e10979ff56
* qatar/master:
changelog: misc typo and wording fixes
H.264: add filter_mb_fast support for >8-bit decoding
doc: Remove outdated comments about gcc 2.95 and gcc 3.3 support.
lls: use av_lfg instead of rand() in test program
build: remove unnecessary dependency on libs from 'all' target
H.264: avoid redundant alpha/beta calculations in loopfilter
H.264: optimize intra/inter loopfilter decision
mpegts: fix Continuity Counter error detection
build: remove unnecessary FFLDFLAGS variable
vp8/mt: flush worker thread, not application thread context, on seek.
mt: proper locking around release_buffer calls.
DxVA2: unbreak build after [657ccb5ac7
]
hwaccel: unbreak build
Eliminate FF_COMMON_FRAME macro.
Conflicts:
Changelog
Makefile
doc/developer.texi
libavcodec/avcodec.h
libavcodec/h264.c
libavcodec/mpeg4videodec.c
Merged-by: Michael Niedermayer <michaelni@gmx.at>
685 lines
27 KiB
C
685 lines
27 KiB
C
/*
|
|
* RV40 decoder
|
|
* Copyright (c) 2007 Konstantin Shishkov
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* RV40 decoder
|
|
*/
|
|
|
|
#include "libavutil/imgutils.h"
|
|
|
|
#include "avcodec.h"
|
|
#include "dsputil.h"
|
|
#include "mpegvideo.h"
|
|
#include "golomb.h"
|
|
|
|
#include "rv34.h"
|
|
#include "rv40vlc2.h"
|
|
#include "rv40data.h"
|
|
|
|
static VLC aic_top_vlc;
|
|
static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
|
|
static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
|
|
|
|
static const int16_t mode2_offs[] = {
|
|
0, 614, 1222, 1794, 2410, 3014, 3586, 4202, 4792, 5382, 5966, 6542,
|
|
7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
|
|
};
|
|
|
|
/**
|
|
* Initialize all tables.
|
|
*/
|
|
static av_cold void rv40_init_tables(void)
|
|
{
|
|
int i;
|
|
static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
|
|
static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
|
|
static VLC_TYPE aic_mode2_table[11814][2];
|
|
static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
|
|
static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
|
|
|
|
aic_top_vlc.table = aic_table;
|
|
aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
|
|
init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
|
|
rv40_aic_top_vlc_bits, 1, 1,
|
|
rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
for(i = 0; i < AIC_MODE1_NUM; i++){
|
|
// Every tenth VLC table is empty
|
|
if((i % 10) == 9) continue;
|
|
aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
|
|
aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
|
|
init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
|
|
aic_mode1_vlc_bits[i], 1, 1,
|
|
aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
for(i = 0; i < AIC_MODE2_NUM; i++){
|
|
aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
|
|
aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
|
|
init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
|
|
aic_mode2_vlc_bits[i], 1, 1,
|
|
aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
for(i = 0; i < NUM_PTYPE_VLCS; i++){
|
|
ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
|
|
ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
|
|
init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
|
|
ptype_vlc_bits[i], 1, 1,
|
|
ptype_vlc_codes[i], 1, 1,
|
|
ptype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
for(i = 0; i < NUM_BTYPE_VLCS; i++){
|
|
btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
|
|
btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
|
|
init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
|
|
btype_vlc_bits[i], 1, 1,
|
|
btype_vlc_codes[i], 1, 1,
|
|
btype_vlc_syms, 1, 1, INIT_VLC_USE_NEW_STATIC);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get stored dimension from bitstream.
|
|
*
|
|
* If the width/height is the standard one then it's coded as a 3-bit index.
|
|
* Otherwise it is coded as escaped 8-bit portions.
|
|
*/
|
|
static int get_dimension(GetBitContext *gb, const int *dim)
|
|
{
|
|
int t = get_bits(gb, 3);
|
|
int val = dim[t];
|
|
if(val < 0)
|
|
val = dim[get_bits1(gb) - val];
|
|
if(!val){
|
|
do{
|
|
t = get_bits(gb, 8);
|
|
val += t << 2;
|
|
}while(t == 0xFF);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* Get encoded picture size - usually this is called from rv40_parse_slice_header.
