78998bf217
Originally committed as revision 21815 to svn://svn.ffmpeg.org/ffmpeg/trunk
1481 lines
56 KiB
C
1481 lines
56 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file libavcodec/h264.h
|
|
* H.264 / AVC / MPEG4 part10 codec.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#ifndef AVCODEC_H264_H
|
|
#define AVCODEC_H264_H
|
|
|
|
#include "dsputil.h"
|
|
#include "cabac.h"
|
|
#include "mpegvideo.h"
|
|
#include "h264pred.h"
|
|
#include "rectangle.h"
|
|
|
|
#define interlaced_dct interlaced_dct_is_a_bad_name
|
|
#define mb_intra mb_intra_is_not_initialized_see_mb_type
|
|
|
|
#define LUMA_DC_BLOCK_INDEX 25
|
|
#define CHROMA_DC_BLOCK_INDEX 26
|
|
|
|
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
|
|
#define COEFF_TOKEN_VLC_BITS 8
|
|
#define TOTAL_ZEROS_VLC_BITS 9
|
|
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
|
|
#define RUN_VLC_BITS 3
|
|
#define RUN7_VLC_BITS 6
|
|
|
|
#define MAX_SPS_COUNT 32
|
|
#define MAX_PPS_COUNT 256
|
|
|
|
#define MAX_MMCO_COUNT 66
|
|
|
|
#define MAX_DELAYED_PIC_COUNT 16
|
|
|
|
/* Compiling in interlaced support reduces the speed
|
|
* of progressive decoding by about 2%. */
|
|
#define ALLOW_INTERLACE
|
|
|
|
#define ALLOW_NOCHROMA
|
|
|
|
/**
|
|
* The maximum number of slices supported by the decoder.
|
|
* must be a power of 2
|
|
*/
|
|
#define MAX_SLICES 16
|
|
|
|
#ifdef ALLOW_INTERLACE
|
|
#define MB_MBAFF h->mb_mbaff
|
|
#define MB_FIELD h->mb_field_decoding_flag
|
|
#define FRAME_MBAFF h->mb_aff_frame
|
|
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
|
|
#else
|
|
#define MB_MBAFF 0
|
|
#define MB_FIELD 0
|
|
#define FRAME_MBAFF 0
|
|
#define FIELD_PICTURE 0
|
|
#undef IS_INTERLACED
|
|
#define IS_INTERLACED(mb_type) 0
|
|
#endif
|
|
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
|
|
|
|
#ifdef ALLOW_NOCHROMA
|
|
#define CHROMA h->sps.chroma_format_idc
|
|
#else
|
|
#define CHROMA 1
|
|
#endif
|
|
|
|
#ifndef CABAC
|
|
#define CABAC h->pps.cabac
|
|
#endif
|
|
|
|
#define EXTENDED_SAR 255
|
|
|
|
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
|
|
#define MB_TYPE_8x8DCT 0x01000000
|
|
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
|
|
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
|
|
|
|
/**
|
|
* Value of Picture.reference when Picture is not a reference picture, but
|
|
* is held for delayed output.
|
|
*/
|
|
#define DELAYED_PIC_REF 4
|
|
|
|
|
|
/* NAL unit types */
|
|
enum {
|
|
NAL_SLICE=1,
|
|
NAL_DPA,
|
|
NAL_DPB,
|
|
NAL_DPC,
|
|
NAL_IDR_SLICE,
|
|
NAL_SEI,
|
|
NAL_SPS,
|
|
NAL_PPS,
|
|
NAL_AUD,
|
|
NAL_END_SEQUENCE,
|
|
NAL_END_STREAM,
|
|
NAL_FILLER_DATA,
|
|
NAL_SPS_EXT,
|
|
NAL_AUXILIARY_SLICE=19
|
|
};
|
|
|
|
/**
|
|
* SEI message types
|
|
*/
|
|
typedef enum {
|
|
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
|
|
SEI_TYPE_PIC_TIMING = 1, ///< picture timing
|
|
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
|
|
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
|
|
} SEI_Type;
|
|
|
|
/**
|
|
* pic_struct in picture timing SEI message
|
|
*/
|
|
typedef enum {
|
|
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
|
|
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
|
|
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
|
|
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
|
|
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
|
|
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
|
|
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
|
|
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
|
|
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
|
|
