ffmpeg/libavcodec/dnxhddec.c
Michael Niedermayer 2ff61c3c1a avcodec/dnxhddec: Fix runtime error: left shift of negative value
Fixes: 2abd25478c62a675f335fac00b467023/asan_static-oob_10aff98_1227_8811480c6ef1e970a7977ceb7e5a9958.mxf

Found-by: Mateusz "j00ru" Jurczyk and Gynvael Coldwind
Signed-off-by: Michael Niedermayer <michael@niedermayer.cc>
2015-12-04 13:44:22 +01:00

700 lines
25 KiB
C

/*
* VC3/DNxHD decoder.
* Copyright (c) 2007 SmartJog S.A., Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
* Copyright (c) 2011 MirriAd Ltd
* Copyright (c) 2015 Christophe Gisquet
*
* 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
* Slice multithreading and MB interlaced support added by Christophe Gisquet
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/imgutils.h"
#include "libavutil/timer.h"
#include "avcodec.h"
#include "blockdsp.h"
#define UNCHECKED_BITSTREAM_READER 1
#include "get_bits.h"
#include "dnxhddata.h"
#include "idctdsp.h"
#include "internal.h"
#include "thread.h"
typedef struct RowContext {
DECLARE_ALIGNED(16, int16_t, blocks)[12][64];
int luma_scale[64];
int chroma_scale[64];
GetBitContext gb;
int last_dc[3];
int last_qscale;
int errors;
/** -1:not set yet 0:off=RGB 1:on=YUV 2:variable */
int format;
} RowContext;
typedef struct DNXHDContext {
AVCodecContext *avctx;
RowContext *rows;
BlockDSPContext bdsp;
const uint8_t* buf;
int buf_size;
int64_t cid; ///< compression id
unsigned int width, height;
enum AVPixelFormat pix_fmt;
unsigned int mb_width, mb_height;
uint32_t mb_scan_index[256];
int data_offset; // End of mb_scan_index, where macroblocks start
int cur_field; ///< current interlaced field
VLC ac_vlc, dc_vlc, run_vlc;
IDCTDSPContext idsp;
ScanTable scantable;
const CIDEntry *cid_table;
int bit_depth; // 8, 10, 12 or 0 if not initialized at all.
int is_444;
int mbaff;
int act;
int (*decode_dct_block)(const struct DNXHDContext *ctx,
RowContext *row, int n);
} DNXHDContext;
#define DNXHD_VLC_BITS 9
#define DNXHD_DC_VLC_BITS 7
static int dnxhd_decode_dct_block_8(const DNXHDContext *ctx,
RowContext *row, int n);
static int dnxhd_decode_dct_block_10(const DNXHDContext *ctx,
RowContext *row, int n);
static int dnxhd_decode_dct_block_10_444(const DNXHDContext *ctx,
RowContext *row, int n);
static int dnxhd_decode_dct_block_12(const DNXHDContext *ctx,
RowContext *row, int n);
static int dnxhd_decode_dct_block_12_444(const DNXHDContext *ctx,
RowContext *row, int n);
static av_cold int dnxhd_decode_init(AVCodecContext *avctx)
{
DNXHDContext *ctx = avctx->priv_data;
ctx->avctx = avctx;
ctx->cid = -1;
avctx->colorspace = AVCOL_SPC_BT709;
avctx->coded_width = FFALIGN(avctx->width, 16);
avctx->coded_height = FFALIGN(avctx->height, 16);
ctx->rows = av_mallocz_array(avctx->thread_count, sizeof(RowContext));
if (!ctx->rows)
return AVERROR(ENOMEM);