|
|
*/
|
|
static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
|
|
{
|
|
*w = get_dimension(gb, rv40_standard_widths);
|
|
*h = get_dimension(gb, rv40_standard_heights);
|
|
}
|
|
|
|
static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
|
|
{
|
|
int mb_bits;
|
|
int w = r->s.width, h = r->s.height;
|
|
int mb_size;
|
|
|
|
memset(si, 0, sizeof(SliceInfo));
|
|
if(get_bits1(gb))
|
|
return -1;
|
|
si->type = get_bits(gb, 2);
|
|
if(si->type == 1) si->type = 0;
|
|
si->quant = get_bits(gb, 5);
|
|
if(get_bits(gb, 2))
|
|
return -1;
|
|
si->vlc_set = get_bits(gb, 2);
|
|
skip_bits1(gb);
|
|
si->pts = get_bits(gb, 13);
|
|
if(!si->type || !get_bits1(gb))
|
|
rv40_parse_picture_size(gb, &w, &h);
|
|
if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
|
|
return -1;
|
|
si->width = w;
|
|
si->height = h;
|
|
mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
|
|
mb_bits = ff_rv34_get_start_offset(gb, mb_size);
|
|
si->start = get_bits(gb, mb_bits);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode 4x4 intra types array.
|
|
*/
|
|
static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
|
|
{
|
|
MpegEncContext *s = &r->s;
|
|
int i, j, k, v;
|
|
int A, B, C;
|
|
int pattern;
|
|
int8_t *ptr;
|
|
|
|
for(i = 0; i < 4; i++, dst += r->intra_types_stride){
|
|
if(!i && s->first_slice_line){
|
|
pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
|
|
dst[0] = (pattern >> 2) & 2;
|
|
dst[1] = (pattern >> 1) & 2;
|
|
dst[2] = pattern & 2;
|
|
dst[3] = (pattern << 1) & 2;
|
|
continue;
|
|
}
|
|
ptr = dst;
|
|
for(j = 0; j < 4; j++){
|
|
/* Coefficients are read using VLC chosen by the prediction pattern
|
|
* The first one (used for retrieving a pair of coefficients) is
|
|
* constructed from the top, top right and left coefficients
|
|
* The second one (used for retrieving only one coefficient) is
|
|
* top + 10 * left.
|
|
*/
|
|
A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
|
|
B = ptr[-r->intra_types_stride];
|
|
C = ptr[-1];
|
|
pattern = A + (B << 4) + (C << 8);
|
|
for(k = 0; k < MODE2_PATTERNS_NUM; k++)
|
|
if(pattern == rv40_aic_table_index[k])
|
|
break;
|
|
if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
|
|
v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
|
|
*ptr++ = v/9;
|
|
*ptr++ = v%9;
|
|
j++;
|
|
}else{
|
|
if(B != -1 && C != -1)
|
|
v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
|
|
else{ // tricky decoding
|
|
v = 0;
|
|
switch(C){
|
|
case -1: // code 0 -> 1, 1 -> 0
|
|
if(B < 2)
|
|
v = get_bits1(gb) ^ 1;
|
|
break;
|
|
case 0:
|
|
case 2: // code 0 -> 2, 1 -> 0
|
|
v = (get_bits1(gb) ^ 1) << 1;
|
|
break;
|
|
}
|
|
}
|
|
*ptr++ = v;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode macroblock information.
