325 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			325 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * audio resampling
 | |
|  * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 | |
|  *
 | |
|  * This file is part of FFmpeg.
 | |
|  *
 | |
|  * FFmpeg is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * FFmpeg is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with FFmpeg; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @file resample2.c
 | |
|  * audio resampling
 | |
|  * @author Michael Niedermayer <michaelni@gmx.at>
 | |
|  */
 | |
| 
 | |
| #include "avcodec.h"
 | |
| #include "dsputil.h"
 | |
| 
 | |
| #ifndef CONFIG_RESAMPLE_HP
 | |
| #define FILTER_SHIFT 15
 | |
| 
 | |
| #define FELEM int16_t
 | |
| #define FELEM2 int32_t
 | |
| #define FELEML int64_t
 | |
| #define FELEM_MAX INT16_MAX
 | |
| #define FELEM_MIN INT16_MIN
 | |
| #define WINDOW_TYPE 9
 | |
| #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
 | |
| #define FILTER_SHIFT 30
 | |
| 
 | |
| #define FELEM int32_t
 | |
| #define FELEM2 int64_t
 | |
| #define FELEML int64_t
 | |
| #define FELEM_MAX INT32_MAX
 | |
| #define FELEM_MIN INT32_MIN
 | |
| #define WINDOW_TYPE 12
 | |
| #else
 | |
| #define FILTER_SHIFT 0
 | |
| 
 | |
| #define FELEM double
 | |
| #define FELEM2 double
 | |
| #define FELEML double
 | |
| #define WINDOW_TYPE 24
 | |
| #endif
 | |
| 
 | |
| 
 | |
| typedef struct AVResampleContext{
 | |
|     FELEM *filter_bank;
 | |
|     int filter_length;
 | |
|     int ideal_dst_incr;
 | |
|     int dst_incr;
 | |
|     int index;
 | |
|     int frac;
 | |
|     int src_incr;
 | |
|     int compensation_distance;
 | |
|     int phase_shift;
 | |
|     int phase_mask;
 | |
|     int linear;
 | |
| }AVResampleContext;
 | |
| 
 | |
| /**
 | |
|  * 0th order modified bessel function of the first kind.
 | |
|  */
 | |
| static double bessel(double x){
 | |
|     double v=1;
 | |
|     double t=1;
 | |
|     int i;
 | |
| 
 | |
|     x= x*x/4;
 | |
|     for(i=1; i<50; i++){
 | |
|         t *= x/(i*i);
 | |
|         v += t;
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * builds a polyphase filterbank.
 | |
|  * @param factor resampling factor
 | |
|  * @param scale wanted sum of coefficients for each filter
 | |
|  * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
 | |
|  */
 | |
| void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
 | |
|     int ph, i;
 | |
|     double x, y, w, tab[tap_count];
 | |
|     const int center= (tap_count-1)/2;
 | |
| 
 | |
|     /* if upsampling, only need to interpolate, no filter */
 | |
|     if (factor > 1.0)
 | |
|         factor = 1.0;
 | |
| 
 | |
|     for(ph=0;ph<phase_count;ph++) {
 | |
|         double norm = 0;
 | |
|         for(i=0;i<tap_count;i++) {
 | |
|             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 | |
|             if (x == 0) y = 1.0;
 | |
|             else        y = sin(x) / x;
 | |
|             switch(type){
 | |
|             case 0:{
 | |
|                 const float d= -0.5; //first order derivative = -0.5
 | |
|                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 | |
|                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 | |
|                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 | |
|                 break;}
 | |
|             case 1:
 | |
|                 w = 2.0*x / (factor*tap_count) + M_PI;
 | |
|                 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
 | |
|                 break;
 | |
|             default:
 | |
|                 w = 2.0*x / (factor*tap_count*M_PI);
 | |
|                 y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             tab[i] = y;
 | |
|             norm += y;
 | |
|         }
 | |
| 
 | |
|         /* normalize so that an uniform color remains the same */
 | |
|         for(i=0;i<tap_count;i++) {
 | |
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
 | |
|             filter[ph * tap_count + i] = tab[i] / norm;
 | |
| #else
 | |
|             filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| #if 0
 | |
|     {
 | |
| #define LEN 1024
 | |
|         int j,k;
 | |
|         double sine[LEN + tap_count];
 | |
|         double filtered[LEN];
 | |
|         double maxff=-2, minff=2, maxsf=-2, minsf=2;
 | |
|         for(i=0; i<LEN; i++){
 | |
|             double ss=0, sf=0, ff=0;
 | |
|             for(j=0; j<LEN+tap_count; j++)
 | |
|                 sine[j]= cos(i*j*M_PI/LEN);
 | |
|             for(j=0; j<LEN; j++){
 | |
|                 double sum=0;
 | |
|                 ph=0;
 | |
|                 for(k=0; k<tap_count; k++)
 | |
|                     sum += filter[ph * tap_count + k] * sine[k+j];
 | |
|                 filtered[j]= sum / (1<<FILTER_SHIFT);
 | |
|                 ss+= sine[j + center] * sine[j + center];
 | |
|                 ff+= filtered[j] * filtered[j];
 | |
|                 sf+= sine[j + center] * filtered[j];
 | |
|             }
 | |
|             ss= sqrt(2*ss/LEN);
 | |
|             ff= sqrt(2*ff/LEN);
 | |
|             sf= 2*sf/LEN;
 | |
|             maxff= FFMAX(maxff, ff);
 | |
|             minff= FFMIN(minff, ff);
 | |
|             maxsf= FFMAX(maxsf, sf);
 | |
|             minsf= FFMIN(minsf, sf);
 | |
|             if(i%11==0){
 | |
|                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
 | |
|                 minff=minsf= 2;
 | |
|                 maxff=maxsf= -2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Initializes an audio resampler.