return 0;
}
static int dnxhd_init_vlc(DNXHDContext *ctx, uint32_t cid, int bitdepth)
{
if (cid != ctx->cid) {
int index;
if ((index = ff_dnxhd_get_cid_table(cid)) < 0) {
av_log(ctx->avctx, AV_LOG_ERROR, "unsupported cid %d\n", cid);
return AVERROR(ENOSYS);
}
if (ff_dnxhd_cid_table[index].bit_depth != bitdepth &&
ff_dnxhd_cid_table[index].bit_depth != DNXHD_VARIABLE) {
av_log(ctx->avctx, AV_LOG_ERROR, "bit depth mismatches %d %d\n", ff_dnxhd_cid_table[index].bit_depth, bitdepth);
return AVERROR_INVALIDDATA;
}
if (bitdepth > 10) {
avpriv_request_sample(ctx->avctx, "DNXHR 12-bit");
if (ctx->avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL)
return AVERROR_PATCHWELCOME;
}
ctx->cid_table = &ff_dnxhd_cid_table[index];
av_log(ctx->avctx, AV_LOG_VERBOSE, "Profile cid %d.\n", cid);
ff_free_vlc(&ctx->ac_vlc);
ff_free_vlc(&ctx->dc_vlc);
ff_free_vlc(&ctx->run_vlc);
init_vlc(&ctx->ac_vlc, DNXHD_VLC_BITS, 257,
ctx->cid_table->ac_bits, 1, 1,
ctx->cid_table->ac_codes, 2, 2, 0);
init_vlc(&ctx->dc_vlc, DNXHD_DC_VLC_BITS, bitdepth + 4,
ctx->cid_table->dc_bits, 1, 1,
ctx->cid_table->dc_codes, 1, 1, 0);
init_vlc(&ctx->run_vlc, DNXHD_VLC_BITS, 62,
ctx->cid_table->run_bits, 1, 1,
ctx->cid_table->run_codes, 2, 2, 0);
ctx->cid = cid;
}
return 0;
}
static av_cold int dnxhd_decode_init_thread_copy(AVCodecContext *avctx)
{
DNXHDContext *ctx = avctx->priv_data;
// make sure VLC tables will be loaded when cid is parsed
ctx->cid = -1;
ctx->rows = av_mallocz_array(avctx->thread_count, sizeof(RowContext));
if (!ctx->rows)
return AVERROR(ENOMEM);
return 0;
}
static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame,
const uint8_t *buf, int buf_size,
int first_field)
{
static const uint8_t header_prefix[] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
static const uint8_t header_prefix444[] = { 0x00, 0x00, 0x02, 0x80, 0x02 };
static const uint8_t header_prefixhr1[] = { 0x00, 0x00, 0x02, 0x80, 0x03 };
static const uint8_t header_prefixhr2[] = { 0x00, 0x00, 0x03, 0x8C, 0x03 };
int i, cid, ret;
int old_bit_depth = ctx->bit_depth, bitdepth;
if (buf_size < 0x280) {
av_log(ctx->avctx, AV_LOG_ERROR,
"buffer too small (%d < 640).\n", buf_size);
return AVERROR_INVALIDDATA;
}
if (memcmp(buf, header_prefix, 5) && memcmp(buf, header_prefix444, 5) &&
memcmp(buf, header_prefixhr1, 5) && memcmp(buf, header_prefixhr2, 5)) {
av_log(ctx->avctx, AV_LOG_ERROR,
"unknown header 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n",
buf[0], buf[1], buf[2], buf[3], buf[4]);
return AVERROR_INVALIDDATA;
}
if (buf[5] & 2) { /* interlaced */
ctx->cur_field = buf[5] & 1;
frame->interlaced_frame = 1;
frame->top_field_first = first_field ^ ctx->cur_field;
av_log(ctx->avctx, AV_LOG_DEBUG,
"interlaced %d, cur field %d\n", buf[5] & 3, ctx->cur_field);
} else {
ctx->cur_field = 0;
}
