ffmpeg/libavfilter/af_compand.c
Ganesh Ajjanagadde db1a642cd2 all: move ff_exp10, ff_exp10f, ff_fast_powf to lavu/ffmath.h
The idea is to use ffmath.h for internal implementations of math functions.
Currently, it is used for variants of libm functions, but is by no means
limited to such things.

Note that this is not exported; use lavu/mathematics for such purposes.

Reviewed-by: Ronald S. Bultje <rsbultje@gmail.com>
Signed-off-by: Ganesh Ajjanagadde <gajjanag@gmail.com>
2016-03-22 10:15:31 -07:00

591 lines
17 KiB
C

/*
* Copyright (c) 1999 Chris Bagwell
* Copyright (c) 1999 Nick Bailey
* Copyright (c) 2007 Rob Sykes <robs@users.sourceforge.net>
* Copyright (c) 2013 Paul B Mahol
* Copyright (c) 2014 Andrew Kelley
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* audio compand filter
*/
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/ffmath.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "audio.h"
#include "avfilter.h"
#include "internal.h"
typedef struct ChanParam {
double attack;
double decay;
double volume;
} ChanParam;
typedef struct CompandSegment {
double x, y;
double a, b;
} CompandSegment;
typedef struct CompandContext {
const AVClass *class;
int nb_segments;
char *attacks, *decays, *points;
CompandSegment *segments;
ChanParam *channels;
double in_min_lin;
double out_min_lin;
double curve_dB;
double gain_dB;
double initial_volume;
double delay;
AVFrame *delay_frame;
int delay_samples;
int delay_count;
int delay_index;
int64_t pts;
int (*compand)(AVFilterContext *ctx, AVFrame *frame);
} CompandContext;
#define OFFSET(x) offsetof(CompandContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption compand_options[] = {
{ "attacks", "set time over which increase of volume is determined", OFFSET(attacks), AV_OPT_TYPE_STRING, { .str = "0.3" }, 0, 0, A },
{ "decays", "set time over which decrease of volume is determined", OFFSET(decays), AV_OPT_TYPE_STRING, { .str = "0.8" }, 0, 0, A },
{ "points", "set points of transfer function", OFFSET(points), AV_OPT_TYPE_STRING, { .str = "-70/-70|-60/-20" }, 0, 0, A },
{ "soft-knee", "set soft-knee", OFFSET(curve_dB), AV_OPT_TYPE_DOUBLE, { .dbl = 0.01 }, 0.01, 900, A },
{ "gain", "set output gain", OFFSET(gain_dB), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, -900, 900, A },
{ "volume", "set initial volume", OFFSET(initial_volume), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, -900, 0, A },
{ "delay", "set delay for samples before sending them to volume adjuster", OFFSET(delay), AV_OPT_TYPE_DOUBLE, { .dbl = 0 }, 0, 20, A },
{ NULL }
};
AVFILTER_DEFINE_CLASS(compand);
static av_cold int init(AVFilterContext *ctx)
{
CompandContext *s = ctx->priv;
s->pts = AV_NOPTS_VALUE;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
CompandContext *s = ctx->priv;
av_freep(&s->channels);
av_freep(&s->segments);
av_frame_free(&s->delay_frame);
}
static int query_formats(AVFilterContext *ctx)
{
AVFilterChannelLayouts *layouts;
AVFilterFormats *formats;
static const enum AVSampleFormat sample_fmts[] = {
AV_SAMPLE_FMT_DBLP,
AV_SAMPLE_FMT_NONE
};
int ret;
layouts = ff_all_channel_counts();
if (!layouts)
return AVERROR(ENOMEM);
ret = ff_set_common_channel_layouts(ctx, layouts);
if (ret < 0)
return ret;
formats = ff_make_format_list(sample_fmts);
if (!formats)
return AVERROR(ENOMEM);
ret = ff_set_common_formats(ctx, formats);
if (ret < 0)
return ret;
formats = ff_all_samplerates();
if (!formats)
return AVERROR(ENOMEM);