} SEI_PicStructType;
|
|
|
|
/**
|
|
* Sequence parameter set
|
|
*/
|
|
typedef struct SPS{
|
|
|
|
int profile_idc;
|
|
int level_idc;
|
|
int chroma_format_idc;
|
|
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
|
|
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
|
|
int poc_type; ///< pic_order_cnt_type
|
|
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
|
|
int delta_pic_order_always_zero_flag;
|
|
int offset_for_non_ref_pic;
|
|
int offset_for_top_to_bottom_field;
|
|
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
|
|
int ref_frame_count; ///< num_ref_frames
|
|
int gaps_in_frame_num_allowed_flag;
|
|
int mb_width; ///< pic_width_in_mbs_minus1 + 1
|
|
int mb_height; ///< pic_height_in_map_units_minus1 + 1
|
|
int frame_mbs_only_flag;
|
|
int mb_aff; ///<mb_adaptive_frame_field_flag
|
|
int direct_8x8_inference_flag;
|
|
int crop; ///< frame_cropping_flag
|
|
unsigned int crop_left; ///< frame_cropping_rect_left_offset
|
|
unsigned int crop_right; ///< frame_cropping_rect_right_offset
|
|
unsigned int crop_top; ///< frame_cropping_rect_top_offset
|
|
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
|
|
int vui_parameters_present_flag;
|
|
AVRational sar;
|
|
int video_signal_type_present_flag;
|
|
int full_range;
|
|
int colour_description_present_flag;
|
|
enum AVColorPrimaries color_primaries;
|
|
enum AVColorTransferCharacteristic color_trc;
|
|
enum AVColorSpace colorspace;
|
|
int timing_info_present_flag;
|
|
uint32_t num_units_in_tick;
|
|
uint32_t time_scale;
|
|
int fixed_frame_rate_flag;
|
|
short offset_for_ref_frame[256]; //FIXME dyn aloc?
|
|
int bitstream_restriction_flag;
|
|
int num_reorder_frames;
|
|
int scaling_matrix_present;
|
|
uint8_t scaling_matrix4[6][16];
|
|
uint8_t scaling_matrix8[2][64];
|
|
int nal_hrd_parameters_present_flag;
|
|
int vcl_hrd_parameters_present_flag;
|
|
int pic_struct_present_flag;
|
|
int time_offset_length;
|
|
int cpb_cnt; ///< See H.264 E.1.2
|
|
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
|
|
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
|
|
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
|
|
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
|
|
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
|
|
int residual_color_transform_flag; ///< residual_colour_transform_flag
|
|
}SPS;
|
|
|
|
/**
|
|
* Picture parameter set
|
|
*/
|
|
typedef struct PPS{
|
|
unsigned int sps_id;
|
|
int cabac; ///< entropy_coding_mode_flag
|
|
int pic_order_present; ///< pic_order_present_flag
|
|
int slice_group_count; ///< num_slice_groups_minus1 + 1
|
|
int mb_slice_group_map_type;
|
|
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
|
|
int weighted_pred; ///< weighted_pred_flag
|
|
int weighted_bipred_idc;
|
|
int init_qp; ///< pic_init_qp_minus26 + 26
|
|
int init_qs; ///< pic_init_qs_minus26 + 26
|
|
int chroma_qp_index_offset[2];
|
|
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
|
|
int constrained_intra_pred; ///< constrained_intra_pred_flag
|
|
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
|
|
int transform_8x8_mode; ///< transform_8x8_mode_flag
|
|
uint8_t scaling_matrix4[6][16];
|
|
uint8_t scaling_matrix8[2][64];
|
|
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
|
|
int chroma_qp_diff;
|
|
}PPS;
|
|
|
|
/**
|
|
* Memory management control operation opcode.
|
|
*/
|
|
typedef enum MMCOOpcode{
|
|
MMCO_END=0,
|
|
MMCO_SHORT2UNUSED,
|
|
MMCO_LONG2UNUSED,
|
|
MMCO_SHORT2LONG,
|
|
MMCO_SET_MAX_LONG,
|
|
MMCO_RESET,
|
|
MMCO_LONG,
|
|
} MMCOOpcode;
|
|
|
|
/**
|
|
* Memory management control operation.