ctx->mbaff = (buf[0x6] >> 5) & 1;
ctx->height = AV_RB16(buf + 0x18);
ctx->width = AV_RB16(buf + 0x1a);
switch(buf[0x21] >> 5) {
case 1: bitdepth = 8; break;
case 2: bitdepth = 10; break;
case 3: bitdepth = 12; break;
default:
av_log(ctx->avctx, AV_LOG_ERROR,
"Unknown bitdepth indicator (%d)\n", buf[0x21] >> 5);
return AVERROR_INVALIDDATA;
}
cid = AV_RB32(buf + 0x28);
if ((ret = dnxhd_init_vlc(ctx, cid, bitdepth)) < 0)
return ret;
if (ctx->mbaff && ctx->cid_table->cid != 1260)
av_log(ctx->avctx, AV_LOG_WARNING,
"Adaptive MB interlace flag in an unsupported profile.\n");
ctx->act = buf[0x2C] & 7;
if (ctx->act && ctx->cid_table->cid != 1256 && ctx->cid_table->cid != 1270)
av_log(ctx->avctx, AV_LOG_WARNING,
"Adaptive color transform in an unsupported profile.\n");
ctx->is_444 = (buf[0x2C] >> 6) & 1;
if (ctx->is_444) {
if (bitdepth == 8) {
avpriv_request_sample(ctx->avctx, "4:4:4 8 bits\n");
return AVERROR_INVALIDDATA;
} else if (bitdepth == 10) {
ctx->decode_dct_block = dnxhd_decode_dct_block_10_444;
ctx->pix_fmt = ctx->act ? AV_PIX_FMT_YUV444P10
: AV_PIX_FMT_GBRP10;
} else {
ctx->decode_dct_block = dnxhd_decode_dct_block_12_444;
ctx->pix_fmt = ctx->act ? AV_PIX_FMT_YUV444P12
: AV_PIX_FMT_GBRP12;
}
} else if (bitdepth == 12) {
ctx->decode_dct_block = dnxhd_decode_dct_block_12;
ctx->pix_fmt = AV_PIX_FMT_YUV422P12;
} else if (bitdepth == 10) {
ctx->decode_dct_block = dnxhd_decode_dct_block_10;
ctx->pix_fmt = AV_PIX_FMT_YUV422P10;
} else {
ctx->decode_dct_block = dnxhd_decode_dct_block_8;
ctx->pix_fmt = AV_PIX_FMT_YUV422P;
}
ctx->avctx->bits_per_raw_sample = ctx->bit_depth = bitdepth;
if (ctx->bit_depth != old_bit_depth) {
ff_blockdsp_init(&ctx->bdsp, ctx->avctx);
ff_idctdsp_init(&ctx->idsp, ctx->avctx);
ff_init_scantable(ctx->idsp.idct_permutation, &ctx->scantable,
ff_zigzag_direct);
}
// make sure profile size constraints are respected
// DNx100 allows 1920->1440 and 1280->960 subsampling
if (ctx->width != ctx->cid_table->width &&
ctx->cid_table->width != DNXHD_VARIABLE) {
av_reduce(&ctx->avctx->sample_aspect_ratio.num,
&ctx->avctx->sample_aspect_ratio.den,
ctx->width, ctx->cid_table->width, 255);
ctx->width = ctx->cid_table->width;
}
if (buf_size < ctx->cid_table->coding_unit_size) {
av_log(ctx->avctx, AV_LOG_ERROR, "incorrect frame size (%d < %d).\n",
buf_size, ctx->cid_table->coding_unit_size);
return AVERROR_INVALIDDATA;
}
ctx->mb_width = (ctx->width + 15)>> 4;
ctx->mb_height = buf[0x16d];
if ((ctx->height + 15) >> 4 == ctx->mb_height && frame->interlaced_frame)
ctx->height <<= 1;
av_log(ctx->avctx, AV_LOG_VERBOSE, "%dx%d, 4:%s %d bits, MBAFF=%d ACT=%d\n",
ctx->width, ctx->height, ctx->is_444 ? "4:4" : "2:2",
ctx->bit_depth, ctx->mbaff, ctx->act);
// Newer format supports variable mb_scan_index sizes
if (!memcmp(buf, header_prefixhr2, 5)) {
