ffmpeg/libavcodec/h264_mvpred.h
Michael Niedermayer bb258fb995 Merge remote-tracking branch 'qatar/master'
* qatar/master:
  doc: Improve references to external URLs.
  h264: move decode_mb_skip() from h264.h to h.264_mvpred.h
  ffplay: skip return value of avcodec_decode_video2 / avcodec_decode_subtitle2
  dnxhdenc: Replace a forward declaration by the proper #include.
  h264: move h264_mvpred.h include.
  pix_fmt: Fix number of bits per component in yuv444p9be
  lavf: deprecate AVFormatContext.timestamp
  ffmpeg: merge input_files_ts_scale into InputStream.
  ffmpeg: don't abuse a global for passing sample format from input to output
  ffmpeg: don't abuse a global for passing channel layout from input to output
  ffmpeg: factor common code from new_a/v/s/d_stream to new_output_stream()
  matroskaenc: make SSA default subtitle codec.
  oggdec: prevent heap corruption.

Conflicts:
	doc/developer.texi
	doc/faq.texi
	doc/general.texi
	ffmpeg.c
	ffplay.c

Merged-by: Michael Niedermayer <michaelni@gmx.at>
2011-07-13 00:42:11 +02:00

370 lines
12 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 motion vector predicion.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264_MVPRED_H
#define AVCODEC_H264_MVPRED_H
#include "internal.h"
#include "avcodec.h"
#include "h264.h"
//#undef NDEBUG
#include <assert.h>
static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
MpegEncContext *s = &h->s;
/* there is no consistent mapping of mvs to neighboring locations that will
* make mbaff happy, so we can't move all this logic to fill_caches */
if(FRAME_MBAFF){
#define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4)\
const int xy = XY, y4 = Y4;\
const int mb_type = mb_types[xy+(y4>>2)*s->mb_stride];\
if(!USES_LIST(mb_type,list))\
return LIST_NOT_USED;\
mv = s->current_picture_ptr->f.motion_val[list][h->mb2b_xy[xy] + 3 + y4*h->b_stride];\
h->mv_cache[list][scan8[0]-2][0] = mv[0];\
h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
return s->current_picture_ptr->f.ref_index[list][4*xy + 1 + (y4 & ~1)] REF_OP;
if(topright_ref == PART_NOT_AVAILABLE
&& i >= scan8[0]+8 && (i&7)==4
&& h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
const uint32_t *mb_types = s->current_picture_ptr->f.mb_type;
const int16_t *mv;
AV_ZERO32(h->mv_cache[list][scan8[0]-2]);
*C = h->mv_cache[list][scan8[0]-2];
if(!MB_FIELD
&& IS_INTERLACED(h->left_type[0])){
SET_DIAG_MV(*2, >>1, h->left_mb_xy[0]+s->mb_stride, (s->mb_y&1)*2+(i>>5));
}
if(MB_FIELD
&& !IS_INTERLACED(h->left_type[0])){
// left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
SET_DIAG_MV(/2, <<1, h->left_mb_xy[i>=36], ((i>>2))&3);
}
}
#undef SET_DIAG_MV
}
if(topright_ref != PART_NOT_AVAILABLE){
*C= h->mv_cache[list][ i - 8 + part_width ];
return topright_ref;
}else{
tprintf(s->avctx, "topright MV not available\n");
*C= h->mv_cache[list][ i - 8 - 1 ];
return h->ref_cache[list][ i - 8 - 1 ];
}
}
/**
* gets the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
const int index8= scan8[n];
const int top_ref= h->ref_cache[list][ index8 - 8 ];
const int left_ref= h->ref_cache[list][ index8 - 1 ];
const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
const int16_t * C;
int diagonal_ref, match_count;
assert(part_width==1 || part_width==2 || part_width==4);
/* mv_cache
B . . A T T T T
U . . L . . , .
U . . L . . . .
U . . L . . , .
. . . L . . . .
*/
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
if(match_count > 1){ //most common
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}else if(match_count==1){
if(left_ref==ref){
*mx= A[0];
*my= A[1];
}else if(top_ref==ref){
*mx= B[0];
*my= B[1];
}else{
*mx= C[0];
*my= C[1];
}
}else{
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
*mx= A[0];
*my= A[1];
}else{
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}
}
tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
}
/**
* gets the directionally predicted 16x8 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
if(top_ref == ref){
*mx= B[0];
*my= B[1];
return;
}
}else{
const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}
//RARE
pred_motion(h, n, 4, list, ref, mx, my);
}
/**
* gets the directionally predicted 8x16 MV.
* @param n the block index
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static av_always_inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