|
|
*/
|
|
typedef struct MMCO{
|
|
MMCOOpcode opcode;
|
|
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
|
|
int long_arg; ///< index, pic_num, or num long refs depending on opcode
|
|
} MMCO;
|
|
|
|
/**
|
|
* H264Context
|
|
*/
|
|
typedef struct H264Context{
|
|
MpegEncContext s;
|
|
int nal_ref_idc;
|
|
int nal_unit_type;
|
|
uint8_t *rbsp_buffer[2];
|
|
unsigned int rbsp_buffer_size[2];
|
|
|
|
/**
|
|
* Used to parse AVC variant of h264
|
|
*/
|
|
int is_avc; ///< this flag is != 0 if codec is avc1
|
|
int got_avcC; ///< flag used to parse avcC data only once
|
|
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
|
|
|
|
int chroma_qp[2]; //QPc
|
|
|
|
int qp_thresh; ///< QP threshold to skip loopfilter
|
|
|
|
int prev_mb_skipped;
|
|
int next_mb_skipped;
|
|
|
|
//prediction stuff
|
|
int chroma_pred_mode;
|
|
int intra16x16_pred_mode;
|
|
|
|
int top_mb_xy;
|
|
int left_mb_xy[2];
|
|
|
|
int top_type;
|
|
int left_type[2];
|
|
|
|
int8_t intra4x4_pred_mode_cache[5*8];
|
|
int8_t (*intra4x4_pred_mode)[8];
|
|
H264PredContext hpc;
|
|
unsigned int topleft_samples_available;
|
|
unsigned int top_samples_available;
|
|
unsigned int topright_samples_available;
|
|
unsigned int left_samples_available;
|
|
uint8_t (*top_borders[2])[16+2*8];
|
|
uint8_t left_border[2*(17+2*9)];
|
|
|
|
/**
|
|
* non zero coeff count cache.
|
|
* is 64 if not available.
|
|
*/
|
|
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
|
|
|
|
/*
|
|
.UU.YYYY
|
|
.UU.YYYY
|
|
.vv.YYYY
|
|
.VV.YYYY
|
|
*/
|
|
uint8_t (*non_zero_count)[32];
|
|
|
|
/**
|
|
* Motion vector cache.
|
|
*/
|
|
DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
|
|
DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
|
|
#define LIST_NOT_USED -1 //FIXME rename?
|
|
#define PART_NOT_AVAILABLE -2
|
|
|
|
/**
|
|
* is 1 if the specific list MV&references are set to 0,0,-2.
|
|
*/
|
|
int mv_cache_clean[2];
|
|
|
|
/**
|
|
* number of neighbors (top and/or left) that used 8x8 dct
|
|
*/
|
|
int neighbor_transform_size;
|
|
|
|
/**
|
|
* block_offset[ 0..23] for frame macroblocks
|
|
* block_offset[24..47] for field macroblocks
|
|
*/
|
|
int block_offset[2*(16+8)];
|
|
|
|
uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
|
|
uint32_t *mb2b8_xy;
|
|
int b_stride; //FIXME use s->b4_stride
|
|
int b8_stride;
|
|
|
|
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
|
|
int mb_uvlinesize;
|
|
|
|
int emu_edge_width;
|
|
int emu_edge_height;
|
|
|
|
int halfpel_flag;
|
|
int thirdpel_flag;
|
|
|
|
int unknown_svq3_flag;
|
|
int next_slice_index;
|
|
|
|
SPS *sps_buffers[MAX_SPS_COUNT];
|
|
SPS sps; ///< current sps
|
|
|
|
PPS *pps_buffers[MAX_PPS_COUNT];
|
|
/**
|
|
* current pps
|
|
*/
|
|
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
|
|
|
|
uint32_t dequant4_buffer[6][52][16];
|
|
uint32_t dequant8_buffer[2][52][64];
|
|
uint32_t (*dequant4_coeff[6])[16];
|
|
uint32_t (*dequant8_coeff[2])[64];
|
|
int dequant_coeff_pps; ///< reinit tables when pps changes
|
|
|
|
int slice_num;
|
|
uint16_t *slice_table_base;
|
|
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
|
|
int slice_type;
|
|
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
|
|
int slice_type_fixed;
|
|
|
|
//interlacing specific flags
|
|
int mb_aff_frame;
|
|
int mb_field_decoding_flag;
|
|
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
|
|
|
|
DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
|
|
|
|
//POC stuff
|
|
int poc_lsb;
|
|
int poc_msb;
|
|
int delta_poc_bottom;
|
|
int delta_poc[2];
|
|
int frame_num;
|
|
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
|
|
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
|
|
int frame_num_offset; ///< for POC type 2
|
|
int prev_frame_num_offset; ///< for POC type 2
|
|
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
|
|
|
|
/**
|
|
* frame_num for frames or 2*frame_num+1 for field pics.
|
|
*/
|
|
int curr_pic_num;
|
|
|
|
/**
|
|
* max_frame_num or 2*max_frame_num for field pics.
