( cur->f.pict_type == AV_PICTURE_TYPE_B
|| (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
out_of_order = FFMAX(out_of_order, 1);
if(s->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){
av_log(s->avctx, AV_LOG_WARNING, "Increasing reorder buffer to %d\n", out_of_order);
s->avctx->has_b_frames = out_of_order;
s->low_delay = 0;
}
pics = 0;
while (h->delayed_pic[pics])
pics++;
av_assert0(pics <= MAX_DELAYED_PIC_COUNT);
h->delayed_pic[pics++] = cur;
if (cur->f.reference == 0)
cur->f.reference = DELAYED_PIC_REF;
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1; h->delayed_pic[i] &&
!h->delayed_pic[i]->f.key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
if (s->avctx->has_b_frames == 0 &&
(h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
h->next_outputed_poc = INT_MIN;
out_of_order = out->poc < h->next_outputed_poc;
if (out_of_order || pics > s->avctx->has_b_frames) {
out->f.reference &= ~DELAYED_PIC_REF;
// for frame threading, the owner must be the second field's thread or
// else the first thread can release the picture and reuse it unsafely
out->owner2 = s;
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
}
if (!out_of_order && pics > s->avctx->has_b_frames) {
h->next_output_pic = out;
if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
h->next_outputed_poc = INT_MIN;
} else
h->next_outputed_poc = out->poc;
} else {
av_log(s->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
}
if (h->next_output_pic && h->next_output_pic->sync) {
h->sync |= 2;
}
if (setup_finished)
ff_thread_finish_setup(s->avctx);
}
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int simple)
{
MpegEncContext *const s = &h->s;
uint8_t *top_border;
int top_idx = 1;
const int pixel_shift = h->pixel_shift;
int chroma444 = CHROMA444;
int chroma422 = CHROMA422;
src_y -= linesize;
src_cb -= uvlinesize;
src_cr -= uvlinesize;
if (!simple && FRAME_MBAFF) {
if (s->mb_y & 1) {
if (!MB_MBAFF) {
top_border = h->top_borders[0][s->mb_x];
AV_COPY128(top_border, src_y + 15 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
}
}
}
}
} else if (MB_MBAFF) {
top_idx = 0;
} else
return;
}
top_border = h->top_borders[top_idx][s->mb_x];
/* There are two lines saved, the line above the the top macroblock
* of a pair, and the line above the bottom macroblock. */
AV_COPY128(top_border, src_y + 16 * linesize);
if (pixel_shift)
AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * linesize);
AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
AV_COPY128(top_border + 64, src_cr + 16 * linesize);
AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
} else {
AV_COPY128(top_border + 16, src_cb + 16 * linesize);
AV_COPY128(top_border + 32, src_cr + 16 * linesize);
}
} else if (chroma422) {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
}
} else {
if (pixel_shift) {
AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
} else {
AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
}
}
}
}
static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
uint8_t *src_cb, uint8_t *src_cr,
int linesize, int uvlinesize,
int xchg, int chroma444,
int simple, int pixel_shift)
{
MpegEncContext *const s = &h->s;
int deblock_topleft;
int deblock_top;
int top_idx = 1;
uint8_t *top_border_m1;
uint8_t *top_border;
if (!simple && FRAME_MBAFF) {
if (s->mb_y & 1) {
if (!MB_MBAFF)
return;
} else {
top_idx = MB_MBAFF ? 0 : 1;
}
}
if (h->deblocking_filter == 2) {
deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num;
deblock_top = h->top_type;
} else {
deblock_topleft = (s->mb_x > 0);
deblock_top = (s->mb_y > !!MB_FIELD);
}
src_y -= linesize + 1 + pixel_shift;
src_cb -= uvlinesize + 1 + pixel_shift;
src_cr -= uvlinesize + 1 + pixel_shift;
top_border_m1 = h->top_borders[top_idx][s->mb_x - 1];
top_border = h->top_borders[top_idx][s->mb_x];
#define XCHG(a, b, xchg) \
if (pixel_shift) { \
if (xchg) { \
AV_SWAP64(b + 0, a + 0); \
AV_SWAP64(b + 8, a + 8); \
} else { \
AV_COPY128(b, a); \
} \
} else if (xchg) \
AV_SWAP64(b, a); \
else \
AV_COPY64(b, a);
if (deblock_top) {
if (deblock_topleft) {
XCHG(top_border_m1 + (8 << pixel_shift),
src_y - (7 << pixel_shift), 1);
}
XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
if (s->mb_x + 1 < s->mb_width) {
XCHG(h->top_borders[top_idx][s->mb_x + 1],
src_y + (17 << pixel_shift), 1);
}
}
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (chroma444) {
if (deblock_topleft) {
XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
if (s->mb_x + 1 < s->mb_width) {
XCHG(h->top_borders[top_idx][s->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
XCHG(h->top_borders[top_idx][s->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
}
} else {
if (deblock_top) {
if (deblock_topleft) {
XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
}
XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1);
XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1);
}
}
}
}
static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth,
int index)
{
if (high_bit_depth) {
return AV_RN32A(((int32_t *)mb) + index);
} else
return AV_RN16A(mb + index);
}
static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth,
int index, int value)
{
if (high_bit_depth) {
AV_WN32A(((int32_t *)mb) + index, value);
} else
AV_WN16A(mb + index, value);
}
static av_always_inline void hl_decode_mb_predict_luma(H264Context *h,
int mb_type, int is_h264,
int simple,
int transform_bypass,
int pixel_shift,
int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
MpegEncContext *const s = &h->s;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
int i;
int qscale = p == 0 ? s->qscale : h->chroma_qp[p - 1];
block_offset += 16 * p;
if (IS_INTRA4x4(mb_type)) {
if (simple || !s->encoding) {
if (IS_8x8DCT(mb_type)) {
if (transform_bypass) {
idct_dc_add =
idct_add = s->dsp.add_pixels8;
} else {
idct_dc_add = h->h264dsp.h264_idct8_dc_add;
idct_add = h->h264dsp.h264_idct8_add;
}
for (i = 0; i < 16; i += 4) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = h->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) {
h->hpc.pred8x8l_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else {
const int nnz = h->non_zero_count_cache[scan8[i + p * 16]];
h->hpc.pred8x8l[dir](ptr, (h->topleft_samples_available << i) & 0x8000,
(h->topright_samples_available << i) & 0x4000, linesize);
if (nnz) {
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
}
}
}
} else {
if (transform_bypass) {
idct_dc_add =
idct_add = s->dsp.add_pixels4;
} else {
idct_dc_add = h->h264dsp.h264_idct_dc_add;
idct_add = h->h264dsp.h264_idct_add;
}
for (i = 0; i < 16; i++) {
uint8_t *const ptr = dest_y + block_offset[i];
const int dir = h->intra4x4_pred_mode_cache[scan8[i]];
if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) {
h->hpc.pred4x4_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else {
uint8_t *topright;
int nnz, tr;
uint64_t tr_high;
if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) {
const int topright_avail = (h->topright_samples_available << i) & 0x8000;
assert(s->mb_y || linesize <= block_offset[i]);
if (!topright_avail) {
if (pixel_shift) {
tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL;
topright = (uint8_t *)&tr_high;
} else {
tr = ptr[3 - linesize] * 0x01010101u;
topright = (uint8_t *)&tr;
}
} else
topright = ptr + (4 << pixel_shift) - linesize;
} else
topright = NULL;
h->hpc.pred4x4[dir](ptr, topright, linesize);
nnz = h->non_zero_count_cache[scan8[i + p * 16]];
if (nnz) {
if (is_h264) {
if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
else
idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize);
} else if (CONFIG_SVQ3_DECODER)
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, qscale, 0);
}
}
}
}
}
} else {
h->hpc.pred16x16[h->intra16x16_pred_mode](dest_y, linesize);
if (is_h264) {
if (h->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) {
if (!transform_bypass)
h->h264dsp.h264_luma_dc_dequant_idct(h->mb + (p * 256 << pixel_shift),
h->mb_luma_dc[p],
h->dequant4_coeff[p][qscale][0]);
else {
static const uint8_t dc_mapping[16] = {
0 * 16, 1 * 16, 4 * 16, 5 * 16,
2 * 16, 3 * 16, 6 * 16, 7 * 16,
8 * 16, 9 * 16, 12 * 16, 13 * 16,
10 * 16, 11 * 16, 14 * 16, 15 * 16 };
for (i = 0; i < 16; i++)
dctcoef_set(h->mb + (p * 256 << pixel_shift),
pixel_shift, dc_mapping[i],
dctcoef_get(h->mb_luma_dc[p],
pixel_shift, i));
}
}
} else if (CONFIG_SVQ3_DECODER)
ff_svq3_luma_dc_dequant_idct_c(h->mb + p * 256,
h->mb_luma_dc[p], qscale);
}
}
static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type,
int is_h264, int simple,
int transform_bypass,
int pixel_shift,
int *block_offset,
int linesize,
uint8_t *dest_y, int p)
{
MpegEncContext *const s = &h->s;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
int i;
block_offset += 16 * p;
if (!IS_INTRA4x4(mb_type)) {
if (is_h264) {
if (IS_INTRA16x16(mb_type)) {
if (transform_bypass) {
if (h->sps.profile_idc == 244 &&
(h->intra16x16_pred_mode == VERT_PRED8x8 ||
h->intra16x16_pred_mode == HOR_PRED8x8)) {
h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize);
} else {
for (i = 0; i < 16; i++)
if (h->non_zero_count_cache[scan8[i + p * 16]] ||
dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256))
s->dsp.add_pixels4(dest_y + block_offset[i],
h->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
}
} else {
h->h264dsp.h264_idct_add16intra(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
}
} else if (h->cbp & 15) {
if (transform_bypass) {
const int di = IS_8x8DCT(mb_type) ? 4 : 1;
idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8
: s->dsp.add_pixels4;
for (i = 0; i < 16; i += di)
if (h->non_zero_count_cache[scan8[i + p * 16]])
idct_add(dest_y + block_offset[i],
h->mb + (i * 16 + p * 256 << pixel_shift),
linesize);
} else {
if (IS_8x8DCT(mb_type))
h->h264dsp.h264_idct8_add4(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
else
h->h264dsp.h264_idct_add16(dest_y, block_offset,
h->mb + (p * 256 << pixel_shift),
linesize,
h->non_zero_count_cache + p * 5 * 8);
}
}
} else if (CONFIG_SVQ3_DECODER) {
for (i = 0; i < 16; i++)
if (h->non_zero_count_cache[scan8[i + p * 16]] || h->mb[i * 16 + p * 256]) {
// FIXME benchmark weird rule, & below
uint8_t *const ptr = dest_y + block_offset[i];
ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize,
s->qscale, IS_INTRA(mb_type) ? 1 : 0);
}
}
}
}
static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple,
int pixel_shift)
{
MpegEncContext *const s = &h->s;
const int mb_x = s->mb_x;
const int mb_y = s->mb_y;
const int mb_xy = h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize /*dct_offset*/;
int i, j;
int *block_offset = &h->block_offset[0];
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
/* is_h264 should always be true if SVQ3 is disabled. */
const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
const int block_h = 16 >> s->chroma_y_shift;
const int chroma422 = CHROMA422;
dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift) * 8 + mb_y * s->uvlinesize * block_h;
dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift) * 8 + mb_y * s->uvlinesize * block_h;
s->dsp.prefetch(dest_y + (s->mb_x & 3) * 4 * s->linesize + (64 << pixel_shift), s->linesize, 4);
s->dsp.prefetch(dest_cb + (s->mb_x & 7) * s->uvlinesize + (64 << pixel_shift), dest_cr - dest_cb, 2);
h->list_counts[mb_xy] = h->list_count;
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
block_offset = &h->block_offset[48];
if (mb_y & 1) { // FIXME move out of this function?