if(n==0){
const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
if(left_ref == ref){
*mx= A[0];
*my= A[1];
return;
}
}else{
const int16_t * C;
int diagonal_ref;
diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
if(diagonal_ref == ref){
*mx= C[0];
*my= C[1];
return;
}
}
//RARE
pred_motion(h, n, 2, list, ref, mx, my);
}
#define FIX_MV_MBAFF(type, refn, mvn, idx)\
if(FRAME_MBAFF){\
if(MB_FIELD){\
if(!IS_INTERLACED(type)){\
refn <<= 1;\
AV_COPY32(mvbuf[idx], mvn);\
mvbuf[idx][1] /= 2;\
mvn = mvbuf[idx];\
}\
}else{\
if(IS_INTERLACED(type)){\
refn >>= 1;\
AV_COPY32(mvbuf[idx], mvn);\
mvbuf[idx][1] <<= 1;\
mvn = mvbuf[idx];\
}\
}\
}
static av_always_inline void pred_pskip_motion(H264Context * const h){
DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = {0};
DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
MpegEncContext * const s = &h->s;
int8_t *ref = s->current_picture.f.ref_index[0];
int16_t (*mv)[2] = s->current_picture.f.motion_val[0];
int top_ref, left_ref, diagonal_ref, match_count, mx, my;
const int16_t *A, *B, *C;
int b_stride = h->b_stride;
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
/* To avoid doing an entire fill_decode_caches, we inline the relevant parts here.
* FIXME: this is a partial duplicate of the logic in fill_decode_caches, but it's
* faster this way. Is there a way to avoid this duplication?
*/
if(USES_LIST(h->left_type[LTOP], 0)){
left_ref = ref[4*h->left_mb_xy[LTOP] + 1 + (h->left_block[0]&~1)];
A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride*h->left_block[0]];
FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0);
if(!(left_ref | AV_RN32A(A))){
goto zeromv;
}
}else if(h->left_type[LTOP]){
left_ref = LIST_NOT_USED;
A = zeromv;
}else{
goto zeromv;
}
if(USES_LIST(h->top_type, 0)){
top_ref = ref[4*h->top_mb_xy + 2];
B = mv[h->mb2b_xy[h->top_mb_xy] + 3*b_stride];
FIX_MV_MBAFF(h->top_type, top_ref, B, 1);
if(!(top_ref | AV_RN32A(B))){
goto zeromv;
}
}else if(h->top_type){
top_ref = LIST_NOT_USED;
B = zeromv;
}else{
goto zeromv;
}
tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
if(USES_LIST(h->topright_type, 0)){
diagonal_ref = ref[4*h->topright_mb_xy + 2];
C = mv[h->mb2b_xy[h->topright_mb_xy] + 3*b_stride];
FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2);
}else if(h->topright_type){
diagonal_ref = LIST_NOT_USED;
C = zeromv;
}else{
if(USES_LIST(h->topleft_type, 0)){
diagonal_ref = ref[4*h->topleft_mb_xy + 1 + (h->topleft_partition & 2)];
C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride + (h->topleft_partition & 2*b_stride)];
FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2);
}else if(h->topleft_type){
diagonal_ref = LIST_NOT_USED;
C = zeromv;
}else{
diagonal_ref = PART_NOT_AVAILABLE;
C = zeromv;
}
}
match_count= !diagonal_ref + !top_ref + !left_ref;
tprintf(h->s.avctx, "pred_pskip_motion match_count=%d\n", match_count);
if(match_count > 1){
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
}else if(match_count==1){
if(!left_ref){
mx = A[0];
my = A[1];
}else if(!top_ref){
mx = B[0];
my = B[1];
}else{
mx = C[0];
my = C[1];
}
}else{
mx = mid_pred(A[0], B[0], C[0]);
my = mid_pred(A[1], B[1], C[1]);
}
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
return;
zeromv:
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
return;
}
/**
* decodes a P_SKIP or B_SKIP macroblock
*/
static void av_unused decode_mb_skip(H264Context *h){
MpegEncContext * const s = &h->s;
const int mb_xy= h->mb_xy;
int mb_type=0;
memset(h->non_zero_count[mb_xy], 0, 48);
if(MB_FIELD)
mb_type|= MB_TYPE_INTERLACED;
if( h->slice_type_nos == AV_PICTURE_TYPE_B )
{
// just for fill_caches. pred_direct_motion will set the real mb_type
mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
if(h->direct_spatial_mv_pred){
fill_decode_neighbors(h, mb_type);
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
}
ff_h264_pred_direct_motion(h, &mb_type);
mb_type|= MB_TYPE_SKIP;
}
else
{
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
fill_decode_neighbors(h, mb_type);
pred_pskip_motion(h);
}
write_back_motion(h, mb_type);
s->current_picture.f.mb_type[mb_xy] = mb_type;
s->current_picture.f.qscale_table[mb_xy] = s->qscale;
h->slice_table[ mb_xy ]= h->slice_num;
h->prev_mb_skipped= 1;
}
#endif /* AVCODEC_H264_MVPRED_H */