|
|
*/
|
|
int max_pic_num;
|
|
|
|
//Weighted pred stuff
|
|
int use_weight;
|
|
int use_weight_chroma;
|
|
int luma_log2_weight_denom;
|
|
int chroma_log2_weight_denom;
|
|
int luma_weight[2][48];
|
|
int luma_offset[2][48];
|
|
int chroma_weight[2][48][2];
|
|
int chroma_offset[2][48][2];
|
|
int implicit_weight[48][48];
|
|
|
|
//deblock
|
|
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
|
|
int slice_alpha_c0_offset;
|
|
int slice_beta_offset;
|
|
|
|
int redundant_pic_count;
|
|
|
|
int direct_spatial_mv_pred;
|
|
int col_parity;
|
|
int col_fieldoff;
|
|
int dist_scale_factor[16];
|
|
int dist_scale_factor_field[2][32];
|
|
int map_col_to_list0[2][16+32];
|
|
int map_col_to_list0_field[2][2][16+32];
|
|
|
|
/**
|
|
* num_ref_idx_l0/1_active_minus1 + 1
|
|
*/
|
|
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
|
|
unsigned int list_count;
|
|
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
|
|
Picture *short_ref[32];
|
|
Picture *long_ref[32];
|
|
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
|
|
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
|
|
Reordered version of default_ref_list
|
|
according to picture reordering in slice header */
|
|
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
|
|
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
|
|
int outputed_poc;
|
|
|
|
/**
|
|
* memory management control operations buffer.
|
|
*/
|
|
MMCO mmco[MAX_MMCO_COUNT];
|
|
int mmco_index;
|
|
|
|
int long_ref_count; ///< number of actual long term references
|
|
int short_ref_count; ///< number of actual short term references
|
|
|
|
//data partitioning
|
|
GetBitContext intra_gb;
|
|
GetBitContext inter_gb;
|
|
GetBitContext *intra_gb_ptr;
|
|
GetBitContext *inter_gb_ptr;
|
|
|
|
DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
|
|
DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
|
|
|
|
/**
|
|
* Cabac
|
|
*/
|
|
CABACContext cabac;
|
|
uint8_t cabac_state[460];
|
|
int cabac_init_idc;
|
|
|
|
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
|
|
uint16_t *cbp_table;
|
|
int cbp;
|
|
int top_cbp;
|
|
int left_cbp;
|
|
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
|
|
uint8_t *chroma_pred_mode_table;
|
|
int last_qscale_diff;
|
|
int16_t (*mvd_table[2])[2];
|
|
DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
|
|
uint8_t *direct_table;
|
|
uint8_t direct_cache[5*8];
|
|
|
|
uint8_t zigzag_scan[16];
|
|
uint8_t zigzag_scan8x8[64];
|
|
uint8_t zigzag_scan8x8_cavlc[64];
|
|
uint8_t field_scan[16];
|
|
uint8_t field_scan8x8[64];
|
|
uint8_t field_scan8x8_cavlc[64];
|
|
const uint8_t *zigzag_scan_q0;
|
|
const uint8_t *zigzag_scan8x8_q0;
|
|
const uint8_t *zigzag_scan8x8_cavlc_q0;
|
|
const uint8_t *field_scan_q0;
|
|
const uint8_t *field_scan8x8_q0;
|
|
const uint8_t *field_scan8x8_cavlc_q0;
|
|
|
|
int x264_build;
|
|
|
|
/**
|
|
* @defgroup multithreading Members for slice based multithreading
|
|
* @{
|
|
*/
|
|
struct H264Context *thread_context[MAX_THREADS];
|
|
|
|
/**
|
|
* current slice number, used to initalize slice_num of each thread/context
|
|
*/
|
|
int current_slice;
|
|
|
|
/**
|
|
* Max number of threads / contexts.
|
|
* This is equal to AVCodecContext.thread_count unless
|
|
* multithreaded decoding is impossible, in which case it is
|
|
* reduced to 1.
|
|
*/
|
|
int max_contexts;
|
|
|
|
/**
|
|
* 1 if the single thread fallback warning has already been
|
|
* displayed, 0 otherwise.
|
|
*/
|
|
int single_decode_warning;
|
|
|
|
int last_slice_type;
|
|
/** @} */
|
|
|
|
int mb_xy;
|
|
|
|
uint32_t svq3_watermark_key;
|
|
|
|
/**
|
|
* pic_struct in picture timing SEI message
|
|
*/
|
|
SEI_PicStructType sei_pic_struct;
|
|
|
|
/**
|
|
* Complement sei_pic_struct
|
|
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
|
|
* However, soft telecined frames may have these values.
|
|
* This is used in an attempt to flag soft telecine progressive.
|
|
*/
|
|
int prev_interlaced_frame;
|
|
|
|
/**
|
|
* Bit set of clock types for fields/frames in picture timing SEI message.
|
|
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
|
|
* interlaced).
|
|
*/
|
|
int sei_ct_type;
|
|
|
|
/**
|
|
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
|
|
*/
|
|
int sei_dpb_output_delay;
|
|
|
|
/**
|
|
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
|
|
*/
|
|
int sei_cpb_removal_delay;
|
|
|
|
/**
|
|
* recovery_frame_cnt from SEI message
|
|
*
|
|
* Set to -1 if no recovery point SEI message found or to number of frames
|
|
* before playback synchronizes. Frames having recovery point are key
|
|
* frames.