dest_y -= s->linesize * 15;
dest_cb -= s->uvlinesize * (block_h - 1);
dest_cr -= s->uvlinesize * (block_h - 1);
}
if (FRAME_MBAFF) {
int list;
for (list = 0; list < h->list_count; list++) {
if (!USES_LIST(mb_type, list))
continue;
if (IS_16X16(mb_type)) {
int8_t *ref = &h->ref_cache[list][scan8[0]];
fill_rectangle(ref, 4, 4, 8, (16 + *ref) ^ (s->mb_y & 1), 1);
} else {
for (i = 0; i < 16; i += 4) {
int ref = h->ref_cache[list][scan8[i]];
if (ref >= 0)
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2,
8, (16 + ref) ^ (s->mb_y & 1), 1);
}
}
}
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
// dct_offset = s->linesize * 16;
}
if (!simple && IS_INTRA_PCM(mb_type)) {
const int bit_depth = h->sps.bit_depth_luma;
if (pixel_shift) {
int j;
GetBitContext gb;
init_get_bits(&gb, (uint8_t *)h->mb,
ff_h264_mb_sizes[h->sps.chroma_format_idc] * bit_depth);
for (i = 0; i < 16; i++) {
uint16_t *tmp_y = (uint16_t *)(dest_y + i * linesize);
for (j = 0; j < 16; j++)
tmp_y[j] = get_bits(&gb, bit_depth);
}
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (!h->sps.chroma_format_idc) {
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cb = (uint16_t *)(dest_cb + i * uvlinesize);
uint16_t *tmp_cr = (uint16_t *)(dest_cr + i * uvlinesize);
for (j = 0; j < 8; j++) {
tmp_cb[j] = tmp_cr[j] = 1 << (bit_depth - 1);
}
}
} else {
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cb = (uint16_t *)(dest_cb + i * uvlinesize);
for (j = 0; j < 8; j++)
tmp_cb[j] = get_bits(&gb, bit_depth);
}
for (i = 0; i < block_h; i++) {
uint16_t *tmp_cr = (uint16_t *)(dest_cr + i * uvlinesize);
for (j = 0; j < 8; j++)
tmp_cr[j] = get_bits(&gb, bit_depth);
}
}
}
} else {
for (i = 0; i < 16; i++)
memcpy(dest_y + i * linesize, (uint8_t *)h->mb + i * 16, 16);
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (!h->sps.chroma_format_idc) {
for (i = 0; i < 8; i++) {
memset(dest_cb + i*uvlinesize, 1 << (bit_depth - 1), 8);
memset(dest_cr + i*uvlinesize, 1 << (bit_depth - 1), 8);
}
} else {
uint8_t *src_cb = (uint8_t *)h->mb + 256;
uint8_t *src_cr = (uint8_t *)h->mb + 256 + block_h * 8;
for (i = 0; i < block_h; i++) {
memcpy(dest_cb + i * uvlinesize, src_cb + i * 8, 8);
memcpy(dest_cr + i * uvlinesize, src_cr + i * 8, 8);
}
}
}
}
} else {
if (IS_INTRA(mb_type)) {
if (h->deblocking_filter)
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 1, 0, simple, pixel_shift);
if (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) {
if (CHROMA) {
h->hpc.pred8x8[h->chroma_pred_mode](dest_cb, uvlinesize);
h->hpc.pred8x8[h->chroma_pred_mode](dest_cr, uvlinesize);
}
}
hl_decode_mb_predict_luma(h, mb_type, is_h264, simple,
transform_bypass, pixel_shift,
block_offset, linesize, dest_y, 0);
if (h->deblocking_filter)
xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 0, 0, simple, pixel_shift);
} else if (is_h264) {
if (chroma422) {
hl_motion_422(h, dest_y, dest_cb, dest_cr,
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab,
pixel_shift);
} else {
hl_motion_420(h, dest_y, dest_cb, dest_cr,
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab,
pixel_shift);
}
}
hl_decode_mb_idct_luma(h, mb_type, is_h264, simple, transform_bypass,
pixel_shift, block_offset, linesize, dest_y, 0);
if ((simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) &&
(h->cbp & 0x30)) {
uint8_t *dest[2] = { dest_cb, dest_cr };
if (transform_bypass) {
if (IS_INTRA(mb_type) && h->sps.profile_idc == 244 &&
(h->chroma_pred_mode == VERT_PRED8x8 ||
h->chroma_pred_mode == HOR_PRED8x8)) {
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0],
block_offset + 16,
h->mb + (16 * 16 * 1 << pixel_shift),
uvlinesize);
h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1],
block_offset + 32,
h->mb + (16 * 16 * 2 << pixel_shift),
uvlinesize);
} else {
idct_add = s->dsp.add_pixels4;
for (j = 1; j < 3; j++) {
for (i = j * 16; i < j * 16 + 4; i++)
if (h->non_zero_count_cache[scan8[i]] ||
dctcoef_get(h->mb, pixel_shift, i * 16))
idct_add(dest[j - 1] + block_offset[i],
h->mb + (i * 16 << pixel_shift),
uvlinesize);
if (chroma422) {
for (i = j * 16 + 4; i < j * 16 + 8; i++)
if (h->non_zero_count_cache[scan8[i + 4]] ||
dctcoef_get(h->mb, pixel_shift, i * 16))
idct_add(dest[j - 1] + block_offset[i + 4],
h->mb + (i * 16 << pixel_shift),
uvlinesize);
}
}
}
} else {
if (is_h264) {
int qp[2];
if (chroma422) {
qp[0] = h->chroma_qp[0] + 3;
qp[1] = h->chroma_qp[1] + 3;
} else {
qp[0] = h->chroma_qp[0];
qp[1] = h->chroma_qp[1];
}
if (h->non_zero_count_cache[scan8[CHROMA_DC_BLOCK_INDEX + 0]])
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16 * 16 * 1 << pixel_shift),
h->dequant4_coeff[IS_INTRA(mb_type) ? 1 : 4][qp[0]][0]);
if (h->non_zero_count_cache[scan8[CHROMA_DC_BLOCK_INDEX + 1]])
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16 * 16 * 2 << pixel_shift),
h->dequant4_coeff[IS_INTRA(mb_type) ? 2 : 5][qp[1]][0]);
h->h264dsp.h264_idct_add8(dest, block_offset,
h->mb, uvlinesize,
h->non_zero_count_cache);
} else if (CONFIG_SVQ3_DECODER) {
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16 * 16 * 1,
h->dequant4_coeff[IS_INTRA(mb_type) ? 1 : 4][h->chroma_qp[0]][0]);
h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16 * 16 * 2,
h->dequant4_coeff[IS_INTRA(mb_type) ? 2 : 5][h->chroma_qp[1]][0]);
for (j = 1; j < 3; j++) {
for (i = j * 16; i < j * 16 + 4; i++)
if (h->non_zero_count_cache[scan8[i]] || h->mb[i * 16]) {
uint8_t *const ptr = dest[j - 1] + block_offset[i];
ff_svq3_add_idct_c(ptr, h->mb + i * 16,
uvlinesize,
ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
}
}
}
}
}
}
if (h->cbp || IS_INTRA(mb_type)) {
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb + (24 * 16 << pixel_shift));
}
}
static av_always_inline void hl_decode_mb_444_internal(H264Context *h,
int simple,
int pixel_shift)
{
MpegEncContext *const s = &h->s;
const int mb_x = s->mb_x;
const int mb_y = s->mb_y;
const int mb_xy = h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
uint8_t *dest[3];
int linesize;
int i, j, p;
int *block_offset = &h->block_offset[0];
const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
const int plane_count = (simple || !CONFIG_GRAY || !(s->flags & CODEC_FLAG_GRAY)) ? 3 : 1;
for (p = 0; p < plane_count; p++) {
dest[p] = s->current_picture.f.data[p] +
((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
s->dsp.prefetch(dest[p] + (s->mb_x & 3) * 4 * s->linesize + (64 << pixel_shift),
s->linesize, 4);
}
h->list_counts[mb_xy] = h->list_count;
if (!simple && MB_FIELD) {
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize * 2;
block_offset = &h->block_offset[48];
if (mb_y & 1) // FIXME move out of this function?
for (p = 0; p < 3; p++)
dest[p] -= s->linesize * 15;
if (FRAME_MBAFF) {
int list;
for (list = 0; list < h->list_count; list++) {
if (!USES_LIST(mb_type, list))
continue;
if (IS_16X16(mb_type)) {
int8_t *ref = &h->ref_cache[list][scan8[0]];
fill_rectangle(ref, 4, 4, 8, (16 + *ref) ^ (s->mb_y & 1), 1);
} else {
for (i = 0; i < 16; i += 4) {
int ref = h->ref_cache[list][scan8[i]];
if (ref >= 0)
fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2,
8, (16 + ref) ^ (s->mb_y & 1), 1);
}
}
}
}
} else {
linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize;
}
if (!simple && IS_INTRA_PCM(mb_type)) {
if (pixel_shift) {
const int bit_depth = h->sps.bit_depth_luma;
GetBitContext gb;
init_get_bits(&gb, (uint8_t *)h->mb, 768 * bit_depth);
for (p = 0; p < plane_count; p++)
for (i = 0; i < 16; i++) {
uint16_t *tmp = (uint16_t *)(dest[p] + i * linesize);
for (j = 0; j < 16; j++)
tmp[j] = get_bits(&gb, bit_depth);
}
} else {
for (p = 0; p < plane_count; p++)
for (i = 0; i < 16; i++)
memcpy(dest[p] + i * linesize,
(uint8_t *)h->mb + p * 256 + i * 16, 16);
}
} else {
if (IS_INTRA(mb_type)) {
if (h->deblocking_filter)
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize,
linesize, 1, 1, simple, pixel_shift);
for (p = 0; p < plane_count; p++)
hl_decode_mb_predict_luma(h, mb_type, 1, simple,
transform_bypass, pixel_shift,
block_offset, linesize, dest[p], p);
if (h->deblocking_filter)
xchg_mb_border(h, dest[0], dest[1], dest[2], linesize,
linesize, 0, 1, simple, pixel_shift);
} else {
hl_motion(h, dest[0], dest[1], dest[2],
s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
h->h264dsp.weight_h264_pixels_tab,
h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 3);
}
for (p = 0; p < plane_count; p++)
hl_decode_mb_idct_luma(h, mb_type, 1, simple, transform_bypass,
pixel_shift, block_offset, linesize,
dest[p], p);
}
if (h->cbp || IS_INTRA(mb_type)) {
s->dsp.clear_blocks(h->mb);
s->dsp.clear_blocks(h->mb + (24 * 16 << pixel_shift));
}
}
/**
* Process a macroblock; this case avoids checks for expensive uncommon cases.