return ff_set_common_samplerates(ctx, formats);
}
static void count_items(char *item_str, int *nb_items)
{
char *p;
*nb_items = 1;
for (p = item_str; *p; p++) {
if (*p == ' ' || *p == '|')
(*nb_items)++;
}
}
static void update_volume(ChanParam *cp, double in)
{
double delta = in - cp->volume;
if (delta > 0.0)
cp->volume += delta * cp->attack;
else
cp->volume += delta * cp->decay;
}
static double get_volume(CompandContext *s, double in_lin)
{
CompandSegment *cs;
double in_log, out_log;
int i;
if (in_lin < s->in_min_lin)
return s->out_min_lin;
in_log = log(in_lin);
for (i = 1; i < s->nb_segments; i++)
if (in_log <= s->segments[i].x)
break;
cs = &s->segments[i - 1];
in_log -= cs->x;
out_log = cs->y + in_log * (cs->a * in_log + cs->b);
return exp(out_log);
}
static int compand_nodelay(AVFilterContext *ctx, AVFrame *frame)
{
CompandContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const int channels = inlink->channels;
const int nb_samples = frame->nb_samples;
AVFrame *out_frame;
int chan, i;
int err;
if (av_frame_is_writable(frame)) {
out_frame = frame;
} else {
out_frame = ff_get_audio_buffer(inlink, nb_samples);
if (!out_frame) {
av_frame_free(&frame);
return AVERROR(ENOMEM);
}
err = av_frame_copy_props(out_frame, frame);
if (err < 0) {
av_frame_free(&out_frame);
av_frame_free(&frame);
return err;
}
}
for (chan = 0; chan < channels; chan++) {
const double *src = (double *)frame->extended_data[chan];
double *dst = (double *)out_frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
for (i = 0; i < nb_samples; i++) {
update_volume(cp, fabs(src[i]));
dst[i] = src[i] * get_volume(s, cp->volume);
}
}
if (frame != out_frame)
av_frame_free(&frame);
return ff_filter_frame(ctx->outputs[0], out_frame);
}
#define MOD(a, b) (((a) >= (b)) ? (a) - (b) : (a))
static int compand_delay(AVFilterContext *ctx, AVFrame *frame)
{
CompandContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
const int channels = inlink->channels;
const int nb_samples = frame->nb_samples;
int chan, i, av_uninit(dindex), oindex, av_uninit(count);
AVFrame *out_frame = NULL;
int err;
if (s->pts == AV_NOPTS_VALUE) {
s->pts = (frame->pts == AV_NOPTS_VALUE) ? 0 : frame->pts;
}
av_assert1(channels > 0); /* would corrupt delay_count and delay_index */
for (chan = 0; chan < channels; chan++) {
AVFrame *delay_frame = s->delay_frame;
const double *src = (double *)frame->extended_data[chan];
double *dbuf = (double *)delay_frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
double *dst;
count = s->delay_count;
dindex = s->delay_index;
for (i = 0, oindex = 0; i < nb_samples; i++) {
const double in = src[i];
update_volume(cp, fabs(in));
if (count >= s->delay_samples) {
if (!out_frame) {
out_frame = ff_get_audio_buffer(inlink, nb_samples - i);
if (!out_frame) {
av_frame_free(&frame);
return AVERROR(ENOMEM);
}
err = av_frame_copy_props(out_frame, frame);
if (err < 0) {
av_frame_free(&out_frame);
av_frame_free(&frame);
return err;
}
out_frame->pts = s->pts;
s->pts += av_rescale_q(nb_samples - i,
(AVRational){ 1, inlink->sample_rate },
inlink->time_base);
}
dst = (double *)out_frame->extended_data[chan];
dst[oindex++] = dbuf[dindex] * get_volume(s, cp->volume);
} else {
count++;
}
dbuf[dindex] = in;
dindex = MOD(dindex + 1, s->delay_samples);
}
}
s->delay_count = count;
s->delay_index = dindex;
av_frame_free(&frame);
if (out_frame) {
err = ff_filter_frame(ctx->outputs[0], out_frame);
return err;
}
return 0;
}
static int compand_drain(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