|
|
*/
|
|
static int rv40_decode_mb_info(RV34DecContext *r)
|
|
{
|
|
MpegEncContext *s = &r->s;
|
|
GetBitContext *gb = &s->gb;
|
|
int q, i;
|
|
int prev_type = 0;
|
|
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
|
|
int blocks[RV34_MB_TYPES] = {0};
|
|
int count = 0;
|
|
|
|
if(!r->s.mb_skip_run)
|
|
r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
|
|
|
|
if(--r->s.mb_skip_run)
|
|
return RV34_MB_SKIP;
|
|
|
|
if(r->avail_cache[6-1])
|
|
blocks[r->mb_type[mb_pos - 1]]++;
|
|
if(r->avail_cache[6-4]){
|
|
blocks[r->mb_type[mb_pos - s->mb_stride]]++;
|
|
if(r->avail_cache[6-2])
|
|
blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
|
|
if(r->avail_cache[6-5])
|
|
blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
|
|
}
|
|
|
|
for(i = 0; i < RV34_MB_TYPES; i++){
|
|
if(blocks[i] > count){
|
|
count = blocks[i];
|
|
prev_type = i;
|
|
}
|
|
}
|
|
if(s->pict_type == AV_PICTURE_TYPE_P){
|
|
prev_type = block_num_to_ptype_vlc_num[prev_type];
|
|
q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
|
|
if(q < PBTYPE_ESCAPE)
|
|
return q;
|
|
q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
|
|
av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
|
|
}else{
|
|
prev_type = block_num_to_btype_vlc_num[prev_type];
|
|
q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
|
|
if(q < PBTYPE_ESCAPE)
|
|
return q;
|
|
q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
|
|
av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define CLIP_SYMM(a, b) av_clip(a, -(b), b)
|
|
/**
|
|
* weaker deblocking very similar to the one described in 4.4.2 of JVT-A003r1
|
|
*/
|
|
static inline void rv40_weak_loop_filter(uint8_t *src, const int step,
|
|
const int filter_p1, const int filter_q1,
|
|
const int alpha, const int beta,
|
|
const int lim_p0q0,
|
|
const int lim_q1, const int lim_p1,
|
|
const int diff_p1p0, const int diff_q1q0,
|
|
const int diff_p1p2, const int diff_q1q2)
|
|
{
|
|
uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
|
|
int t, u, diff;
|
|
|
|
t = src[0*step] - src[-1*step];
|
|
if(!t)
|
|
return;
|
|
u = (alpha * FFABS(t)) >> 7;
|
|
if(u > 3 - (filter_p1 && filter_q1))
|
|
return;
|
|
|
|
t <<= 2;
|
|
if(filter_p1 && filter_q1)
|
|
t += src[-2*step] - src[1*step];
|
|
diff = CLIP_SYMM((t + 4) >> 3, lim_p0q0);
|
|
src[-1*step] = cm[src[-1*step] + diff];
|
|
src[ 0*step] = cm[src[ 0*step] - diff];
|
|
if(FFABS(diff_p1p2) <= beta && filter_p1){
|
|
t = (diff_p1p0 + diff_p1p2 - diff) >> 1;
|
|
src[-2*step] = cm[src[-2*step] - CLIP_SYMM(t, lim_p1)];
|
|
}
|
|
if(FFABS(diff_q1q2) <= beta && filter_q1){
|
|
t = (diff_q1q0 + diff_q1q2 + diff) >> 1;
|
|
src[ 1*step] = cm[src[ 1*step] - CLIP_SYMM(t, lim_q1)];