*/
#define hl_decode_mb_simple(sh, bits) \
static void hl_decode_mb_simple_ ## bits(H264Context *h) \
{ \
hl_decode_mb_internal(h, 1, sh); \
}
hl_decode_mb_simple(0, 8)
hl_decode_mb_simple(1, 16)
/**
* Process a macroblock; this handles edge cases, such as interlacing.
*/
static av_noinline void hl_decode_mb_complex(H264Context *h)
{
hl_decode_mb_internal(h, 0, h->pixel_shift);
}
static av_noinline void hl_decode_mb_444_complex(H264Context *h)
{
hl_decode_mb_444_internal(h, 0, h->pixel_shift);
}
static av_noinline void hl_decode_mb_444_simple(H264Context *h)
{
hl_decode_mb_444_internal(h, 1, 0);
}
void ff_h264_hl_decode_mb(H264Context *h)
{
MpegEncContext *const s = &h->s;
const int mb_xy = h->mb_xy;
const int mb_type = s->current_picture.f.mb_type[mb_xy];
int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
if (CHROMA444) {
if (is_complex || h->pixel_shift)
hl_decode_mb_444_complex(h);
else
hl_decode_mb_444_simple(h);
} else if (is_complex) {
hl_decode_mb_complex(h);
} else if (h->pixel_shift) {
hl_decode_mb_simple_16(h);
} else
hl_decode_mb_simple_8(h);
}
static int pred_weight_table(H264Context *h)
{
MpegEncContext *const s = &h->s;
int list, i;
int luma_def, chroma_def;
h->use_weight = 0;
h->use_weight_chroma = 0;
h->luma_log2_weight_denom = get_ue_golomb(&s->gb);
if (h->sps.chroma_format_idc)
h->chroma_log2_weight_denom = get_ue_golomb(&s->gb);
luma_def = 1 << h->luma_log2_weight_denom;
chroma_def = 1 << h->chroma_log2_weight_denom;
for (list = 0; list < 2; list++) {
h->luma_weight_flag[list] = 0;
h->chroma_weight_flag[list] = 0;
for (i = 0; i < h->ref_count[list]; i++) {
int luma_weight_flag, chroma_weight_flag;
luma_weight_flag = get_bits1(&s->gb);
if (luma_weight_flag) {
h->luma_weight[i][list][0] = get_se_golomb(&s->gb);
h->luma_weight[i][list][1] = get_se_golomb(&s->gb);
if (h->luma_weight[i][list][0] != luma_def ||
h->luma_weight[i][list][1] != 0) {
h->use_weight = 1;
h->luma_weight_flag[list] = 1;
}
} else {
h->luma_weight[i][list][0] = luma_def;
h->luma_weight[i][list][1] = 0;
}
if (h->sps.chroma_format_idc) {
chroma_weight_flag = get_bits1(&s->gb);
if (chroma_weight_flag) {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = get_se_golomb(&s->gb);
h->chroma_weight[i][list][j][1] = get_se_golomb(&s->gb);
if (h->chroma_weight[i][list][j][0] != chroma_def ||
h->chroma_weight[i][list][j][1] != 0) {
h->use_weight_chroma = 1;
h->chroma_weight_flag[list] = 1;
}
}
} else {
int j;
for (j = 0; j < 2; j++) {
h->chroma_weight[i][list][j][0] = chroma_def;
h->chroma_weight[i][list][j][1] = 0;
}
}
}
}
if (h->slice_type_nos != AV_PICTURE_TYPE_B)
break;
}
h->use_weight = h->use_weight || h->use_weight_chroma;
return 0;
}
/**
* Initialize implicit_weight table.
* @param field 0/1 initialize the weight for interlaced MBAFF
* -1 initializes the rest
*/
static void implicit_weight_table(H264Context *h, int field)
{
MpegEncContext *const s = &h->s;
int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
if (field < 0) {
if (s->picture_structure == PICT_FRAME) {
cur_poc = s->current_picture_ptr->poc;
} else {
cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1];
}
if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF &&
h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) {
h->use_weight = 0;
h->use_weight_chroma = 0;
return;
}
ref_start = 0;
ref_count0 = h->ref_count[0];
ref_count1 = h->ref_count[1];
} else {
cur_poc = s->current_picture_ptr->field_poc[field];
ref_start = 16;
ref_count0 = 16 + 2 * h->ref_count[0];
ref_count1 = 16 + 2 * h->ref_count[1];
}
h->use_weight = 2;
h->use_weight_chroma = 2;
h->luma_log2_weight_denom = 5;
h->chroma_log2_weight_denom = 5;
for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
int poc0 = h->ref_list[0][ref0].poc;
for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
int w = 32;
if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
int poc1 = h->ref_list[1][ref1].poc;
int td = av_clip(poc1 - poc0, -128, 127);
if (td) {
int tb = av_clip(cur_poc - poc0, -128, 127);
int tx = (16384 + (FFABS(td) >> 1)) / td;
int dist_scale_factor = (tb * tx + 32) >> 8;
if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
w = 64 - dist_scale_factor;
}
}
if (field < 0) {
h->implicit_weight[ref0][ref1][0] =
h->implicit_weight[ref0][ref1][1] = w;
} else {
h->implicit_weight[ref0][ref1][field] = w;
}
}
}
}
/**
* instantaneous decoder refresh.
*/
static void idr(H264Context *h)
{
int i;
ff_h264_remove_all_refs(h);
h->prev_frame_num = 0;
h->prev_frame_num_offset = 0;
h->prev_poc_msb = 1<<16;
h->prev_poc_lsb = 0;
for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++)
h->last_pocs[i] = INT_MIN;
}
/* forget old pics after a seek */
static void flush_dpb(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
int i;
for (i=0; i<=MAX_DELAYED_PIC_COUNT; i++) {
if (h->delayed_pic[i])
h->delayed_pic[i]->f.reference = 0;
h->delayed_pic[i] = NULL;
}
h->outputed_poc = h->next_outputed_poc = INT_MIN;
h->prev_interlaced_frame = 1;
idr(h);
h->prev_frame_num = -1;
if (h->s.current_picture_ptr)
h->s.current_picture_ptr->f.reference = 0;
h->s.first_field = 0;
ff_h264_reset_sei(h);
ff_mpeg_flush(avctx);
h->recovery_frame= -1;
h->sync= 0;
}
static int init_poc(H264Context *h)
{
MpegEncContext *const s = &h->s;
const int max_frame_num = 1 << h->sps.log2_max_frame_num;
int field_poc[2];
Picture *cur = s->current_picture_ptr;
h->frame_num_offset = h->prev_frame_num_offset;
if (h->frame_num < h->prev_frame_num)
h->frame_num_offset += max_frame_num;
if (h->sps.poc_type == 0) {
const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb;
if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb + max_poc_lsb;
else if (h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2)
h->poc_msb = h->prev_poc_msb - max_poc_lsb;
else
h->poc_msb = h->prev_poc_msb;
// printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
field_poc[0] =
field_poc[1] = h->poc_msb + h->poc_lsb;
if (s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc_bottom;
} else if (h->sps.poc_type == 1) {
int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
int i;
if (h->sps.poc_cycle_length != 0)
abs_frame_num = h->frame_num_offset + h->frame_num;
else
abs_frame_num = 0;
if (h->nal_ref_idc == 0 && abs_frame_num > 0)
abs_frame_num--;
expected_delta_per_poc_cycle = 0;
for (i = 0; i < h->sps.poc_cycle_length; i++)
// FIXME integrate during sps parse
expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i];
if (abs_frame_num > 0) {
int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
for (i = 0; i <= frame_num_in_poc_cycle; i++)
expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i];
} else
expectedpoc = 0;
if (h->nal_ref_idc == 0)
expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
field_poc[0] = expectedpoc + h->delta_poc[0];
field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
if (s->picture_structure == PICT_FRAME)
field_poc[1] += h->delta_poc[1];
} else {
int poc = 2 * (h->frame_num_offset + h->frame_num);
if (!h->nal_ref_idc)
poc--;
field_poc[0] = poc;
field_poc[1] = poc;
}
if (s->picture_structure != PICT_BOTTOM_FIELD)
s->current_picture_ptr->field_poc[0] = field_poc[0];
if (s->picture_structure != PICT_TOP_FIELD)
s->current_picture_ptr->field_poc[1] = field_poc[1];
cur->poc = FFMIN(cur->field_poc[0], cur->field_poc[1]);
return 0;
}
/**
* initialize scan tables
*/
static void init_scan_tables(H264Context *h)
{
int i;
for (i = 0; i < 16; i++) {
#define T(x) (x >> 2) | ((x << 2) & 0xF)
h->zigzag_scan[i] = T(zigzag_scan[i]);
h->field_scan[i] = T(field_scan[i]);
#undef T
}
for (i = 0; i < 64; i++) {
#define T(x) (x >> 3) | ((x & 7) << 3)
h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
h->field_scan8x8[i] = T(field_scan8x8[i]);
h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
#undef T
}
if (h->sps.transform_bypass) { // FIXME same ugly
memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
} else {
memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
}
}
static int field_end(H264Context *h, int in_setup)
{
MpegEncContext *const s = &h->s;
AVCodecContext *const avctx = s->avctx;
int err = 0;
s->mb_y = 0;
if (!in_setup && !s->dropable)
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX,
s->picture_structure == PICT_BOTTOM_FIELD);
if (CONFIG_H264_VDPAU_DECODER &&
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_set_reference_frames(s);
if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) {
if (!s->dropable) {
err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
h->prev_poc_msb = h->poc_msb;
h->prev_poc_lsb = h->poc_lsb;
}
h->prev_frame_num_offset = h->frame_num_offset;
h->prev_frame_num = h->frame_num;
h->outputed_poc = h->next_outputed_poc;
}
if (avctx->hwaccel) {
if (avctx->hwaccel->end_frame(avctx) < 0)
av_log(avctx, AV_LOG_ERROR,
"hardware accelerator failed to decode picture\n");
}
if (CONFIG_H264_VDPAU_DECODER &&
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_complete(s);
/*
* FIXME: Error handling code does not seem to support interlaced
* when slices span multiple rows
* The ff_er_add_slice calls don't work right for bottom
* fields; they cause massive erroneous error concealing
* Error marking covers both fields (top and bottom).
* This causes a mismatched s->error_count
* and a bad error table. Further, the error count goes to
* INT_MAX when called for bottom field, because mb_y is
* past end by one (callers fault) and resync_mb_y != 0
* causes problems for the first MB line, too.
*/
if (!FIELD_PICTURE)
ff_er_frame_end(s);
ff_MPV_frame_end(s);
h->current_slice = 0;
return err;
}
/**
* Replicate H264 "master" context to thread contexts.