|
|
*/
|
|
int sei_recovery_frame_cnt;
|
|
|
|
int is_complex;
|
|
|
|
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
|
|
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
|
|
|
|
// Timestamp stuff
|
|
int sei_buffering_period_present; ///< Buffering period SEI flag
|
|
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
|
|
}H264Context;
|
|
|
|
|
|
extern const uint8_t ff_h264_chroma_qp[52];
|
|
|
|
void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
|
|
|
|
void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
|
|
|
|
/**
|
|
* Decode SEI
|
|
*/
|
|
int ff_h264_decode_sei(H264Context *h);
|
|
|
|
/**
|
|
* Decode SPS
|
|
*/
|
|
int ff_h264_decode_seq_parameter_set(H264Context *h);
|
|
|
|
/**
|
|
* Decode PPS
|
|
*/
|
|
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
|
|
|
|
/**
|
|
* Decodes a network abstraction layer unit.
|
|
* @param consumed is the number of bytes used as input
|
|
* @param length is the length of the array
|
|
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
|
|
* @returns decoded bytes, might be src+1 if no escapes
|
|
*/
|
|
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
|
|
|
|
/**
|
|
* identifies the exact end of the bitstream
|
|
* @return the length of the trailing, or 0 if damaged
|
|
*/
|
|
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
|
|
|
|
/**
|
|
* frees any data that may have been allocated in the H264 context like SPS, PPS etc.
|
|
*/
|
|
av_cold void ff_h264_free_context(H264Context *h);
|
|
|
|
/**
|
|
* reconstructs bitstream slice_type.
|
|
*/
|
|
int ff_h264_get_slice_type(const H264Context *h);
|
|
|
|
/**
|
|
* allocates tables.
|
|
* needs width/height
|
|
*/
|
|
int ff_h264_alloc_tables(H264Context *h);
|
|
|
|
/**
|
|
* fills the default_ref_list.
|
|
*/
|
|
int ff_h264_fill_default_ref_list(H264Context *h);
|
|
|
|
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
|
|
void ff_h264_fill_mbaff_ref_list(H264Context *h);
|
|
void ff_h264_remove_all_refs(H264Context *h);
|
|
|
|
/**
|
|
* Executes the reference picture marking (memory management control operations).
|
|
*/
|
|
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
|
|
|
|
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
|
|
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
|
|
|
|
/**
|
|
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
|
|
*/
|
|
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
|
|
|
|
void ff_h264_write_back_intra_pred_mode(H264Context *h);
|
|
void ff_h264_hl_decode_mb(H264Context *h);
|
|
int ff_h264_frame_start(H264Context *h);
|
|
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
|
|
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
|
|
av_cold void ff_h264_decode_init_vlc(void);
|
|
|
|
/**
|
|
* decodes a macroblock
|
|
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
|
*/
|
|
int ff_h264_decode_mb_cavlc(H264Context *h);
|
|
|
|
/**
|
|
* decodes a CABAC coded macroblock
|
|
* @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
|
*/
|
|
int ff_h264_decode_mb_cabac(H264Context *h);
|
|
|
|
void ff_h264_init_cabac_states(H264Context *h);
|
|
|
|
void ff_h264_direct_dist_scale_factor(H264Context * const h);
|
|
void ff_h264_direct_ref_list_init(H264Context * const h);
|
|
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
|
|
|
|
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
|
|
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
|
|
|
|
/**
|
|
* Reset SEI values at the beginning of the frame.
|
|
*
|
|
* @param h H.264 context.
|
|
*/
|
|
void ff_h264_reset_sei(H264Context *h);
|
|
|
|
|
|
/*
|
|
o-o o-o
|
|
/ / /
|
|
o-o o-o
|
|
,---'
|
|
o-o o-o
|
|
/ / /
|
|
o-o o-o
|
|
*/
|
|
//This table must be here because scan8[constant] must be known at compiletime
|
|
static const uint8_t scan8[16 + 2*4]={
|
|
4+1*8, 5+1*8, 4+2*8, 5+2*8,
|
|
6+1*8, 7+1*8, 6+2*8, 7+2*8,
|
|
4+3*8, 5+3*8, 4+4*8, 5+4*8,
|
|
6+3*8, 7+3*8, 6+4*8, 7+4*8,
|
|
1+1*8, 2+1*8,
|
|
1+2*8, 2+2*8,
|
|
1+4*8, 2+4*8,
|
|
1+5*8, 2+5*8,
|
|
};
|
|
|
|
static av_always_inline uint32_t pack16to32(int a, int b){
|
|
#if HAVE_BIGENDIAN
|
|
return (b&0xFFFF) + (a<<16);
|
|
#else
|
|
return (a&0xFFFF) + (b<<16);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* gets the chroma qp.