|
|
}
|
|
}
|
|
|
|
static av_always_inline void rv40_adaptive_loop_filter(uint8_t *src, const int step,
|
|
const int stride, const int dmode,
|
|
const int lim_q1, const int lim_p1,
|
|
const int alpha,
|
|
const int beta, const int beta2,
|
|
const int chroma, const int edge)
|
|
{
|
|
int diff_p1p0[4], diff_q1q0[4], diff_p1p2[4], diff_q1q2[4];
|
|
int sum_p1p0 = 0, sum_q1q0 = 0, sum_p1p2 = 0, sum_q1q2 = 0;
|
|
uint8_t *ptr;
|
|
int flag_strong0 = 1, flag_strong1 = 1;
|
|
int filter_p1, filter_q1;
|
|
int i;
|
|
int lims;
|
|
|
|
for(i = 0, ptr = src; i < 4; i++, ptr += stride){
|
|
diff_p1p0[i] = ptr[-2*step] - ptr[-1*step];
|
|
diff_q1q0[i] = ptr[ 1*step] - ptr[ 0*step];
|
|
sum_p1p0 += diff_p1p0[i];
|
|
sum_q1q0 += diff_q1q0[i];
|
|
}
|
|
filter_p1 = FFABS(sum_p1p0) < (beta<<2);
|
|
filter_q1 = FFABS(sum_q1q0) < (beta<<2);
|
|
if(!filter_p1 && !filter_q1)
|
|
return;
|
|
|
|
for(i = 0, ptr = src; i < 4; i++, ptr += stride){
|
|
diff_p1p2[i] = ptr[-2*step] - ptr[-3*step];
|
|
diff_q1q2[i] = ptr[ 1*step] - ptr[ 2*step];
|
|
sum_p1p2 += diff_p1p2[i];
|
|
sum_q1q2 += diff_q1q2[i];
|
|
}
|
|
|
|
if(edge){
|
|
flag_strong0 = filter_p1 && (FFABS(sum_p1p2) < beta2);
|
|
flag_strong1 = filter_q1 && (FFABS(sum_q1q2) < beta2);
|
|
}else{
|
|
flag_strong0 = flag_strong1 = 0;
|
|
}
|
|
|
|
lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
|
|
if(flag_strong0 && flag_strong1){ /* strong filtering */
|
|
for(i = 0; i < 4; i++, src += stride){
|
|
int sflag, p0, q0, p1, q1;
|
|
int t = src[0*step] - src[-1*step];
|
|
|
|
if(!t) continue;
|
|
sflag = (alpha * FFABS(t)) >> 7;
|
|
if(sflag > 1) continue;
|
|
|
|
p0 = (25*src[-3*step] + 26*src[-2*step]
|
|
+ 26*src[-1*step]
|
|
+ 26*src[ 0*step] + 25*src[ 1*step] + rv40_dither_l[dmode + i]) >> 7;
|
|
q0 = (25*src[-2*step] + 26*src[-1*step]
|
|
+ 26*src[ 0*step]
|
|
+ 26*src[ 1*step] + 25*src[ 2*step] + rv40_dither_r[dmode + i]) >> 7;
|
|
if(sflag){
|
|
p0 = av_clip(p0, src[-1*step] - lims, src[-1*step] + lims);
|
|
q0 = av_clip(q0, src[ 0*step] - lims, src[ 0*step] + lims);
|
|
}
|
|
p1 = (25*src[-4*step] + 26*src[-3*step]
|
|
+ 26*src[-2*step]
|
|
+ 26*p0 + 25*src[ 0*step] + rv40_dither_l[dmode + i]) >> 7;
|
|
q1 = (25*src[-1*step] + 26*q0
|
|
+ 26*src[ 1*step]
|
|
+ 26*src[ 2*step] + 25*src[ 3*step] + rv40_dither_r[dmode + i]) >> 7;
|
|
if(sflag){
|
|
p1 = av_clip(p1, src[-2*step] - lims, src[-2*step] + lims);
|
|
q1 = av_clip(q1, src[ 1*step] - lims, src[ 1*step] + lims);
|
|
}
|
|
src[-2*step] = p1;
|
|
src[-1*step] = p0;
|
|
src[ 0*step] = q0;
|
|
src[ 1*step] = q1;
|
|
if(!chroma){
|
|
src[-3*step] = (25*src[-1*step] + 26*src[-2*step] + 51*src[-3*step] + 26*src[-4*step] + 64) >> 7;
|
|