*/
static void clone_slice(H264Context *dst, H264Context *src)
{
memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
dst->s.current_picture_ptr = src->s.current_picture_ptr;
dst->s.current_picture = src->s.current_picture;
dst->s.linesize = src->s.linesize;
dst->s.uvlinesize = src->s.uvlinesize;
dst->s.first_field = src->s.first_field;
dst->prev_poc_msb = src->prev_poc_msb;
dst->prev_poc_lsb = src->prev_poc_lsb;
dst->prev_frame_num_offset = src->prev_frame_num_offset;
dst->prev_frame_num = src->prev_frame_num;
dst->short_ref_count = src->short_ref_count;
memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
}
/**
* Compute profile from profile_idc and constraint_set?_flags.
*
* @param sps SPS
*
* @return profile as defined by FF_PROFILE_H264_*
*/
int ff_h264_get_profile(SPS *sps)
{
int profile = sps->profile_idc;
switch (sps->profile_idc) {
case FF_PROFILE_H264_BASELINE:
// constraint_set1_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0;
break;
case FF_PROFILE_H264_HIGH_10:
case FF_PROFILE_H264_HIGH_422:
case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
// constraint_set3_flag set to 1
profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0;
break;
}
return profile;
}
/**
* Decode a slice header.
* This will also call ff_MPV_common_init() and frame_start() as needed.
*
* @param h h264context
* @param h0 h264 master context (differs from 'h' when doing sliced based
* parallel decoding)
*
* @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
*/
static int decode_slice_header(H264Context *h, H264Context *h0)
{
MpegEncContext *const s = &h->s;
MpegEncContext *const s0 = &h0->s;
unsigned int first_mb_in_slice;
unsigned int pps_id;
int num_ref_idx_active_override_flag;
unsigned int slice_type, tmp, i, j;
int default_ref_list_done = 0;
int last_pic_structure, last_pic_dropable;
int must_reinit;
/* FIXME: 2tap qpel isn't implemented for high bit depth. */
if ((s->avctx->flags2 & CODEC_FLAG2_FAST) &&
!h->nal_ref_idc && !h->pixel_shift) {
s->me.qpel_put = s->dsp.put_2tap_qpel_pixels_tab;
s->me.qpel_avg = s->dsp.avg_2tap_qpel_pixels_tab;
} else {
s->me.qpel_put = s->dsp.put_h264_qpel_pixels_tab;
s->me.qpel_avg = s->dsp.avg_h264_qpel_pixels_tab;
}
first_mb_in_slice = get_ue_golomb_long(&s->gb);
if (first_mb_in_slice == 0) { // FIXME better field boundary detection
if (h0->current_slice && FIELD_PICTURE) {
field_end(h, 1);
}
h0->current_slice = 0;
if (!s0->first_field) {
if (s->current_picture_ptr && !s->dropable &&
s->current_picture_ptr->owner2 == s) {
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX,
s->picture_structure == PICT_BOTTOM_FIELD);
}
s->current_picture_ptr = NULL;
}
}
slice_type = get_ue_golomb_31(&s->gb);
if (slice_type > 9) {
av_log(h->s.avctx, AV_LOG_ERROR,
"slice type too large (%d) at %d %d\n",
h->slice_type, s->mb_x, s->mb_y);
return -1;
}
if (slice_type > 4) {
slice_type -= 5;
h->slice_type_fixed = 1;
} else
h->slice_type_fixed = 0;
slice_type = golomb_to_pict_type[slice_type];
if (slice_type == AV_PICTURE_TYPE_I ||
(h0->current_slice != 0 && slice_type == h0->last_slice_type)) {
default_ref_list_done = 1;
}
h->slice_type = slice_type;
h->slice_type_nos = slice_type & 3;
// to make a few old functions happy, it's wrong though
s->pict_type = h->slice_type;
pps_id = get_ue_golomb(&s->gb);
if (pps_id >= MAX_PPS_COUNT) {
av_log(h->s.avctx, AV_LOG_ERROR, "pps_id %d out of range\n", pps_id);
return -1;
}
if (!h0->pps_buffers[pps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR,
"non-existing PPS %u referenced\n",
pps_id);
return -1;
}
h->pps = *h0->pps_buffers[pps_id];
if (!h0->sps_buffers[h->pps.sps_id]) {
av_log(h->s.avctx, AV_LOG_ERROR,
"non-existing SPS %u referenced\n",
h->pps.sps_id);
return -1;
}
h->sps = *h0->sps_buffers[h->pps.sps_id];
s->avctx->profile = ff_h264_get_profile(&h->sps);
s->avctx->level = h->sps.level_idc;
s->avctx->refs = h->sps.ref_frame_count;
must_reinit = (s->context_initialized &&
( 16*h->sps.mb_width != s->avctx->coded_width
|| 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != s->avctx->coded_height
|| s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
|| h->cur_chroma_format_idc != h->sps.chroma_format_idc
|| av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio)));
if(must_reinit && (h != h0 || (s->avctx->active_thread_type & FF_THREAD_FRAME))) {
av_log_missing_feature(s->avctx,
"Width/height/bit depth/chroma idc changing with threads is", 0);
return AVERROR_PATCHWELCOME; // width / height changed during parallelized decoding
}
s->mb_width = h->sps.mb_width;
s->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
h->b_stride = s->mb_width * 4;
s->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
s->width = 16 * s->mb_width;
s->height = 16 * s->mb_height;
if(must_reinit) {
free_tables(h, 0);
flush_dpb(s->avctx);
ff_MPV_common_end(s);
h->list_count = 0;
h->current_slice = 0;
}
if (!s->context_initialized) {
if (h != h0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"Cannot (re-)initialize context during parallel decoding.\n");
return -1;
}
avcodec_set_dimensions(s->avctx, s->width, s->height);
s->avctx->width -= (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1);
s->avctx->height -= (1<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1) * (2 - h->sps.frame_mbs_only_flag);
s->avctx->sample_aspect_ratio = h->sps.sar;
av_assert0(s->avctx->sample_aspect_ratio.den);
if (s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10 &&
(h->sps.bit_depth_luma != 9 || !CHROMA422)) {
s->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
h->cur_chroma_format_idc = h->sps.chroma_format_idc;
h->pixel_shift = h->sps.bit_depth_luma > 8;
ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16;
ff_dsputil_init(&s->dsp, s->avctx);
} else {
av_log(s->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d chroma_idc: %d\n",
h->sps.bit_depth_luma, h->sps.chroma_format_idc);
return -1;
}
}
if (h->sps.video_signal_type_present_flag) {
s->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG
: AVCOL_RANGE_MPEG;
if (h->sps.colour_description_present_flag) {
s->avctx->color_primaries = h->sps.color_primaries;
s->avctx->color_trc = h->sps.color_trc;
s->avctx->colorspace = h->sps.colorspace;
}
}
if (h->sps.timing_info_present_flag) {
int64_t den = h->sps.time_scale;
if (h->x264_build < 44U)
den *= 2;
av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
h->sps.num_units_in_tick, den, 1 << 30);
}
switch (h->sps.bit_depth_luma) {
case 9:
if (CHROMA444) {
if (s->avctx->colorspace == AVCOL_SPC_RGB) {
s->avctx->pix_fmt = PIX_FMT_GBRP9;
} else
s->avctx->pix_fmt = PIX_FMT_YUV444P9;
} else if (CHROMA422)
s->avctx->pix_fmt = PIX_FMT_YUV422P9;
else
s->avctx->pix_fmt = PIX_FMT_YUV420P9;
break;
case 10:
if (CHROMA444) {
if (s->avctx->colorspace == AVCOL_SPC_RGB) {
s->avctx->pix_fmt = PIX_FMT_GBRP10;
} else
s->avctx->pix_fmt = PIX_FMT_YUV444P10;
} else if (CHROMA422)
s->avctx->pix_fmt = PIX_FMT_YUV422P10;
else
s->avctx->pix_fmt = PIX_FMT_YUV420P10;
break;
case 8:
if (CHROMA444) {
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P
: PIX_FMT_YUV444P;
if (s->avctx->colorspace == AVCOL_SPC_RGB) {
s->avctx->pix_fmt = PIX_FMT_GBR24P;
av_log(h->s.avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
} else if (s->avctx->colorspace == AVCOL_SPC_YCGCO) {
av_log(h->s.avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n");
}
} else if (CHROMA422) {
s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ422P
: PIX_FMT_YUV422P;
} else {
s->avctx->pix_fmt = s->avctx->get_format(s->avctx,
s->avctx->codec->pix_fmts ?
s->avctx->codec->pix_fmts :
s->avctx->color_range == AVCOL_RANGE_JPEG ?
hwaccel_pixfmt_list_h264_jpeg_420 :
ff_hwaccel_pixfmt_list_420);
}
break;
default:
av_log(s->avctx, AV_LOG_ERROR,
"Unsupported bit depth: %d\n", h->sps.bit_depth_luma);
return AVERROR_INVALIDDATA;
}
s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id,
s->avctx->pix_fmt);
if (ff_MPV_common_init(s) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "ff_MPV_common_init() failed.\n");
return -1;
}
s->first_field = 0;
h->prev_interlaced_frame = 1;
init_scan_tables(h);
if (ff_h264_alloc_tables(h) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"Could not allocate memory for h264\n");
return AVERROR(ENOMEM);
}
if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_SLICE)) {
if (context_init(h) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
return -1;
}
} else {
for (i = 1; i < s->slice_context_count; i++) {
H264Context *c;
c = h->thread_context[i] = av_malloc(sizeof(H264Context));
memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
c->h264dsp = h->h264dsp;
c->sps = h->sps;
c->pps = h->pps;
c->pixel_shift = h->pixel_shift;
c->cur_chroma_format_idc = h->cur_chroma_format_idc;
init_scan_tables(c);
clone_tables(c, h, i);
}
for (i = 0; i < s->slice_context_count; i++)
if (context_init(h->thread_context[i]) < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"context_init() failed.\n");
return -1;
}
}
}
if (h == h0 && h->dequant_coeff_pps != pps_id) {
h->dequant_coeff_pps = pps_id;
init_dequant_tables(h);
}
h->frame_num = get_bits(&s->gb, h->sps.log2_max_frame_num);
h->mb_mbaff = 0;
h->mb_aff_frame = 0;
last_pic_structure = s0->picture_structure;
last_pic_dropable = s->dropable;
s->dropable = h->nal_ref_idc == 0;
if (h->sps.frame_mbs_only_flag) {
s->picture_structure = PICT_FRAME;
} else {
if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
av_log(h->s.avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
return -1;
}
if (get_bits1(&s->gb)) { // field_pic_flag
s->picture_structure = PICT_TOP_FIELD + get_bits1(&s->gb); // bottom_field_flag
} else {
s->picture_structure = PICT_FRAME;
h->mb_aff_frame = h->sps.mb_aff;
}
}
h->mb_field_decoding_flag = s->picture_structure != PICT_FRAME;
if (h0->current_slice != 0) {
if (last_pic_structure != s->picture_structure ||
last_pic_dropable != s->dropable) {
av_log(h->s.avctx, AV_LOG_ERROR,
"Changing field mode (%d -> %d) between slices is not allowed\n",
last_pic_structure, s->picture_structure);
s->picture_structure = last_pic_structure;
s->dropable = last_pic_dropable;
return AVERROR_INVALIDDATA;
}
} else {
/* Shorten frame num gaps so we don't have to allocate reference
* frames just to throw them away */
if (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0) {
int unwrap_prev_frame_num = h->prev_frame_num;
int max_frame_num = 1 << h->sps.log2_max_frame_num;
if (unwrap_prev_frame_num > h->frame_num)
unwrap_prev_frame_num -= max_frame_num;
if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
if (unwrap_prev_frame_num < 0)
unwrap_prev_frame_num += max_frame_num;
h->prev_frame_num = unwrap_prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* Here, we're using that to see if we should mark previously
* decode frames as "finished".