ctx->data_offset = 0x170 + (ctx->mb_height << 2);
} else {
if (ctx->mb_height > 68 ||
(ctx->mb_height << frame->interlaced_frame) > (ctx->height + 15) >> 4) {
av_log(ctx->avctx, AV_LOG_ERROR,
"mb height too big: %d\n", ctx->mb_height);
return AVERROR_INVALIDDATA;
}
ctx->data_offset = 0x280;
}
if (buf_size < ctx->data_offset) {
av_log(ctx->avctx, AV_LOG_ERROR,
"buffer too small (%d < %d).\n", buf_size, ctx->data_offset);
return AVERROR_INVALIDDATA;
}
av_assert0((unsigned)ctx->mb_height <= FF_ARRAY_ELEMS(ctx->mb_scan_index));
for (i = 0; i < ctx->mb_height; i++) {
ctx->mb_scan_index[i] = AV_RB32(buf + 0x170 + (i << 2));
ff_dlog(ctx->avctx, "mb scan index %d, pos %d: %u\n", i, 0x170 + (i << 2), ctx->mb_scan_index[i]);
if (buf_size - ctx->data_offset < ctx->mb_scan_index[i]) {
av_log(ctx->avctx, AV_LOG_ERROR,
"invalid mb scan index (%u vs %u).\n",
ctx->mb_scan_index[i], buf_size - ctx->data_offset);
return AVERROR_INVALIDDATA;
}
}
return 0;
}
static av_always_inline int dnxhd_decode_dct_block(const DNXHDContext *ctx,
RowContext *row,
int n,
int index_bits,
int level_bias,
int level_shift,
int dc_shift)
{
int i, j, index1, index2, len, flags;
int level, component, sign;
const int *scale;
const uint8_t *weight_matrix;
const uint8_t *ac_info = ctx->cid_table->ac_info;
int16_t *block = row->blocks[n];
const int eob_index = ctx->cid_table->eob_index;
int ret = 0;
OPEN_READER(bs, &row->gb);
ctx->bdsp.clear_block(block);
if (!ctx->is_444) {
if (n & 2) {
component = 1 + (n & 1);
scale = row->chroma_scale;
weight_matrix = ctx->cid_table->chroma_weight;
} else {
component = 0;
scale = row->luma_scale;
weight_matrix = ctx->cid_table->luma_weight;
}
} else {
component = (n >> 1) % 3;
if (component) {
scale = row->chroma_scale;
weight_matrix = ctx->cid_table->chroma_weight;
} else {
scale = row->luma_scale;
weight_matrix = ctx->cid_table->luma_weight;
}
}
UPDATE_CACHE(bs, &row->gb);
GET_VLC(len, bs, &row->gb, ctx->dc_vlc.table, DNXHD_DC_VLC_BITS, 1);
if (len) {
level = GET_CACHE(bs, &row->gb);
LAST_SKIP_BITS(bs, &row->gb, len);
sign = ~level >> 31;
level = (NEG_USR32(sign ^ level, len) ^ sign) - sign;
row->last_dc[component] += level * (1 << dc_shift);
}
block[0] = row->last_dc[component];
i = 0;
UPDATE_CACHE(bs, &row->gb);
GET_VLC(index1, bs, &row->gb, ctx->ac_vlc.table,
DNXHD_VLC_BITS, 2);
while (index1 != eob_index) {
level = ac_info[2*index1+0];
flags = ac_info[2*index1+1];
sign = SHOW_SBITS(bs, &row->gb, 1);
SKIP_BITS(bs, &row->gb, 1);
if (flags & 1) {
level += SHOW_UBITS(bs, &row->gb, index_bits) << 7;
SKIP_BITS(bs, &row->gb, index_bits);
}
if (flags & 2) {
UPDATE_CACHE(bs, &row->gb);
GET_VLC(index2, bs, &row->gb, ctx->run_vlc.table,
DNXHD_VLC_BITS, 2);
i += ctx->cid_table->run[index2];
}
if (++i > 63) {
av_log(ctx->avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", n, i);
ret = -1;