|
|
*/
|
|
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
|
|
return h->pps.chroma_qp_table[t][qscale];
|
|
}
|
|
|
|
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
|
|
|
|
static void fill_decode_caches(H264Context *h, int mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int topleft_xy, top_xy, topright_xy, left_xy[2];
|
|
int topleft_type, top_type, topright_type, left_type[2];
|
|
const uint8_t * left_block;
|
|
int topleft_partition= -1;
|
|
int i;
|
|
static const uint8_t left_block_options[4][16]={
|
|
{0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
|
|
{2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
|
|
{0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
|
|
{0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
|
|
};
|
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
|
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
|
* stuff, I can't imagine that these complex rules are worth it. */
|
|
|
|
topleft_xy = top_xy - 1;
|
|
topright_xy= top_xy + 1;
|
|
left_xy[1] = left_xy[0] = mb_xy-1;
|
|
left_block = left_block_options[0];
|
|
if(FRAME_MBAFF){
|
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
|
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
|
|
if(s->mb_y&1){
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
|
|
if (curr_mb_field_flag) {
|
|
left_xy[1] += s->mb_stride;
|
|
left_block = left_block_options[3];
|
|
} else {
|
|
topleft_xy += s->mb_stride;
|
|
// take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
|
|
topleft_partition = 0;
|
|
left_block = left_block_options[1];
|
|
}
|
|
}
|
|
}else{
|
|
if(curr_mb_field_flag){
|
|
topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
|
|
topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
|
|
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
|
|
}
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[1] = left_xy[0] = mb_xy - 1;
|
|
if (curr_mb_field_flag) {
|
|
left_xy[1] += s->mb_stride;
|
|
left_block = left_block_options[3];
|
|
} else {
|
|
left_block = left_block_options[2];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
h->top_mb_xy = top_xy;
|
|
h->left_mb_xy[0] = left_xy[0];
|
|
h->left_mb_xy[1] = left_xy[1];
|
|
topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
|
|
top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
|
topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
|
|
left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
|
|
left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
|
|
|
|
if(!IS_SKIP(mb_type)){
|
|
if(IS_INTRA(mb_type)){
|
|
int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
|
|
h->topleft_samples_available=
|
|
h->top_samples_available=
|
|
h->left_samples_available= 0xFFFF;
|
|
h->topright_samples_available= 0xEEEA;
|
|
|
|
if(!(top_type & type_mask)){
|
|
h->topleft_samples_available= 0xB3FF;
|
|
h->top_samples_available= 0x33FF;
|
|
h->topright_samples_available= 0x26EA;
|
|
}
|
|
if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
|
|
if(IS_INTERLACED(mb_type)){
|
|
if(!(left_type[0] & type_mask)){
|
|
h->topleft_samples_available&= 0xDFFF;
|
|
h->left_samples_available&= 0x5FFF;
|
|
}
|
|
if(!(left_type[1] & type_mask)){
|
|
h->topleft_samples_available&= 0xFF5F;
|
|
h->left_samples_available&= 0xFF5F;
|
|
}
|
|
}else{
|
|
int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
|
|
? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
|
|
assert(left_xy[0] == left_xy[1]);
|
|
if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
|
|
h->topleft_samples_available&= 0xDF5F;
|
|
h->left_samples_available&= 0x5F5F;
|
|
}
|
|
}
|
|
}else{
|
|
if(!(left_type[0] & type_mask)){
|
|
h->topleft_samples_available&= 0xDF5F;
|
|
h->left_samples_available&= 0x5F5F;
|
|
}
|
|
}
|
|
|
|
if(!(topleft_type & type_mask))
|
|
h->topleft_samples_available&= 0x7FFF;
|
|
|
|
if(!(topright_type & type_mask))
|
|
h->topright_samples_available&= 0xFBFF;
|
|
|
|
if(IS_INTRA4x4(mb_type)){
|
|
if(IS_INTRA4x4(top_type)){
|
|
h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
|
|
h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
|
|
h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
|
|
h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
|
|
}else{
|
|
int pred;
|
|
if(!(top_type & type_mask))
|
|
pred= -1;
|
|
else{
|
|
pred= 2;
|
|
}
|
|
h->intra4x4_pred_mode_cache[4+8*0]=
|
|
h->intra4x4_pred_mode_cache[5+8*0]=
|
|
h->intra4x4_pred_mode_cache[6+8*0]=
|
|
h->intra4x4_pred_mode_cache[7+8*0]= pred;
|
|
}
|
|
for(i=0; i<2; i++){
|
|
if(IS_INTRA4x4(left_type[i])){
|
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
|
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
|
|
}else{
|
|
int pred;
|
|
if(!(left_type[i] & type_mask))
|
|
pred= -1;
|
|
else{
|
|
pred= 2;
|
|
}
|
|
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
|
|
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
0 . T T. T T T T
|
|
1 L . .L . . . .
|
|
2 L . .L . . . .
|
|
3 . T TL . . . .