* We have to do that before the "dummy" in-between frame allocation,
* since that can modify s->current_picture_ptr. */
if (s0->first_field) {
assert(s0->current_picture_ptr);
assert(s0->current_picture_ptr->f.data[0]);
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
/* Mark old field/frame as completed */
if (!last_pic_dropable && s0->current_picture_ptr->owner2 == s0) {
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX,
last_pic_structure == PICT_BOTTOM_FIELD);
}
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
if (!last_pic_dropable && last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
if (s0->current_picture_ptr->frame_num != h->frame_num) {
/* This and previous field were reference, but had
* different frame_nums. Consider this field first in
* pair. Throw away previous field except for reference
* purposes. */
if (!last_pic_dropable && last_pic_structure != PICT_FRAME) {
ff_thread_report_progress(&s0->current_picture_ptr->f, INT_MAX,
last_pic_structure == PICT_TOP_FIELD);
}
} else {
/* Second field in complementary pair */
if (!((last_pic_structure == PICT_TOP_FIELD &&
s->picture_structure == PICT_BOTTOM_FIELD) ||
(last_pic_structure == PICT_BOTTOM_FIELD &&
s->picture_structure == PICT_TOP_FIELD))) {
av_log(s->avctx, AV_LOG_ERROR,
"Invalid field mode combination %d/%d\n",
last_pic_structure, s->picture_structure);
s->picture_structure = last_pic_structure;
s->dropable = last_pic_dropable;
return AVERROR_INVALIDDATA;
} else if (last_pic_dropable != s->dropable) {
av_log(s->avctx, AV_LOG_ERROR,
"Cannot combine reference and non-reference fields in the same frame\n");
av_log_ask_for_sample(s->avctx, NULL);
s->picture_structure = last_pic_structure;
s->dropable = last_pic_dropable;
return AVERROR_INVALIDDATA;
}
/* Take ownership of this buffer. Note that if another thread owned
* the first field of this buffer, we're not operating on that pointer,
* so the original thread is still responsible for reporting progress
* on that first field (or if that was us, we just did that above).
* By taking ownership, we assign responsibility to ourselves to
* report progress on the second field. */
s0->current_picture_ptr->owner2 = s0;
}
}
}
while (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0 &&
h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
h->frame_num, h->prev_frame_num);
if (ff_h264_frame_start(h) < 0)
return -1;
h->prev_frame_num++;
h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
s->current_picture_ptr->frame_num = h->prev_frame_num;
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, 0);
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX, 1);
ff_generate_sliding_window_mmcos(h);
if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
(s->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
/* Error concealment: if a ref is missing, copy the previous ref in its place.
* FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
* about there being no actual duplicates.
* FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
* concealing a lost frame, this probably isn't noticeable by comparison, but it should
* be fixed. */
if (h->short_ref_count) {
if (prev) {
av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
(const uint8_t **)prev->f.data, prev->f.linesize,
s->avctx->pix_fmt, s->mb_width * 16, s->mb_height * 16);
h->short_ref[0]->poc = prev->poc + 2;
}
h->short_ref[0]->frame_num = h->prev_frame_num;
}
}
/* See if we have a decoded first field looking for a pair...
* We're using that to see whether to continue decoding in that
* frame, or to allocate a new one. */
if (s0->first_field) {
assert(s0->current_picture_ptr);
assert(s0->current_picture_ptr->f.data[0]);
assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
/* figure out if we have a complementary field pair */
if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
/* Previous field is unmatched. Don't display it, but let it
* remain for reference if marked as such. */
s0->current_picture_ptr = NULL;
s0->first_field = FIELD_PICTURE;
} else {
if (s0->current_picture_ptr->frame_num != h->frame_num) {
ff_thread_report_progress((AVFrame*)s0->current_picture_ptr, INT_MAX,
s0->picture_structure==PICT_BOTTOM_FIELD);
/* This and the previous field had different frame_nums.
* Consider this field first in pair. Throw away previous
* one except for reference purposes. */
s0->first_field = 1;
s0->current_picture_ptr = NULL;
} else {
/* Second field in complementary pair */
s0->first_field = 0;
}
}
} else {
/* Frame or first field in a potentially complementary pair */
assert(!s0->current_picture_ptr);
s0->first_field = FIELD_PICTURE;
}
if (!FIELD_PICTURE || s0->first_field) {
if (ff_h264_frame_start(h) < 0) {
s0->first_field = 0;
return -1;
}
} else {
ff_release_unused_pictures(s, 0);
}
}
if (h != h0)
clone_slice(h, h0);
s->current_picture_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
assert(s->mb_num == s->mb_width * s->mb_height);
if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
first_mb_in_slice >= s->mb_num) {
av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
return -1;
}
s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
if (s->picture_structure == PICT_BOTTOM_FIELD)
s->resync_mb_y = s->mb_y = s->mb_y + 1;
assert(s->mb_y < s->mb_height);
if (s->picture_structure == PICT_FRAME) {
h->curr_pic_num = h->frame_num;
h->max_pic_num = 1 << h->sps.log2_max_frame_num;
} else {
h->curr_pic_num = 2 * h->frame_num + 1;
h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
}
if (h->nal_unit_type == NAL_IDR_SLICE)
get_ue_golomb(&s->gb); /* idr_pic_id */
if (h->sps.poc_type == 0) {
h->poc_lsb = get_bits(&s->gb, h->sps.log2_max_poc_lsb);
if (h->pps.pic_order_present == 1 && s->picture_structure == PICT_FRAME)
h->delta_poc_bottom = get_se_golomb(&s->gb);
}
if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
h->delta_poc[0] = get_se_golomb(&s->gb);
if (h->pps.pic_order_present == 1 && s->picture_structure == PICT_FRAME)
h->delta_poc[1] = get_se_golomb(&s->gb);
}
init_poc(h);
if (h->pps.redundant_pic_cnt_present)
h->redundant_pic_count = get_ue_golomb(&s->gb);
// set defaults, might be overridden a few lines later
h->ref_count[0] = h->pps.ref_count[0];
h->ref_count[1] = h->pps.ref_count[1];
if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
unsigned max = s->picture_structure == PICT_FRAME ? 15 : 31;
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->direct_spatial_mv_pred = get_bits1(&s->gb);
num_ref_idx_active_override_flag = get_bits1(&s->gb);
if (num_ref_idx_active_override_flag) {
h->ref_count[0] = get_ue_golomb(&s->gb) + 1;
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->ref_count[1] = get_ue_golomb(&s->gb) + 1;
}
if (h->ref_count[0]-1 > max || h->ref_count[1]-1 > max){
av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
h->ref_count[0] = h->ref_count[1] = 1;
return AVERROR_INVALIDDATA;
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B)
h->list_count = 2;
else
h->list_count = 1;
} else
h->ref_count[1]= h->ref_count[0]= h->list_count= 0;
if (!default_ref_list_done)
ff_h264_fill_default_ref_list(h);
if (h->slice_type_nos != AV_PICTURE_TYPE_I &&
ff_h264_decode_ref_pic_list_reordering(h) < 0) {
h->ref_count[1] = h->ref_count[0] = 0;
return -1;
}
if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
s->last_picture_ptr = &h->ref_list[0][0];
ff_copy_picture(&s->last_picture, s->last_picture_ptr);
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
s->next_picture_ptr = &h->ref_list[1][0];
ff_copy_picture(&s->next_picture, s->next_picture_ptr);
}
if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) ||
(h->pps.weighted_bipred_idc == 1 &&
h->slice_type_nos == AV_PICTURE_TYPE_B))
pred_weight_table(h);
else if (h->pps.weighted_bipred_idc == 2 &&
h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, -1);
} else {
h->use_weight = 0;
for (i = 0; i < 2; i++) {
h->luma_weight_flag[i] = 0;
h->chroma_weight_flag[i] = 0;
}
}
if (h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 &&
(s->avctx->err_recognition & AV_EF_EXPLODE))
return AVERROR_INVALIDDATA;
if (FRAME_MBAFF) {
ff_h264_fill_mbaff_ref_list(h);
if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) {
implicit_weight_table(h, 0);
implicit_weight_table(h, 1);
}
}
if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
ff_h264_direct_dist_scale_factor(h);
ff_h264_direct_ref_list_init(h);
if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
tmp = get_ue_golomb_31(&s->gb);
if (tmp > 2) {
av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
return -1;
}
h->cabac_init_idc = tmp;
}
h->last_qscale_diff = 0;
tmp = h->pps.init_qp + get_se_golomb(&s->gb);
if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
return -1;
}
s->qscale = tmp;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
// FIXME qscale / qp ... stuff
if (h->slice_type == AV_PICTURE_TYPE_SP)
get_bits1(&s->gb); /* sp_for_switch_flag */
if (h->slice_type == AV_PICTURE_TYPE_SP ||
h->slice_type == AV_PICTURE_TYPE_SI)
get_se_golomb(&s->gb); /* slice_qs_delta */
h->deblocking_filter = 1;
h->slice_alpha_c0_offset = 52;
h->slice_beta_offset = 52;
if (h->pps.deblocking_filter_parameters_present) {
tmp = get_ue_golomb_31(&s->gb);
if (tmp > 2) {
av_log(s->avctx, AV_LOG_ERROR,
"deblocking_filter_idc %u out of range\n", tmp);
return -1;
}
h->deblocking_filter = tmp;
if (h->deblocking_filter < 2)
h->deblocking_filter ^= 1; // 1<->0
if (h->deblocking_filter) {
h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
if (h->slice_alpha_c0_offset > 104U ||
h->slice_beta_offset > 104U) {
av_log(s->avctx, AV_LOG_ERROR,
"deblocking filter parameters %d %d out of range\n",
h->slice_alpha_c0_offset, h->slice_beta_offset);
return -1;
}
}
}
if (s->avctx->skip_loop_filter >= AVDISCARD_ALL ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
h->slice_type_nos != AV_PICTURE_TYPE_I) ||
(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
h->slice_type_nos == AV_PICTURE_TYPE_B) ||
(s->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
h->nal_ref_idc == 0))
h->deblocking_filter = 0;
if (h->deblocking_filter == 1 && h0->max_contexts > 1) {
if (s->avctx->flags2 & CODEC_FLAG2_FAST) {
/* Cheat slightly for speed:
* Do not bother to deblock across slices. */
h->deblocking_filter = 2;
} else {
h0->max_contexts = 1;
if (!h0->single_decode_warning) {
av_log(s->avctx, AV_LOG_INFO,
"Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
h0->single_decode_warning = 1;
}
if (h != h0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"Deblocking switched inside frame.\n");
return 1;
}
}
}
h->qp_thresh = 15 + 52 -
FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) -
FFMAX3(0,
h->pps.chroma_qp_index_offset[0],
h->pps.chroma_qp_index_offset[1]) +
6 * (h->sps.bit_depth_luma - 8);
h0->last_slice_type = slice_type;
h->slice_num = ++h0->current_slice;
if (h->slice_num)
h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= s->resync_mb_y;
if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= s->resync_mb_y
&& h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= s->resync_mb_y