const int channels = outlink->channels;
AVFrame *frame = NULL;
int chan, i, dindex;
/* 2048 is to limit output frame size during drain */
frame = ff_get_audio_buffer(outlink, FFMIN(2048, s->delay_count));
if (!frame)
return AVERROR(ENOMEM);
frame->pts = s->pts;
s->pts += av_rescale_q(frame->nb_samples,
(AVRational){ 1, outlink->sample_rate }, outlink->time_base);
av_assert0(channels > 0);
for (chan = 0; chan < channels; chan++) {
AVFrame *delay_frame = s->delay_frame;
double *dbuf = (double *)delay_frame->extended_data[chan];
double *dst = (double *)frame->extended_data[chan];
ChanParam *cp = &s->channels[chan];
dindex = s->delay_index;
for (i = 0; i < frame->nb_samples; i++) {
dst[i] = dbuf[dindex] * get_volume(s, cp->volume);
dindex = MOD(dindex + 1, s->delay_samples);
}
}
s->delay_count -= frame->nb_samples;
s->delay_index = dindex;
return ff_filter_frame(outlink, frame);
}
static int config_output(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
const int sample_rate = outlink->sample_rate;
double radius = s->curve_dB * M_LN10 / 20.0;
char *p, *saveptr = NULL;
const int channels = outlink->channels;
int nb_attacks, nb_decays, nb_points;
int new_nb_items, num;
int i;
int err;
count_items(s->attacks, &nb_attacks);
count_items(s->decays, &nb_decays);
count_items(s->points, &nb_points);
if (channels <= 0) {
av_log(ctx, AV_LOG_ERROR, "Invalid number of channels: %d\n", channels);
return AVERROR(EINVAL);
}
if (nb_attacks > channels || nb_decays > channels) {
av_log(ctx, AV_LOG_ERROR,
"Number of attacks/decays bigger than number of channels.\n");
return AVERROR(EINVAL);
}
uninit(ctx);
s->channels = av_mallocz_array(channels, sizeof(*s->channels));
s->nb_segments = (nb_points + 4) * 2;
s->segments = av_mallocz_array(s->nb_segments, sizeof(*s->segments));
if (!s->channels || !s->segments) {
uninit(ctx);
return AVERROR(ENOMEM);
}
p = s->attacks;
for (i = 0, new_nb_items = 0; i < nb_attacks; i++) {
char *tstr = av_strtok(p, " |", &saveptr);
p = NULL;
new_nb_items += sscanf(tstr, "%lf", &s->channels[i].attack) == 1;
if (s->channels[i].attack < 0) {
uninit(ctx);
return AVERROR(EINVAL);
}
}
nb_attacks = new_nb_items;
p = s->decays;
for (i = 0, new_nb_items = 0; i < nb_decays; i++) {
char *tstr = av_strtok(p, " |", &saveptr);
p = NULL;
new_nb_items += sscanf(tstr, "%lf", &s->channels[i].decay) == 1;
if (s->channels[i].decay < 0) {
uninit(ctx);
return AVERROR(EINVAL);
}
}
nb_decays = new_nb_items;
if (nb_attacks != nb_decays) {
av_log(ctx, AV_LOG_ERROR,
"Number of attacks %d differs from number of decays %d.\n",
nb_attacks, nb_decays);
uninit(ctx);
return AVERROR(EINVAL);
}
for (i = nb_decays; i < channels; i++) {
s->channels[i].attack = s->channels[nb_decays - 1].attack;
s->channels[i].decay = s->channels[nb_decays - 1].decay;
}
#define S(x) s->segments[2 * ((x) + 1)]
p = s->points;
for (i = 0, new_nb_items = 0; i < nb_points; i++) {
char *tstr = av_strtok(p, " |", &saveptr);
p = NULL;
if (sscanf(tstr, "%lf/%lf", &S(i).x, &S(i).y) != 2) {
av_log(ctx, AV_LOG_ERROR,
"Invalid and/or missing input/output value.\n");
uninit(ctx);
return AVERROR(EINVAL);
}
if (i && S(i - 1).x > S(i).x) {
av_log(ctx, AV_LOG_ERROR,
"Transfer function input values must be increasing.\n");
uninit(ctx);
return AVERROR(EINVAL);
}
S(i).y -= S(i).x;
av_log(ctx, AV_LOG_DEBUG, "%d: x=%f y=%f\n", i, S(i).x, S(i).y);
new_nb_items++;
}
num = new_nb_items;
/* Add 0,0 if necessary */
if (num == 0 || S(num - 1).x)