|
|
4 L . .L . . . .
|
|
5 L . .. . . . .
|
|
*/
|
|
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
|
|
if(top_type){
|
|
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
|
|
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
|
|
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
|
|
|
|
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
|
|
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
|
|
}else {
|
|
h->non_zero_count_cache[1+8*0]=
|
|
h->non_zero_count_cache[2+8*0]=
|
|
|
|
h->non_zero_count_cache[1+8*3]=
|
|
h->non_zero_count_cache[2+8*3]=
|
|
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
|
|
}
|
|
|
|
for (i=0; i<2; i++) {
|
|
if(left_type[i]){
|
|
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
|
|
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
|
|
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
|
|
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
|
|
}else{
|
|
h->non_zero_count_cache[3+8*1 + 2*8*i]=
|
|
h->non_zero_count_cache[3+8*2 + 2*8*i]=
|
|
h->non_zero_count_cache[0+8*1 + 8*i]=
|
|
h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
|
|
}
|
|
}
|
|
|
|
if( CABAC ) {
|
|
// top_cbp
|
|
if(top_type) {
|
|
h->top_cbp = h->cbp_table[top_xy];
|
|
} else if(IS_INTRA(mb_type)) {
|
|
h->top_cbp = 0x1C0;
|
|
} else {
|
|
h->top_cbp = 0;
|
|
}
|
|
// left_cbp
|
|
if (left_type[0]) {
|
|
h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
|
|
} else if(IS_INTRA(mb_type)) {
|
|
h->left_cbp = 0x1C0;
|
|
} else {
|
|
h->left_cbp = 0;
|
|
}
|
|
if (left_type[0]) {
|
|
h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
|
|
}
|
|
if (left_type[1]) {
|
|
h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 1
|
|
if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(!USES_LIST(mb_type, list)){
|
|
/*if(!h->mv_cache_clean[list]){
|
|
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
|
|
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
|
|
h->mv_cache_clean[list]= 1;
|
|
}*/
|
|
continue;
|
|
}
|
|
assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
|
|
|
|
h->mv_cache_clean[list]= 0;
|
|
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
|
|
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
|
|
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
|
|
h->ref_cache[list][scan8[0] + 0 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
|
|
h->ref_cache[list][scan8[0] + 2 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
|
|
}else{
|
|
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
|
|
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
|
|
}
|
|
|
|
for(i=0; i<2; i++){
|
|
int cache_idx = scan8[0] - 1 + i*2*8;
|
|
if(USES_LIST(left_type[i], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
|
|
const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
|
|
*(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
|
|
*(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
|
|
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
|
|
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][cache_idx ]=
|
|
*(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
|
|
h->ref_cache[list][cache_idx ]=
|
|
h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
}
|
|
|
|
if(USES_LIST(topleft_type, list)){
|
|
const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
|
|
const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
|
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
|
|
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
|
|
if(USES_LIST(topright_type, list)){
|
|
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
|
|
const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
|
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
|
|
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
|
}
|
|
|
|
if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
|
|
continue;
|
|
|
|
if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
|
|
h->ref_cache[list][scan8[5 ]+1] =
|
|
h->ref_cache[list][scan8[7 ]+1] =
|
|
h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
|
|
h->ref_cache[list][scan8[4 ]] =
|
|
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
|
|
*(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
|
|
*(uint32_t*)h->mv_cache [list][scan8[4 ]]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
|
|
|
|
if( CABAC ) {
|
|
/* XXX beurk, Load mvd */
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
|
|
AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
|
|
}else{
|
|
AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
|
|
}
|
|
if(USES_LIST(left_type[0], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
|
|
}else{
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
|
|
}
|
|
if(USES_LIST(left_type[1], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
|
|
*(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
|
|
}else{
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
|
|
}
|
|
*(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
|
|
*(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
|
|
*(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
|
|
|
|
if(h->slice_type_nos == FF_B_TYPE){
|
|
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
|
|
|
|
if(IS_DIRECT(top_type)){
|
|
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
|
|
}else if(IS_8X8(top_type)){
|
|
int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
|
|
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
|
|
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