break;
}
j = ctx->scantable.permutated[i];
level *= scale[i];
level += scale[i] >> 1;
if (level_bias < 32 || weight_matrix[i] != level_bias)
level += level_bias; // 1<<(level_shift-1)
level >>= level_shift;
block[j] = (level ^ sign) - sign;
UPDATE_CACHE(bs, &row->gb);
GET_VLC(index1, bs, &row->gb, ctx->ac_vlc.table,
DNXHD_VLC_BITS, 2);
}
CLOSE_READER(bs, &row->gb);
return ret;
}
static int dnxhd_decode_dct_block_8(const DNXHDContext *ctx,
RowContext *row, int n)
{
return dnxhd_decode_dct_block(ctx, row, n, 4, 32, 6, 0);
}
static int dnxhd_decode_dct_block_10(const DNXHDContext *ctx,
RowContext *row, int n)
{
return dnxhd_decode_dct_block(ctx, row, n, 6, 8, 4, 0);
}
static int dnxhd_decode_dct_block_10_444(const DNXHDContext *ctx,
RowContext *row, int n)
{
return dnxhd_decode_dct_block(ctx, row, n, 6, 32, 6, 0);
}
static int dnxhd_decode_dct_block_12(const DNXHDContext *ctx,
RowContext *row, int n)
{
return dnxhd_decode_dct_block(ctx, row, n, 6, 8, 4, 2);
}
static int dnxhd_decode_dct_block_12_444(const DNXHDContext *ctx,
RowContext *row, int n)
{
return dnxhd_decode_dct_block(ctx, row, n, 6, 32, 4, 2);
}
static int dnxhd_decode_macroblock(const DNXHDContext *ctx, RowContext *row,
AVFrame *frame, int x, int y)
{
int shift1 = ctx->bit_depth >= 10;
int dct_linesize_luma = frame->linesize[0];
int dct_linesize_chroma = frame->linesize[1];
uint8_t *dest_y, *dest_u, *dest_v;
int dct_y_offset, dct_x_offset;
int qscale, i, act;
int interlaced_mb = 0;
if (ctx->mbaff) {
interlaced_mb = get_bits1(&row->gb);
qscale = get_bits(&row->gb, 10);
} else {
qscale = get_bits(&row->gb, 11);
}
act = get_bits1(&row->gb);
if (act) {
if (!ctx->act) {
static int act_warned;
if (!act_warned) {
act_warned = 1;
av_log(ctx->avctx, AV_LOG_ERROR,
"ACT flag set, in violation of frame header.\n");
}
} else if (row->format == -1) {
row->format = act;
} else if (row->format != act) {
row->format = 2; // Variable
}
}
if (qscale != row->last_qscale) {
for (i = 0; i < 64; i++) {
row->luma_scale[i] = qscale * ctx->cid_table->luma_weight[i];
row->chroma_scale[i] = qscale * ctx->cid_table->chroma_weight[i];
}
row->last_qscale = qscale;
}
for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
if (ctx->decode_dct_block(ctx, row, i) < 0)
return AVERROR_INVALIDDATA;
}
if (frame->interlaced_frame) {
dct_linesize_luma <<= 1;
dct_linesize_chroma <<= 1;
}
dest_y = frame->data[0] + ((y * dct_linesize_luma) << 4) + (x << (4 + shift1));
dest_u = frame->data[1] + ((y * dct_linesize_chroma) << 4) + (x << (3 + shift1 + ctx->is_444));
dest_v = frame->data[2] + ((y * dct_linesize_chroma) << 4) + (x << (3 + shift1 + ctx->is_444));
if (frame->interlaced_frame && ctx->cur_field) {
dest_y += frame->linesize[0];
dest_u += frame->linesize[1];
dest_v += frame->linesize[2];
}
if (interlaced_mb) {
dct_linesize_luma <<= 1;