&& h->slice_num >= MAX_SLICES) {
//in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
av_log(s->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
}
for (j = 0; j < 2; j++) {
int id_list[16];
int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j];
for (i = 0; i < 16; i++) {
id_list[i] = 60;
if (h->ref_list[j][i].f.data[0]) {
int k;
uint8_t *base = h->ref_list[j][i].f.base[0];
for (k = 0; k < h->short_ref_count; k++)
if (h->short_ref[k]->f.base[0] == base) {
id_list[i] = k;
break;
}
for (k = 0; k < h->long_ref_count; k++)
if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) {
id_list[i] = h->short_ref_count + k;
break;
}
}
}
ref2frm[0] =
ref2frm[1] = -1;
for (i = 0; i < 16; i++)
ref2frm[i + 2] = 4 * id_list[i] +
(h->ref_list[j][i].f.reference & 3);
ref2frm[18 + 0] =
ref2frm[18 + 1] = -1;
for (i = 16; i < 48; i++)
ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
(h->ref_list[j][i].f.reference & 3);
}
// FIXME: fix draw_edges + PAFF + frame threads
h->emu_edge_width = (s->flags & CODEC_FLAG_EMU_EDGE ||
(!h->sps.frame_mbs_only_flag &&
s->avctx->active_thread_type))
? 0 : 16;
h->emu_edge_height = (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
if (s->avctx->debug & FF_DEBUG_PICT_INFO) {
av_log(h->s.avctx, AV_LOG_DEBUG,
"slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
h->slice_num,
(s->picture_structure == PICT_FRAME ? "F" : s->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
first_mb_in_slice,
av_get_picture_type_char(h->slice_type),
h->slice_type_fixed ? " fix" : "",
h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
pps_id, h->frame_num,
s->current_picture_ptr->field_poc[0],
s->current_picture_ptr->field_poc[1],
h->ref_count[0], h->ref_count[1],
s->qscale,
h->deblocking_filter,
h->slice_alpha_c0_offset / 2 - 26, h->slice_beta_offset / 2 - 26,
h->use_weight,
h->use_weight == 1 && h->use_weight_chroma ? "c" : "",
h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
}
return 0;
}
int ff_h264_get_slice_type(const H264Context *h)
{
switch (h->slice_type) {
case AV_PICTURE_TYPE_P:
return 0;
case AV_PICTURE_TYPE_B:
return 1;
case AV_PICTURE_TYPE_I:
return 2;
case AV_PICTURE_TYPE_SP:
return 3;
case AV_PICTURE_TYPE_SI:
return 4;
default:
return -1;
}
}
static av_always_inline void fill_filter_caches_inter(H264Context *h,
MpegEncContext *const s,
int mb_type, int top_xy,
int left_xy[LEFT_MBS],
int top_type,
int left_type[LEFT_MBS],
int mb_xy, int list)
{
int b_stride = h->b_stride;
int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
if (USES_LIST(top_type, list)) {
const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
const int b8_xy = 4 * top_xy + 2;
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2));
AV_COPY128(mv_dst - 1 * 8, s->current_picture.f.motion_val[list][b_xy + 0]);
ref_cache[0 - 1 * 8] =
ref_cache[1 - 1 * 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]];
ref_cache[2 - 1 * 8] =
ref_cache[3 - 1 * 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]];
} else {
AV_ZERO128(mv_dst - 1 * 8);
AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
}
if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
if (USES_LIST(left_type[LTOP], list)) {
const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
const int b8_xy = 4 * left_xy[LTOP] + 1;
int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2));
AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride * 0]);
AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride * 1]);
AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride * 2]);
AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride * 3]);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2 * 0]];
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2 * 1]];
} else {
AV_ZERO32(mv_dst - 1 + 0);
AV_ZERO32(mv_dst - 1 + 8);
AV_ZERO32(mv_dst - 1 + 16);
AV_ZERO32(mv_dst - 1 + 24);
ref_cache[-1 + 0] =
ref_cache[-1 + 8] =
ref_cache[-1 + 16] =
ref_cache[-1 + 24] = LIST_NOT_USED;
}
}
}
if (!USES_LIST(mb_type, list)) {
fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
return;
}
{
int8_t *ref = &s->current_picture.f.ref_index[list][4 * mb_xy];
int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2));
uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
AV_WN32A(&ref_cache[0 * 8], ref01);
AV_WN32A(&ref_cache[1 * 8], ref01);
AV_WN32A(&ref_cache[2 * 8], ref23);
AV_WN32A(&ref_cache[3 * 8], ref23);
}
{
int16_t(*mv_src)[2] = &s->current_picture.f.motion_val[list][4 * s->mb_x + 4 * s->mb_y * b_stride];
AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
}
}
/**
*
* @return non zero if the loop filter can be skipped
*/
static int fill_filter_caches(H264Context *h, int mb_type)
{
MpegEncContext *const s = &h->s;
const int mb_xy = h->mb_xy;
int top_xy, left_xy[LEFT_MBS];
int top_type, left_type[LEFT_MBS];
uint8_t *nnz;
uint8_t *nnz_cache;
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
/* Wow, what a mess, why didn't they simplify the interlacing & intra
* stuff, I can't imagine that these complex rules are worth it. */
left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
if (FRAME_MBAFF) {
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
if (s->mb_y & 1) {
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LTOP] -= s->mb_stride;
} else {
if (curr_mb_field_flag)
top_xy += s->mb_stride &
(((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
if (left_mb_field_flag != curr_mb_field_flag)
left_xy[LBOT] += s->mb_stride;
}
}
h->top_mb_xy = top_xy;
h->left_mb_xy[LTOP] = left_xy[LTOP];
h->left_mb_xy[LBOT] = left_xy[LBOT];
{
/* For sufficiently low qp, filtering wouldn't do anything.
* This is a conservative estimate: could also check beta_offset
* and more accurate chroma_qp. */
int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
int qp = s->current_picture.f.qscale_table[mb_xy];
if (qp <= qp_thresh &&
(left_xy[LTOP] < 0 ||
((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
(top_xy < 0 ||
((qp + s->current_picture.f.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
if (!FRAME_MBAFF)
return 1;
if ((left_xy[LTOP] < 0 ||
((qp + s->current_picture.f.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
(top_xy < s->mb_stride ||
((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh))
return 1;
}
}
top_type = s->current_picture.f.mb_type[top_xy];
left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
if (h->deblocking_filter == 2) {
if (h->slice_table[top_xy] != h->slice_num)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] != h->slice_num)
left_type[LTOP] = left_type[LBOT] = 0;
} else {
if (h->slice_table[top_xy] == 0xFFFF)
top_type = 0;
if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
left_type[LTOP] = left_type[LBOT] = 0;
}
h->top_type = top_type;
h->left_type[LTOP] = left_type[LTOP];
h->left_type[LBOT] = left_type[LBOT];
if (IS_INTRA(mb_type))
return 0;
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 0);
if (h->list_count == 2)
fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy,
top_type, left_type, mb_xy, 1);
nnz = h->non_zero_count[mb_xy];
nnz_cache = h->non_zero_count_cache;
AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
h->cbp = h->cbp_table[mb_xy];
if (top_type) {
nnz = h->non_zero_count[top_xy];
AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
}
if (left_type[LTOP]) {
nnz = h->non_zero_count[left_xy[LTOP]];
nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
}
/* CAVLC 8x8dct requires NNZ values for residual decoding that differ
* from what the loop filter needs */
if (!CABAC && h->pps.transform_8x8_mode) {
if (IS_8x8DCT(top_type)) {
nnz_cache[4 + 8 * 0] =
nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
nnz_cache[6 + 8 * 0] =
nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
}
if (IS_8x8DCT(left_type[LTOP])) {
nnz_cache[3 + 8 * 1] =
nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(left_type[LBOT])) {
nnz_cache[3 + 8 * 3] =
nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
}
if (IS_8x8DCT(mb_type)) {
nnz_cache[scan8[0]] =
nnz_cache[scan8[1]] =
nnz_cache[scan8[2]] =
nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12;
nnz_cache[scan8[0 + 4]] =
nnz_cache[scan8[1 + 4]] =
nnz_cache[scan8[2 + 4]] =
nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12;
nnz_cache[scan8[0 + 8]] =
nnz_cache[scan8[1 + 8]] =
nnz_cache[scan8[2 + 8]] =
nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12;
nnz_cache[scan8[0 + 12]] =
nnz_cache[scan8[1 + 12]] =
nnz_cache[scan8[2 + 12]] =
nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12;
}
}
return 0;
}
static void loop_filter(H264Context *h, int start_x, int end_x)
{
MpegEncContext *const s = &h->s;
uint8_t *dest_y, *dest_cb, *dest_cr;
int linesize, uvlinesize, mb_x, mb_y;
const int end_mb_y = s->mb_y + FRAME_MBAFF;
const int old_slice_type = h->slice_type;
const int pixel_shift = h->pixel_shift;
const int block_h = 16 >> s->chroma_y_shift;
if (h->deblocking_filter) {
for (mb_x = start_x; mb_x < end_x; mb_x++)
for (mb_y = end_mb_y - FRAME_MBAFF; mb_y <= end_mb_y; mb_y++) {
int mb_xy, mb_type;
mb_xy = h->mb_xy = mb_x + mb_y * s->mb_stride;
h->slice_num = h->slice_table[mb_xy];
mb_type = s->current_picture.f.mb_type[mb_xy];
h->list_count = h->list_counts[mb_xy];
if (FRAME_MBAFF)
h->mb_mbaff =
h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
s->mb_x = mb_x;
s->mb_y = mb_y;
dest_y = s->current_picture.f.data[0] +
((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
dest_cb = s->current_picture.f.data[1] +
(mb_x << pixel_shift) * (8 << CHROMA444) +
mb_y * s->uvlinesize * block_h;
dest_cr = s->current_picture.f.data[2] +
(mb_x << pixel_shift) * (8 << CHROMA444) +
mb_y * s->uvlinesize * block_h;
// FIXME simplify above
if (MB_FIELD) {
linesize = h->mb_linesize = s->linesize * 2;
uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
if (mb_y & 1) { // FIXME move out of this function?
dest_y -= s->linesize * 15;
dest_cb -= s->uvlinesize * (block_h - 1);
dest_cr -= s->uvlinesize * (block_h - 1);
}
} else {
linesize = h->mb_linesize = s->linesize;
uvlinesize = h->mb_uvlinesize = s->uvlinesize;
}
backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
uvlinesize, 0);
if (fill_filter_caches(h, mb_type))
continue;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]);
if (FRAME_MBAFF) {
ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr,
linesize, uvlinesize);
} else {
ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb,
dest_cr, linesize, uvlinesize);
}
}
}
h->slice_type = old_slice_type;
s->mb_x = end_x;
s->mb_y = end_mb_y - FRAME_MBAFF;
h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
}
static void predict_field_decoding_flag(H264Context *h)
{
MpegEncContext *const s = &h->s;
const int mb_xy = s->mb_x + s->mb_y * s->mb_stride;
int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ?
s->current_picture.f.mb_type[mb_xy - 1] :
(h->slice_table[mb_xy - s->mb_stride] == h->slice_num) ?
s->current_picture.f.mb_type[mb_xy - s->mb_stride] : 0;
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
}
/**
* Draw edges and report progress for the last MB row.