src[ 2*step] = (25*src[ 0*step] + 26*src[ 1*step] + 51*src[ 2*step] + 26*src[ 3*step] + 64) >> 7;
|
|
}
|
|
}
|
|
}else if(filter_p1 && filter_q1){
|
|
for(i = 0; i < 4; i++, src += stride)
|
|
rv40_weak_loop_filter(src, step, 1, 1, alpha, beta, lims, lim_q1, lim_p1,
|
|
diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
|
|
}else{
|
|
for(i = 0; i < 4; i++, src += stride)
|
|
rv40_weak_loop_filter(src, step, filter_p1, filter_q1,
|
|
alpha, beta, lims>>1, lim_q1>>1, lim_p1>>1,
|
|
diff_p1p0[i], diff_q1q0[i], diff_p1p2[i], diff_q1q2[i]);
|
|
}
|
|
}
|
|
|
|
static void rv40_v_loop_filter(uint8_t *src, int stride, int dmode,
|
|
int lim_q1, int lim_p1,
|
|
int alpha, int beta, int beta2, int chroma, int edge){
|
|
rv40_adaptive_loop_filter(src, 1, stride, dmode, lim_q1, lim_p1,
|
|
alpha, beta, beta2, chroma, edge);
|
|
}
|
|
static void rv40_h_loop_filter(uint8_t *src, int stride, int dmode,
|
|
int lim_q1, int lim_p1,
|
|
int alpha, int beta, int beta2, int chroma, int edge){
|
|
rv40_adaptive_loop_filter(src, stride, 1, dmode, lim_q1, lim_p1,
|
|
alpha, beta, beta2, chroma, edge);
|
|
}
|
|
|
|
enum RV40BlockPos{
|
|
POS_CUR,
|
|
POS_TOP,
|
|
POS_LEFT,
|
|
POS_BOTTOM,
|
|
};
|
|
|
|
#define MASK_CUR 0x0001
|
|
#define MASK_RIGHT 0x0008
|
|
#define MASK_BOTTOM 0x0010
|
|
#define MASK_TOP 0x1000
|
|
#define MASK_Y_TOP_ROW 0x000F
|
|
#define MASK_Y_LAST_ROW 0xF000
|
|
#define MASK_Y_LEFT_COL 0x1111
|
|
#define MASK_Y_RIGHT_COL 0x8888
|
|
#define MASK_C_TOP_ROW 0x0003
|
|
#define MASK_C_LAST_ROW 0x000C
|
|
#define MASK_C_LEFT_COL 0x0005
|
|
#define MASK_C_RIGHT_COL 0x000A
|
|
|
|
static const int neighbour_offs_x[4] = { 0, 0, -1, 0 };
|
|
static const int neighbour_offs_y[4] = { 0, -1, 0, 1 };
|
|
|
|
/**
|
|
* RV40 loop filtering function
|
|
*/
|
|
static void rv40_loop_filter(RV34DecContext *r, int row)
|
|
{
|
|
MpegEncContext *s = &r->s;
|
|
int mb_pos, mb_x;
|
|
int i, j, k;
|
|
uint8_t *Y, *C;
|
|
int alpha, beta, betaY, betaC;
|
|
int q;
|
|
int mbtype[4]; ///< current macroblock and its neighbours types
|
|
/**
|
|
* flags indicating that macroblock can be filtered with strong filter
|
|
* it is set only for intra coded MB and MB with DCs coded separately
|
|
*/
|
|
int mb_strong[4];
|
|
int clip[4]; ///< MB filter clipping value calculated from filtering strength
|
|
/**
|
|
* coded block patterns for luma part of current macroblock and its neighbours
|
|
* Format:
|
|
* LSB corresponds to the top left block,
|
|
* each nibble represents one row of subblocks.
|
|
*/
|
|
int cbp[4];
|
|
/**
|
|
* coded block patterns for chroma part of current macroblock and its neighbours
|
|
* Format is the same as for luma with two subblocks in a row.