dct_linesize_chroma <<= 1;
}
dct_y_offset = interlaced_mb ? frame->linesize[0] : (dct_linesize_luma << 3);
dct_x_offset = 8 << shift1;
if (!ctx->is_444) {
ctx->idsp.idct_put(dest_y, dct_linesize_luma, row->blocks[0]);
ctx->idsp.idct_put(dest_y + dct_x_offset, dct_linesize_luma, row->blocks[1]);
ctx->idsp.idct_put(dest_y + dct_y_offset, dct_linesize_luma, row->blocks[4]);
ctx->idsp.idct_put(dest_y + dct_y_offset + dct_x_offset, dct_linesize_luma, row->blocks[5]);
if (!(ctx->avctx->flags & AV_CODEC_FLAG_GRAY)) {
dct_y_offset = interlaced_mb ? frame->linesize[1] : (dct_linesize_chroma << 3);
ctx->idsp.idct_put(dest_u, dct_linesize_chroma, row->blocks[2]);
ctx->idsp.idct_put(dest_v, dct_linesize_chroma, row->blocks[3]);
ctx->idsp.idct_put(dest_u + dct_y_offset, dct_linesize_chroma, row->blocks[6]);
ctx->idsp.idct_put(dest_v + dct_y_offset, dct_linesize_chroma, row->blocks[7]);
}
} else {
ctx->idsp.idct_put(dest_y, dct_linesize_luma, row->blocks[0]);
ctx->idsp.idct_put(dest_y + dct_x_offset, dct_linesize_luma, row->blocks[1]);
ctx->idsp.idct_put(dest_y + dct_y_offset, dct_linesize_luma, row->blocks[6]);
ctx->idsp.idct_put(dest_y + dct_y_offset + dct_x_offset, dct_linesize_luma, row->blocks[7]);
if (!(ctx->avctx->flags & AV_CODEC_FLAG_GRAY)) {
dct_y_offset = interlaced_mb ? frame->linesize[1] : (dct_linesize_chroma << 3);
ctx->idsp.idct_put(dest_u, dct_linesize_chroma, row->blocks[2]);
ctx->idsp.idct_put(dest_u + dct_x_offset, dct_linesize_chroma, row->blocks[3]);
ctx->idsp.idct_put(dest_u + dct_y_offset, dct_linesize_chroma, row->blocks[8]);
ctx->idsp.idct_put(dest_u + dct_y_offset + dct_x_offset, dct_linesize_chroma, row->blocks[9]);
ctx->idsp.idct_put(dest_v, dct_linesize_chroma, row->blocks[4]);
ctx->idsp.idct_put(dest_v + dct_x_offset, dct_linesize_chroma, row->blocks[5]);
ctx->idsp.idct_put(dest_v + dct_y_offset, dct_linesize_chroma, row->blocks[10]);
ctx->idsp.idct_put(dest_v + dct_y_offset + dct_x_offset, dct_linesize_chroma, row->blocks[11]);
}
}
return 0;
}
static int dnxhd_decode_row(AVCodecContext *avctx, void *data,
int rownb, int threadnb)
{
const DNXHDContext *ctx = avctx->priv_data;
uint32_t offset = ctx->mb_scan_index[rownb];
RowContext *row = ctx->rows + threadnb;
int x;
row->last_dc[0] =
row->last_dc[1] =
row->last_dc[2] = 1 << (ctx->bit_depth + 2); // for levels +2^(bitdepth-1)
init_get_bits(&row->gb, ctx->buf + offset, (ctx->buf_size - offset) << 3);
for (x = 0; x < ctx->mb_width; x++) {
//START_TIMER;
int ret = dnxhd_decode_macroblock(ctx, row, data, x, rownb);
if (ret < 0) {
row->errors++;
return ret;
}
//STOP_TIMER("decode macroblock");
}
return 0;
}
static int dnxhd_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
int buf_size = avpkt->size;
DNXHDContext *ctx = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *picture = data;