*/
static void decode_finish_row(H264Context *h)
{
MpegEncContext *const s = &h->s;
int top = 16 * (s->mb_y >> FIELD_PICTURE);
int pic_height = 16 * s->mb_height >> FIELD_PICTURE;
int height = 16 << FRAME_MBAFF;
int deblock_border = (16 + 4) << FRAME_MBAFF;
if (h->deblocking_filter) {
if ((top + height) >= pic_height)
height += deblock_border;
top -= deblock_border;
}
if (top >= pic_height || (top + height) < h->emu_edge_height)
return;
height = FFMIN(height, pic_height - top);
if (top < h->emu_edge_height) {
height = top + height;
top = 0;
}
ff_draw_horiz_band(s, top, height);
if (s->dropable)
return;
ff_thread_report_progress(&s->current_picture_ptr->f, top + height - 1,
s->picture_structure == PICT_BOTTOM_FIELD);
}
static int decode_slice(struct AVCodecContext *avctx, void *arg)
{
H264Context *h = *(void **)arg;
MpegEncContext *const s = &h->s;
const int part_mask = s->partitioned_frame ? (ER_AC_END | ER_AC_ERROR)
: 0x7F;
int lf_x_start = s->mb_x;
s->mb_skip_run = -1;
h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME ||
s->codec_id != CODEC_ID_H264 ||
(CONFIG_GRAY && (s->flags & CODEC_FLAG_GRAY));
if (h->pps.cabac) {
/* realign */
align_get_bits(&s->gb);
/* init cabac */
ff_init_cabac_states(&h->cabac);
ff_init_cabac_decoder(&h->cabac,
s->gb.buffer + get_bits_count(&s->gb) / 8,
(get_bits_left(&s->gb) + 7) / 8);
ff_h264_init_cabac_states(h);
for (;;) {
// START_TIMER
int ret = ff_h264_decode_mb_cabac(h);
int eos;
// STOP_TIMER("decode_mb_cabac")
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF) {
s->mb_y++;
ret = ff_h264_decode_mb_cabac(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
s->mb_y--;
}
eos = get_cabac_terminate(&h->cabac);
if ((s->workaround_bugs & FF_BUG_TRUNCATED) &&
h->cabac.bytestream > h->cabac.bytestream_end + 2) {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x - 1,
s->mb_y, ER_MB_END & part_mask);
if (s->mb_x >= lf_x_start)
loop_filter(h, lf_x_start, s->mb_x + 1);
return 0;
}
if (h->cabac.bytestream > h->cabac.bytestream_end + 2 )
av_log(h->s.avctx, AV_LOG_DEBUG, "bytestream overread %td\n", h->cabac.bytestream_end - h->cabac.bytestream);
if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) {
av_log(h->s.avctx, AV_LOG_ERROR,
"error while decoding MB %d %d, bytestream (%td)\n",
s->mb_x, s->mb_y,
h->cabac.bytestream_end - h->cabac.bytestream);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x,
s->mb_y, ER_MB_ERROR & part_mask);
return -1;
}
if (++s->mb_x >= s->mb_width) {
loop_filter(h, lf_x_start, s->mb_x);
s->mb_x = lf_x_start = 0;
decode_finish_row(h);
++s->mb_y;
if (FIELD_OR_MBAFF_PICTURE) {
++s->mb_y;
if (FRAME_MBAFF && s->mb_y < s->mb_height)
predict_field_decoding_flag(h);
}
}
if (eos || s->mb_y >= s->mb_height) {
tprintf(s->avctx, "slice end %d %d\n",
get_bits_count(&s->gb), s->gb.size_in_bits);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x - 1,
s->mb_y, ER_MB_END & part_mask);
if (s->mb_x > lf_x_start)
loop_filter(h, lf_x_start, s->mb_x);
return 0;
}
}
} else {
for (;;) {
int ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
// FIXME optimal? or let mb_decode decode 16x32 ?
if (ret >= 0 && FRAME_MBAFF) {
s->mb_y++;
ret = ff_h264_decode_mb_cavlc(h);
if (ret >= 0)
ff_h264_hl_decode_mb(h);
s->mb_y--;
}
if (ret < 0) {
av_log(h->s.avctx, AV_LOG_ERROR,
"error while decoding MB %d %d\n", s->mb_x, s->mb_y);
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x,
s->mb_y, ER_MB_ERROR & part_mask);
return -1;
}
if (++s->mb_x >= s->mb_width) {
loop_filter(h, lf_x_start, s->mb_x);
s->mb_x = lf_x_start = 0;
decode_finish_row(h);
++s->mb_y;
if (FIELD_OR_MBAFF_PICTURE) {
++s->mb_y;
if (FRAME_MBAFF && s->mb_y < s->mb_height)
predict_field_decoding_flag(h);
}
if (s->mb_y >= s->mb_height) {
tprintf(s->avctx, "slice end %d %d\n",
get_bits_count(&s->gb), s->gb.size_in_bits);
if ( get_bits_left(&s->gb) == 0
|| get_bits_left(&s->gb) > 0 && !(s->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y,
s->mb_x - 1, s->mb_y,
ER_MB_END & part_mask);
return 0;
} else {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y,
s->mb_x, s->mb_y,
ER_MB_END & part_mask);
return -1;
}
}
}
if (get_bits_left(&s->gb) <= 0 && s->mb_skip_run <= 0) {
tprintf(s->avctx, "slice end %d %d\n",
get_bits_count(&s->gb), s->gb.size_in_bits);
if (get_bits_left(&s->gb) == 0) {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y,
s->mb_x - 1, s->mb_y,
ER_MB_END & part_mask);
if (s->mb_x > lf_x_start)
loop_filter(h, lf_x_start, s->mb_x);
return 0;
} else {
ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x,
s->mb_y, ER_MB_ERROR & part_mask);
return -1;
}
}
}
}
}
/**
* Call decode_slice() for each context.
*
* @param h h264 master context
* @param context_count number of contexts to execute
*/
static int execute_decode_slices(H264Context *h, int context_count)
{
MpegEncContext *const s = &h->s;
AVCodecContext *const avctx = s->avctx;
H264Context *hx;
int i;
if (s->avctx->hwaccel ||
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
return 0;
if (context_count == 1) {
return decode_slice(avctx, &h);
} else {
for (i = 1; i < context_count; i++) {
hx = h->thread_context[i];
hx->s.err_recognition = avctx->err_recognition;
hx->s.error_count = 0;
hx->x264_build = h->x264_build;
}
avctx->execute(avctx, decode_slice, h->thread_context,
NULL, context_count, sizeof(void *));
/* pull back stuff from slices to master context */
hx = h->thread_context[context_count - 1];
s->mb_x = hx->s.mb_x;
s->mb_y = hx->s.mb_y;
s->dropable = hx->s.dropable;
s->picture_structure = hx->s.picture_structure;
for (i = 1; i < context_count; i++)
h->s.error_count += h->thread_context[i]->s.error_count;
}
return 0;
}
static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size)
{
MpegEncContext *const s = &h->s;
AVCodecContext *const avctx = s->avctx;
H264Context *hx; ///< thread context
int buf_index;
int context_count;
int next_avc;
int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts
int nal_index;
h->nal_unit_type= 0;
if(!s->slice_context_count)
s->slice_context_count= 1;
h->max_contexts = s->slice_context_count;
if (!(s->flags2 & CODEC_FLAG2_CHUNKS)) {
h->current_slice = 0;
if (!s->first_field)
s->current_picture_ptr = NULL;
ff_h264_reset_sei(h);
}
for (; pass <= 1; pass++) {
buf_index = 0;
context_count = 0;
next_avc = h->is_avc ? 0 : buf_size;
nal_index = 0;
for (;;) {
int consumed;
int dst_length;
int bit_length;
const uint8_t *ptr;
int i, nalsize = 0;
int err;
if (buf_index >= next_avc) {
if (buf_index >= buf_size - h->nal_length_size)
break;
nalsize = 0;
for (i = 0; i < h->nal_length_size; i++)
nalsize = (nalsize << 8) | buf[buf_index++];
if (nalsize <= 0 || nalsize > buf_size - buf_index) {
av_log(h->s.avctx, AV_LOG_ERROR,
"AVC: nal size %d\n", nalsize);
break;
}
next_avc = buf_index + nalsize;
} else {
// start code prefix search
for (; buf_index + 3 < next_avc; buf_index++)
// This should always succeed in the first iteration.