num++;
#undef S
#define S(x) s->segments[2 * (x)]
/* Add a tail off segment at the start */
S(0).x = S(1).x - 2 * s->curve_dB;
S(0).y = S(1).y;
num++;
/* Join adjacent colinear segments */
for (i = 2; i < num; i++) {
double g1 = (S(i - 1).y - S(i - 2).y) * (S(i - 0).x - S(i - 1).x);
double g2 = (S(i - 0).y - S(i - 1).y) * (S(i - 1).x - S(i - 2).x);
int j;
if (fabs(g1 - g2))
continue;
num--;
for (j = --i; j < num; j++)
S(j) = S(j + 1);
}
for (i = 0; i < s->nb_segments; i += 2) {
s->segments[i].y += s->gain_dB;
s->segments[i].x *= M_LN10 / 20;
s->segments[i].y *= M_LN10 / 20;
}
#define L(x) s->segments[i - (x)]
for (i = 4; i < s->nb_segments; i += 2) {
double x, y, cx, cy, in1, in2, out1, out2, theta, len, r;
L(4).a = 0;
L(4).b = (L(2).y - L(4).y) / (L(2).x - L(4).x);
L(2).a = 0;
L(2).b = (L(0).y - L(2).y) / (L(0).x - L(2).x);
theta = atan2(L(2).y - L(4).y, L(2).x - L(4).x);
len = hypot(L(2).x - L(4).x, L(2).y - L(4).y);
r = FFMIN(radius, len);
L(3).x = L(2).x - r * cos(theta);
L(3).y = L(2).y - r * sin(theta);
theta = atan2(L(0).y - L(2).y, L(0).x - L(2).x);
len = hypot(L(0).x - L(2).x, L(0).y - L(2).y);
r = FFMIN(radius, len / 2);
x = L(2).x + r * cos(theta);
y = L(2).y + r * sin(theta);
cx = (L(3).x + L(2).x + x) / 3;
cy = (L(3).y + L(2).y + y) / 3;
L(2).x = x;
L(2).y = y;
in1 = cx - L(3).x;
out1 = cy - L(3).y;
in2 = L(2).x - L(3).x;
out2 = L(2).y - L(3).y;
L(3).a = (out2 / in2 - out1 / in1) / (in2 - in1);
L(3).b = out1 / in1 - L(3).a * in1;
}
L(3).x = 0;
L(3).y = L(2).y;
s->in_min_lin = exp(s->segments[1].x);
s->out_min_lin = exp(s->segments[1].y);
for (i = 0; i < channels; i++) {
ChanParam *cp = &s->channels[i];
if (cp->attack > 1.0 / sample_rate)
cp->attack = 1.0 - exp(-1.0 / (sample_rate * cp->attack));
else
cp->attack = 1.0;
if (cp->decay > 1.0 / sample_rate)
cp->decay = 1.0 - exp(-1.0 / (sample_rate * cp->decay));
else
cp->decay = 1.0;
cp->volume = ff_exp10(s->initial_volume / 20);
}
s->delay_samples = s->delay * sample_rate;
if (s->delay_samples <= 0) {
s->compand = compand_nodelay;
return 0;
}
s->delay_frame = av_frame_alloc();
if (!s->delay_frame) {
uninit(ctx);
return AVERROR(ENOMEM);
}
s->delay_frame->format = outlink->format;
s->delay_frame->nb_samples = s->delay_samples;
s->delay_frame->channel_layout = outlink->channel_layout;
err = av_frame_get_buffer(s->delay_frame, 32);
if (err)
return err;
s->compand = compand_delay;
return 0;
}
static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
AVFilterContext *ctx = inlink->dst;
CompandContext *s = ctx->priv;
return s->compand(ctx, frame);
}
static int request_frame(AVFilterLink *outlink)
{
AVFilterContext *ctx = outlink->src;
CompandContext *s = ctx->priv;
int ret = 0;
ret = ff_request_frame(ctx->inputs[0]);
if (ret == AVERROR_EOF && !ctx->is_disabled && s->delay_count)
ret = compand_drain(outlink);
return ret;
}
static const AVFilterPad compand_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.filter_frame = filter_frame,
},
{ NULL }
};
static const AVFilterPad compand_outputs[] = {
{
.name = "default",
.request_frame = request_frame,
.config_props = config_output,
.type = AVMEDIA_TYPE_AUDIO,
},
{ NULL }
};
AVFilter ff_af_compand = {
.name = "compand",
.description = NULL_IF_CONFIG_SMALL(
"Compress or expand audio dynamic range."),
.query_formats = query_formats,
.priv_size = sizeof(CompandContext),
.priv_class = &compand_class,
.init = init,
.uninit = uninit,
.inputs = compand_inputs,
.outputs = compand_outputs,
};