 | |
|  * Note, if either rate is not an integer then simply scale both rates up so they are.
 | |
|  */
 | |
| AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
 | |
|     AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
 | |
|     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 | |
|     int phase_count= 1<<phase_shift;
 | |
| 
 | |
|     c->phase_shift= phase_shift;
 | |
|     c->phase_mask= phase_count-1;
 | |
|     c->linear= linear;
 | |
| 
 | |
|     c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
 | |
|     c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
 | |
|     av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
 | |
|     memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
 | |
|     c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
 | |
| 
 | |
|     c->src_incr= out_rate;
 | |
|     c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
 | |
|     c->index= -phase_count*((c->filter_length-1)/2);
 | |
| 
 | |
|     return c;
 | |
| }
 | |
| 
 | |
| void av_resample_close(AVResampleContext *c){
 | |
|     av_freep(&c->filter_bank);
 | |
|     av_freep(&c);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compensates samplerate/timestamp drift. The compensation is done by changing
 | |
|  * the resampler parameters, so no audible clicks or similar distortions occur
 | |
|  * @param compensation_distance distance in output samples over which the compensation should be performed
 | |
|  * @param sample_delta number of output samples which should be output less
 | |
|  *
 | |
|  * example: av_resample_compensate(c, 10, 500)
 | |
|  * here instead of 510 samples only 500 samples would be output
 | |
|  *
 | |
|  * note, due to rounding the actual compensation might be slightly different,
 | |
|  * especially if the compensation_distance is large and the in_rate used during init is small
 | |
|  */
 | |
| void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
 | |
| //    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
 | |
|     c->compensation_distance= compensation_distance;
 | |
|     c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * resamples.
 | |
|  * @param src an array of unconsumed samples
 | |
|  * @param consumed the number of samples of src which have been consumed are returned here
 | |
|  * @param src_size the number of unconsumed samples available
 | |
|  * @param dst_size the amount of space in samples available in dst
 | |
|  * @param update_ctx If this is 0 then the context will not be modified, that way several channels can be resampled with the same context.
 | |
|  * @return the number of samples written in dst or -1 if an error occurred
 | |
|  */
 | |
| int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
 | |
|     int dst_index, i;
 | |
|     int index= c->index;
 | |
|     int frac= c->frac;
 | |
|     int dst_incr_frac= c->dst_incr % c->src_incr;
 | |
|     int dst_incr=      c->dst_incr / c->src_incr;
 | |
|     int compensation_distance= c->compensation_distance;
 | |
| 
 | |
|   if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
 | |
|         int64_t index2= ((int64_t)index)<<32;
 | |
|         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 | |
|         dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
 | |
| 
 | |
|         for(dst_index=0; dst_index < dst_size; dst_index++){
 | |
|             dst[dst_index] = src[index2>>32];
 | |
|             index2 += incr;
 | |
|         }
 | |
|         frac += dst_index * dst_incr_frac;
 | |
|         index += dst_index * dst_incr;
 | |
|         index += frac / c->src_incr;
 | |
|         frac %= c->src_incr;
 | |
|   }else{
 | |
|     for(dst_index=0; dst_index < dst_size; dst_index++){
 | |
|         FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
 | |
|         int sample_index= index >> c->phase_shift;
 | |
|         FELEM2 val=0;
 | |
| 
 | |
|         if(sample_index < 0){
 | |
|             for(i=0; i<c->filter_length; i++)
 | |
|                 val += src[FFABS(sample_index + i) % src_size] * filter[i];
 | |
|         }else if(sample_index + c->filter_length > src_size){
 | |
|             break;
 | |
|         }else if(c->linear){
 | |
|             FELEM2 v2=0;
 | |
|             for(i=0; i<c->filter_length; i++){
 | |
|                 val += src[sample_index + i] * (FELEM2)filter[i];
 | |
|                 v2  += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
 | |
|             }
 | |
|             val+=(v2-val)*(FELEML)frac / c->src_incr;
 | |
|         }else{
 | |
|             for(i=0; i<c->filter_length; i++){
 | |
|                 val += src[sample_index + i] * (FELEM2)filter[i];
 | |
|             }
 | |
|         }
 | |
| 
 | |
| #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
 | |
|         dst[dst_index] = av_clip_int16(lrintf(val));
 | |
| #else
 | |
|         val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
 | |
|         dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
 | |
| #endif
 | |
| 
 | |
|         frac += dst_incr_frac;
 | |
|         index += dst_incr;
 | |
|         if(frac >= c->src_incr){
 | |
|             frac -= c->src_incr;
 | |
|             index++;
 | |
|         }
 | |
| 
 | |
|         if(dst_index + 1 == compensation_distance){
 | |
|             compensation_distance= 0;
 | |
|             dst_incr_frac= c->ideal_dst_incr % c->src_incr;
 | |
|             dst_incr=      c->ideal_dst_incr / c->src_incr;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|     *consumed= FFMAX(index, 0) >> c->phase_shift;
 | |
|     if(index>=0) index &= c->phase_mask;
 | |
| 
 | |
|     if(compensation_distance){
 | |
|         compensation_distance -= dst_index;
 | |
|         assert(compensation_distance > 0);
 | |
|     }
 | |
|     if(update_ctx){
 | |
|         c->frac= frac;
 | |
|         c->index= index;
 | |
|         c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
 | |
|         c->compensation_distance= compensation_distance;
 | |
|     }
 | |
| #if 0
 | |
|     if(update_ctx && !c->compensation_distance){
 | |
| #undef rand
 | |
|         av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
 | |
| av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return dst_index;
 | |
| }
 | 