|
|
*/
|
|
int uvcbp[4][2];
|
|
/**
|
|
* This mask represents the pattern of luma subblocks that should be filtered
|
|
* in addition to the coded ones because because they lie at the edge of
|
|
* 8x8 block with different enough motion vectors
|
|
*/
|
|
int mvmasks[4];
|
|
|
|
mb_pos = row * s->mb_stride;
|
|
for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
|
|
int mbtype = s->current_picture_ptr->f.mb_type[mb_pos];
|
|
if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
|
|
r->cbp_luma [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
|
|
if(IS_INTRA(mbtype))
|
|
r->cbp_chroma[mb_pos] = 0xFF;
|
|
}
|
|
mb_pos = row * s->mb_stride;
|
|
for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
|
|
int y_h_deblock, y_v_deblock;
|
|
int c_v_deblock[2], c_h_deblock[2];
|
|
int clip_left;
|
|
int avail[4];
|
|
int y_to_deblock, c_to_deblock[2];
|
|
|
|
q = s->current_picture_ptr->f.qscale_table[mb_pos];
|
|
alpha = rv40_alpha_tab[q];
|
|
beta = rv40_beta_tab [q];
|
|
betaY = betaC = beta * 3;
|
|
if(s->width * s->height <= 176*144)
|
|
betaY += beta;
|
|
|
|
avail[0] = 1;
|
|
avail[1] = row;
|
|
avail[2] = mb_x;
|
|
avail[3] = row < s->mb_height - 1;
|
|
for(i = 0; i < 4; i++){
|
|
if(avail[i]){
|
|
int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
|
|
mvmasks[i] = r->deblock_coefs[pos];
|
|
mbtype [i] = s->current_picture_ptr->f.mb_type[pos];
|
|
cbp [i] = r->cbp_luma[pos];
|
|
uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
|
|
uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
|
|
}else{
|
|
mvmasks[i] = 0;
|
|
mbtype [i] = mbtype[0];
|
|
cbp [i] = 0;
|
|
uvcbp[i][0] = uvcbp[i][1] = 0;
|
|
}
|
|
mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
|
|
clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
|
|
}
|
|
y_to_deblock = mvmasks[POS_CUR]
|
|
| (mvmasks[POS_BOTTOM] << 16);
|
|
/* This pattern contains bits signalling that horizontal edges of
|
|
* the current block can be filtered.
|
|
* That happens when either of adjacent subblocks is coded or lies on
|
|
* the edge of 8x8 blocks with motion vectors differing by more than
|
|
* 3/4 pel in any component (any edge orientation for some reason).
|
|
*/
|
|
y_h_deblock = y_to_deblock
|
|
| ((cbp[POS_CUR] << 4) & ~MASK_Y_TOP_ROW)
|
|
| ((cbp[POS_TOP] & MASK_Y_LAST_ROW) >> 12);
|
|
/* This pattern contains bits signalling that vertical edges of
|
|
* the current block can be filtered.
|
|
* That happens when either of adjacent subblocks is coded or lies on
|
|
* the edge of 8x8 blocks with motion vectors differing by more than
|
|
* 3/4 pel in any component (any edge orientation for some reason).
|
|
*/
|
|
y_v_deblock = y_to_deblock
|
|
| ((cbp[POS_CUR] << 1) & ~MASK_Y_LEFT_COL)
|
|
| ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
|
|
if(!mb_x)
|
|
y_v_deblock &= ~MASK_Y_LEFT_COL;
|
|
if(!row)
|
|
y_h_deblock &= ~MASK_Y_TOP_ROW;
|
|
if(row == s->mb_height - 1 || (mb_strong[POS_CUR] || mb_strong[POS_BOTTOM]))
|
|
y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
|
|
/* Calculating chroma patterns is similar and easier since there is
|
|
* no motion vector pattern for them.
|
|
*/
|
|
for(i = 0; i < 2; i++){
|
|
c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
|
|
c_v_deblock[i] = c_to_deblock[i]
|
|
| ((uvcbp[POS_CUR] [i] << 1) & ~MASK_C_LEFT_COL)
|
|
| ((uvcbp[POS_LEFT][i] & MASK_C_RIGHT_COL) >> 1);
|
|
c_h_deblock[i] = c_to_deblock[i]
|
|
| ((uvcbp[POS_TOP][i] & MASK_C_LAST_ROW) >> 2)
|
|
| (uvcbp[POS_CUR][i] << 2);
|
|
if(!mb_x)
|
|
c_v_deblock[i] &= ~MASK_C_LEFT_COL;
|
|
if(!row)
|
|
c_h_deblock[i] &= ~MASK_C_TOP_ROW;
|
|
if(row == s->mb_height - 1 || mb_strong[POS_CUR] || mb_strong[POS_BOTTOM])
|
|
c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
|
|
}
|
|
|
|
for(j = 0; j < 16; j += 4){
|
|
Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
|
|