int first_field = 1;
int ret, i;
ff_dlog(avctx, "frame size %d\n", buf_size);
for (i = 0; i < avctx->thread_count; i++)
ctx->rows[i].format = -1;
decode_coding_unit:
if ((ret = dnxhd_decode_header(ctx, picture, buf, buf_size, first_field)) < 0)
return ret;
if ((avctx->width || avctx->height) &&
(ctx->width != avctx->width || ctx->height != avctx->height)) {
av_log(avctx, AV_LOG_WARNING, "frame size changed: %dx%d -> %dx%d\n",
avctx->width, avctx->height, ctx->width, ctx->height);
first_field = 1;
}
if (avctx->pix_fmt != AV_PIX_FMT_NONE && avctx->pix_fmt != ctx->pix_fmt) {
av_log(avctx, AV_LOG_WARNING, "pix_fmt changed: %s -> %s\n",
av_get_pix_fmt_name(avctx->pix_fmt), av_get_pix_fmt_name(ctx->pix_fmt));
first_field = 1;
}
avctx->pix_fmt = ctx->pix_fmt;
ret = ff_set_dimensions(avctx, ctx->width, ctx->height);
if (ret < 0)
return ret;
if (first_field) {
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
picture->pict_type = AV_PICTURE_TYPE_I;
picture->key_frame = 1;
}
ctx->buf_size = buf_size - ctx->data_offset;
ctx->buf = buf + ctx->data_offset;
avctx->execute2(avctx, dnxhd_decode_row, picture, NULL, ctx->mb_height);
if (first_field && picture->interlaced_frame) {
buf += ctx->cid_table->coding_unit_size;
buf_size -= ctx->cid_table->coding_unit_size;
first_field = 0;
goto decode_coding_unit;
}
ret = 0;
for (i = 0; i < avctx->thread_count; i++) {
ret += ctx->rows[i].errors;
ctx->rows[i].errors = 0;
}
if (ctx->act) {
static int act_warned;
int format = ctx->rows[0].format;
for (i = 1; i < avctx->thread_count; i++) {
if (ctx->rows[i].format != format &&
ctx->rows[i].format != -1 /* not run */) {
format = 2;
break;
}
}
switch (format) {
case -1:
case 2:
if (!act_warned) {
act_warned = 1;
av_log(ctx->avctx, AV_LOG_ERROR,
"Unsupported: variable ACT flag.\n");
}
break;
case 0:
ctx->pix_fmt = ctx->bit_depth==10
? AV_PIX_FMT_GBRP10 : AV_PIX_FMT_GBRP12;
break;
case 1:
ctx->pix_fmt = ctx->bit_depth==10
? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV444P12;
break;
}
}
avctx->pix_fmt = ctx->pix_fmt;
if (ret) {
av_log(ctx->avctx, AV_LOG_ERROR, "%d lines with errors\n", ret);
return AVERROR_INVALIDDATA;
}
*got_frame = 1;
return avpkt->size;
}
static av_cold int dnxhd_decode_close(AVCodecContext *avctx)
{
DNXHDContext *ctx = avctx->priv_data;
ff_free_vlc(&ctx->ac_vlc);
ff_free_vlc(&ctx->dc_vlc);
ff_free_vlc(&ctx->run_vlc);
av_freep(&ctx->rows);
return 0;
}
AVCodec ff_dnxhd_decoder = {
.name = "dnxhd",
.long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_DNXHD,
.priv_data_size = sizeof(DNXHDContext),
.init = dnxhd_decode_init,
.close = dnxhd_decode_close,
.decode = dnxhd_decode_frame,
.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
AV_CODEC_CAP_SLICE_THREADS,
.init_thread_copy = ONLY_IF_THREADS_ENABLED(dnxhd_decode_init_thread_copy),
};