if (buf[buf_index] == 0 &&
buf[buf_index + 1] == 0 &&
buf[buf_index + 2] == 1)
break;
if (buf_index + 3 >= buf_size)
break;
buf_index += 3;
if (buf_index >= next_avc)
continue;
}
hx = h->thread_context[context_count];
ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length,
&consumed, next_avc - buf_index);
if (ptr == NULL || dst_length < 0) {
buf_index = -1;
goto end;
}
i = buf_index + consumed;
if ((s->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc &&
buf[i] == 0x00 && buf[i + 1] == 0x00 &&
buf[i + 2] == 0x01 && buf[i + 3] == 0xE0)
s->workaround_bugs |= FF_BUG_TRUNCATED;
if (!(s->workaround_bugs & FF_BUG_TRUNCATED))
while(dst_length > 0 && ptr[dst_length - 1] == 0)
dst_length--;
bit_length = !dst_length ? 0
: (8 * dst_length -
decode_rbsp_trailing(h, ptr + dst_length - 1));
if (s->avctx->debug & FF_DEBUG_STARTCODE)
av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d pass %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length, pass);
if (h->is_avc && (nalsize != consumed) && nalsize)
av_log(h->s.avctx, AV_LOG_DEBUG,
"AVC: Consumed only %d bytes instead of %d\n",
consumed, nalsize);
buf_index += consumed;
nal_index++;
if (pass == 0) {
/* packets can sometimes contain multiple PPS/SPS,
* e.g. two PAFF field pictures in one packet, or a demuxer
* which splits NALs strangely if so, when frame threading we
* can't start the next thread until we've read all of them */
switch (hx->nal_unit_type) {
case NAL_SPS:
case NAL_PPS:
nals_needed = nal_index;
break;
case NAL_IDR_SLICE:
case NAL_SLICE:
init_get_bits(&hx->s.gb, ptr, bit_length);
if (!get_ue_golomb(&hx->s.gb))
nals_needed = nal_index;
}
continue;
}
// FIXME do not discard SEI id
if (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
continue;
again:
err = 0;
switch (hx->nal_unit_type) {
case NAL_IDR_SLICE:
if (h->nal_unit_type != NAL_IDR_SLICE) {
av_log(h->s.avctx, AV_LOG_ERROR,
"Invalid mix of idr and non-idr slices\n");
buf_index = -1;
goto end;
}
idr(h); // FIXME ensure we don't lose some frames if there is reordering
case NAL_SLICE:
init_get_bits(&hx->s.gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = &hx->s.gb;
hx->s.data_partitioning = 0;
if ((err = decode_slice_header(hx, h)))
break;
if ( h->sei_recovery_frame_cnt >= 0
&& ( h->recovery_frame<0
|| ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt)) {
h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) %
(1 << h->sps.log2_max_frame_num);
}
s->current_picture_ptr->f.key_frame |=
(hx->nal_unit_type == NAL_IDR_SLICE);
if (h->recovery_frame == h->frame_num) {
s->current_picture_ptr->sync |= 1;
h->recovery_frame = -1;
}
h->sync |= !!s->current_picture_ptr->f.key_frame;
h->sync |= 3*!!(s->flags2 & CODEC_FLAG2_SHOW_ALL);
s->current_picture_ptr->sync |= h->sync;
if (h->current_slice == 1) {
if (!(s->flags2 & CODEC_FLAG2_CHUNKS))
decode_postinit(h, nal_index >= nals_needed);
if (s->avctx->hwaccel &&
s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
return -1;
if (CONFIG_H264_VDPAU_DECODER &&
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
ff_vdpau_h264_picture_start(s);
}
if (hx->redundant_pic_count == 0 &&
(avctx->skip_frame < AVDISCARD_NONREF ||
hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL) {
if (avctx->hwaccel) {
if (avctx->hwaccel->decode_slice(avctx,
&buf[buf_index - consumed],
consumed) < 0)
return -1;
} else if (CONFIG_H264_VDPAU_DECODER &&
s->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) {
static const uint8_t start_code[] = {
0x00, 0x00, 0x01 };
ff_vdpau_add_data_chunk(s, start_code,
sizeof(start_code));
ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed],
consumed);
} else
context_count++;
}
break;
case NAL_DPA:
init_get_bits(&hx->s.gb, ptr, bit_length);
hx->intra_gb_ptr =
hx->inter_gb_ptr = NULL;
if ((err = decode_slice_header(hx, h)) < 0)
break;
hx->s.data_partitioning = 1;
break;
case NAL_DPB:
init_get_bits(&hx->intra_gb, ptr, bit_length);
hx->intra_gb_ptr = &hx->intra_gb;
break;
case NAL_DPC:
init_get_bits(&hx->inter_gb, ptr, bit_length);
hx->inter_gb_ptr = &hx->inter_gb;
av_log(h->s.avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n");
return AVERROR_PATCHWELCOME;
if (hx->redundant_pic_count == 0 &&
hx->intra_gb_ptr &&
hx->s.data_partitioning &&
s->context_initialized &&
(avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) &&
(avctx->skip_frame < AVDISCARD_BIDIR ||
hx->slice_type_nos != AV_PICTURE_TYPE_B) &&
(avctx->skip_frame < AVDISCARD_NONKEY ||
hx->slice_type_nos == AV_PICTURE_TYPE_I) &&
avctx->skip_frame < AVDISCARD_ALL)
context_count++;
break;
case NAL_SEI:
init_get_bits(&s->gb, ptr, bit_length);
ff_h264_decode_sei(h);
break;
case NAL_SPS:
init_get_bits(&s->gb, ptr, bit_length);
if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? (nalsize != consumed) && nalsize : 1)) {
av_log(h->s.avctx, AV_LOG_DEBUG,
"SPS decoding failure, trying alternative mode\n");
if (h->is_avc)
av_assert0(next_avc - buf_index + consumed == nalsize);
init_get_bits(&s->gb, &buf[buf_index + 1 - consumed],
8*(next_avc - buf_index + consumed - 1));
ff_h264_decode_seq_parameter_set(h);
}
if (s->flags & CODEC_FLAG_LOW_DELAY ||
(h->sps.bitstream_restriction_flag &&
!h->sps.num_reorder_frames))
s->low_delay = 1;
if (avctx->has_b_frames < 2)
avctx->has_b_frames = !s->low_delay;
break;
case NAL_PPS:
init_get_bits(&s->gb, ptr, bit_length);
ff_h264_decode_picture_parameter_set(h, bit_length);
break;
case NAL_AUD:
case NAL_END_SEQUENCE:
case NAL_END_STREAM:
case NAL_FILLER_DATA:
case NAL_SPS_EXT:
case NAL_AUXILIARY_SLICE:
break;
default:
av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n",
hx->nal_unit_type, bit_length);
}
if (context_count == h->max_contexts) {
execute_decode_slices(h, context_count);
context_count = 0;
}
if (err < 0)
av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
else if (err == 1) {
/* Slice could not be decoded in parallel mode, copy down
* NAL unit stuff to context 0 and restart. Note that
* rbsp_buffer is not transferred, but since we no longer
* run in parallel mode this should not be an issue. */
h->nal_unit_type = hx->nal_unit_type;
h->nal_ref_idc = hx->nal_ref_idc;
hx = h;
goto again;
}
}
}
if (context_count)
execute_decode_slices(h, context_count);
end:
/* clean up */
if (s->current_picture_ptr && s->current_picture_ptr->owner2 == s &&
!s->dropable) {
ff_thread_report_progress(&s->current_picture_ptr->f, INT_MAX,
s->picture_structure == PICT_BOTTOM_FIELD);
}
return buf_index;
}
/**
* Return the number of bytes consumed for building the current frame.
*/
static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size)
{
if (pos == 0)
pos = 1; // avoid infinite loops (i doubt that is needed but ...)
if (pos + 10 > buf_size)
pos = buf_size; // oops ;)
return pos;
}
static int decode_frame(AVCodecContext *avctx, void *data,
int *data_size, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
AVFrame *pict = data;
int buf_index = 0;
Picture *out;
int i, out_idx;
s->flags = avctx->flags;
s->flags2 = avctx->flags2;
/* end of stream, output what is still in the buffers */
if (buf_size == 0) {
out:
s->current_picture_ptr = NULL;
// FIXME factorize this with the output code below
out = h->delayed_pic[0];
out_idx = 0;
for (i = 1;
h->delayed_pic[i] &&
!h->delayed_pic[i]->f.key_frame &&
!h->delayed_pic[i]->mmco_reset;
i++)
if (h->delayed_pic[i]->poc < out->poc) {
out = h->delayed_pic[i];
out_idx = i;
}
for (i = out_idx; h->delayed_pic[i]; i++)
h->delayed_pic[i] = h->delayed_pic[i + 1];
if (out) {
*data_size = sizeof(AVFrame);
*pict = out->f;
}
return buf_index;
}
if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){
int cnt= buf[5]&0x1f;
const uint8_t *p= buf+6;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || p[2]!=0x67)
goto not_extra;
p += nalsize;
}
cnt = *(p++);
if(!cnt)
goto not_extra;
while(cnt--){
int nalsize= AV_RB16(p) + 2;
if(nalsize > buf_size - (p-buf) || p[2]!=0x68)
goto not_extra;
p += nalsize;
}
return ff_h264_decode_extradata(h, buf, buf_size);
}
not_extra:
buf_index = decode_nal_units(h, buf, buf_size);
if (buf_index < 0)
return -1;
if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
av_assert0(buf_index <= buf_size);
goto out;
}
if (!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr) {
if (avctx->skip_frame >= AVDISCARD_NONREF ||
buf_size >= 4 && !memcmp("Q264", buf, 4))
return buf_size;
av_log(avctx, AV_LOG_ERROR, "no frame!\n");
return -1;
}
if (!(s->flags2 & CODEC_FLAG2_CHUNKS) ||
(s->mb_y >= s->mb_height && s->mb_height)) {
if (s->flags2 & CODEC_FLAG2_CHUNKS)
decode_postinit(h, 1);
field_end(h, 0);
/* Wait for second field. */
*data_size = 0;
if (h->next_output_pic && (h->next_output_pic->sync || h->sync>1)) {
*data_size = sizeof(AVFrame);
*pict = h->next_output_pic->f;
}
}
assert(pict->data[0] || !*data_size);
ff_print_debug_info(s, pict);
// printf("out %d\n", (int)pict->data[0]);
return get_consumed_bytes(s, buf_index, buf_size);
}
av_cold void ff_h264_free_context(H264Context *h)
{
int i;
free_tables(h, 1); // FIXME cleanup init stuff perhaps
for (i = 0; i < MAX_SPS_COUNT; i++)
av_freep(h->sps_buffers + i);
for (i = 0; i < MAX_PPS_COUNT; i++)
av_freep(h->pps_buffers + i);
}
static av_cold int h264_decode_end(AVCodecContext *avctx)
{
H264Context *h = avctx->priv_data;
MpegEncContext *s = &h->s;
ff_h264_remove_all_refs(h);
ff_h264_free_context(h);
ff_MPV_common_end(s);
// memset(h, 0, sizeof(H264Context));
return 0;
}
static const AVProfile profiles[] = {
{ FF_PROFILE_H264_BASELINE, "Baseline" },
{ FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
{ FF_PROFILE_H264_MAIN, "Main" },
{ FF_PROFILE_H264_EXTENDED, "Extended" },
{ FF_PROFILE_H264_HIGH, "High" },
{ FF_PROFILE_H264_HIGH_10, "High 10" },
{ FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
{ FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
{ FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
{ FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
{ FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
{ FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
{ FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
{ FF_PROFILE_UNKNOWN },
};
static const AVOption h264_options[] = {
{"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, 0},
{"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 4, 0},
{NULL}
};
static const AVClass h264_class = {
"H264 Decoder",
av_default_item_name,
h264_options,
LIBAVUTIL_VERSION_INT,
};
static const AVClass h264_vdpau_class = {
"H264 VDPAU Decoder",
av_default_item_name,
h264_options,
LIBAVUTIL_VERSION_INT,
};
AVCodec ff_h264_decoder = {
.name = "h264",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = h264_decode_end,
.decode = decode_frame,
.capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 |
CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS |
CODEC_CAP_FRAME_THREADS,
.flush = flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
.init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
.update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
.profiles = NULL_IF_CONFIG_SMALL(profiles),
.priv_class = &h264_class,
};
#if CONFIG_H264_VDPAU_DECODER
AVCodec ff_h264_vdpau_decoder = {
.name = "h264_vdpau",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_H264,
.priv_data_size = sizeof(H264Context),
.init = ff_h264_decode_init,
.close = h264_decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
.flush = flush_dpb,
.long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
.pix_fmts = (const enum PixelFormat[]) { PIX_FMT_VDPAU_H264,
PIX_FMT_NONE},
.profiles = NULL_IF_CONFIG_SMALL(profiles),
.priv_class = &h264_vdpau_class,
};
#endif