for(i = 0; i < 4; i++, Y += 4){
|
|
int ij = i + j;
|
|
int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
|
|
int dither = j ? ij : i*4;
|
|
|
|
// if bottom block is coded then we can filter its top edge
|
|
// (or bottom edge of this block, which is the same)
|
|
if(y_h_deblock & (MASK_BOTTOM << ij)){
|
|
rv40_h_loop_filter(Y+4*s->linesize, s->linesize, dither,
|
|
y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
|
|
clip_cur,
|
|
alpha, beta, betaY, 0, 0);
|
|
}
|
|
// filter left block edge in ordinary mode (with low filtering strength)
|
|
if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
|
|
if(!i)
|
|
clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
|
|
else
|
|
clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
|
|
rv40_v_loop_filter(Y, s->linesize, dither,
|
|
clip_cur,
|
|
clip_left,
|
|
alpha, beta, betaY, 0, 0);
|
|
}
|
|
// filter top edge of the current macroblock when filtering strength is high
|
|
if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
|
|
rv40_h_loop_filter(Y, s->linesize, dither,
|
|
clip_cur,
|
|
mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
|
|
alpha, beta, betaY, 0, 1);
|
|
}
|
|
// filter left block edge in edge mode (with high filtering strength)
|
|
if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
|
|
clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
|
|
rv40_v_loop_filter(Y, s->linesize, dither,
|
|
clip_cur,
|
|
clip_left,
|
|
alpha, beta, betaY, 0, 1);
|
|
}
|
|
}
|
|
}
|
|
for(k = 0; k < 2; k++){
|
|
for(j = 0; j < 2; j++){
|
|
C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
|
|
for(i = 0; i < 2; i++, C += 4){
|
|
int ij = i + j*2;
|
|
int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
|
|
if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
|
|
int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
|
|
rv40_h_loop_filter(C+4*s->uvlinesize, s->uvlinesize, i*8,
|
|
clip_bot,
|
|
clip_cur,
|
|
alpha, beta, betaC, 1, 0);
|
|
}
|
|
if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] || mb_strong[POS_LEFT]))){
|
|
if(!i)
|
|
clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
|
|
else
|
|
clip_left = c_to_deblock[k] & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
|
|
rv40_v_loop_filter(C, s->uvlinesize, j*8,
|
|
clip_cur,
|
|
clip_left,
|
|
alpha, beta, betaC, 1, 0);
|
|
}
|
|
if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] || mb_strong[POS_TOP])){
|
|
int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
|
|
rv40_h_loop_filter(C, s->uvlinesize, i*8,
|
|
clip_cur,
|
|
clip_top,
|
|
alpha, beta, betaC, 1, 1);
|
|
}
|
|
if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] || mb_strong[POS_LEFT])){
|
|
clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
|
|
rv40_v_loop_filter(C, s->uvlinesize, j*8,
|
|
clip_cur,
|
|
clip_left,
|
|
alpha, beta, betaC, 1, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Initialize decoder.
|
|
*/
|
|
static av_cold int rv40_decode_init(AVCodecContext *avctx)
|
|
{
|
|
RV34DecContext *r = avctx->priv_data;
|
|
|
|
r->rv30 = 0;
|
|
ff_rv34_decode_init(avctx);
|
|
if(!aic_top_vlc.bits)
|
|
rv40_init_tables();
|
|
r->parse_slice_header = rv40_parse_slice_header;
|
|
r->decode_intra_types = rv40_decode_intra_types;
|
|
r->decode_mb_info = rv40_decode_mb_info;
|
|
r->loop_filter = rv40_loop_filter;
|
|
r->luma_dc_quant_i = rv40_luma_dc_quant[0];
|
|
r->luma_dc_quant_p = rv40_luma_dc_quant[1];
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ff_rv40_decoder = {
|
|
"rv40",
|
|
AVMEDIA_TYPE_VIDEO,
|
|
CODEC_ID_RV40,
|
|
sizeof(RV34DecContext),
|
|
rv40_decode_init,
|
|
NULL,
|
|
ff_rv34_decode_end,
|
|
ff_rv34_decode_frame,
|
|
CODEC_CAP_DR1 | CODEC_CAP_DELAY,
|
|
.flush = ff_mpeg_flush,
|
|
.long_name = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
|
|
.pix_fmts= ff_pixfmt_list_420,
|
|
};
|