|
|
}else{
|
|
*(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
|
|
}
|
|
|
|
if(IS_DIRECT(left_type[0]))
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= 1;
|
|
else if(IS_8X8(left_type[0]))
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
|
|
else
|
|
h->direct_cache[scan8[0] - 1 + 0*8]= 0;
|
|
|
|
if(IS_DIRECT(left_type[1]))
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= 1;
|
|
else if(IS_8X8(left_type[1]))
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
|
|
else
|
|
h->direct_cache[scan8[0] - 1 + 2*8]= 0;
|
|
}
|
|
}
|
|
}
|
|
if(FRAME_MBAFF){
|
|
#define MAP_MVS\
|
|
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
|
|
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
|
|
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
|
|
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
|
|
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
|
|
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
|
|
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
|
|
if(MB_FIELD){
|
|
#define MAP_F2F(idx, mb_type)\
|
|
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
|
|
h->ref_cache[list][idx] <<= 1;\
|
|
h->mv_cache[list][idx][1] /= 2;\
|
|
h->mvd_cache[list][idx][1] /= 2;\
|
|
}
|
|
MAP_MVS
|
|
#undef MAP_F2F
|
|
}else{
|
|
#define MAP_F2F(idx, mb_type)\
|
|
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
|
|
h->ref_cache[list][idx] >>= 1;\
|
|
h->mv_cache[list][idx][1] <<= 1;\
|
|
h->mvd_cache[list][idx][1] <<= 1;\
|
|
}
|
|
MAP_MVS
|
|
#undef MAP_F2F
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @returns non zero if the loop filter can be skiped
|
|
*/
|
|
static int fill_filter_caches(H264Context *h, int mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int top_xy, left_xy[2];
|
|
int top_type, left_type[2];
|
|
|
|
top_xy = mb_xy - (s->mb_stride << MB_FIELD);
|
|
|
|
//FIXME deblocking could skip the intra and nnz parts.
|
|
|
|
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
|
* stuff, I can't imagine that these complex rules are worth it. */
|
|
|
|
left_xy[1] = left_xy[0] = mb_xy-1;
|
|
if(FRAME_MBAFF){
|
|
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
|
|
const int curr_mb_field_flag = IS_INTERLACED(mb_type);
|
|
if(s->mb_y&1){
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[0] -= s->mb_stride;
|
|
}
|
|
}else{
|
|
if(curr_mb_field_flag){
|
|
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
|
|
}
|
|
if (left_mb_field_flag != curr_mb_field_flag) {
|
|
left_xy[1] += s->mb_stride;
|
|
}
|
|
}
|
|
}
|
|
|
|
h->top_mb_xy = top_xy;
|
|
h->left_mb_xy[0] = left_xy[0];
|
|
h->left_mb_xy[1] = left_xy[1];
|
|
{
|
|
//for sufficiently low qp, filtering wouldn't do anything
|
|
//this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
|
|
int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
|
|
int qp = s->current_picture.qscale_table[mb_xy];
|
|
if(qp <= qp_thresh
|
|
&& (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
|
|
&& (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
|
|
if(!FRAME_MBAFF)
|
|
return 1;
|
|
if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
|
|
&& (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if(h->deblocking_filter == 2){
|
|
h->top_type = top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
|
|
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
|
|
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
|
|
}else{
|
|
h->top_type = top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
|
|
h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
|
|
h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
|
|
}
|
|
if(IS_INTRA(mb_type))
|
|
return 0;
|
|
|
|
AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
|
|
AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
|
|
*((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
|
|
*((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
|
|
AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
|
|
|
|
h->cbp= h->cbp_table[mb_xy];
|
|
|
|
{
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
int8_t *ref;
|
|
int y, b_stride;
|
|
int16_t (*mv_dst)[2];
|
|
int16_t (*mv_src)[2];
|
|
|
|
if(!USES_LIST(mb_type, list)){
|
|
fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101U;
|
|
continue;
|
|
}
|
|
|
|
ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
|
|
{
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ] + (MB_MBAFF ? 20 : 2);
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
|
|
ref += h->b8_stride;
|
|
*(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
|
|
*(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
|
|
}
|
|
|
|
b_stride = h->b_stride;
|
|
mv_dst = &h->mv_cache[list][scan8[0]];
|
|
mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
|
|
for(y=0; y<4; y++){
|
|
AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
0 . T T. T T T T
|
|
1 L . .L . . . .
|
|
2 L . .L . . . .
|
|
3 . T TL . . . .
|
|
4 L . .L . . . .
|
|
5 L . .. . . . .
|
|
*/
|
|
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
|
|
if(top_type){
|
|
*(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
|
|
}
|
|
|
|
if(left_type[0]){
|
|
h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
|
|
h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
|
|
h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
|
|
h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
|
|
}
|
|
|
|
// CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
|
|
if(!CABAC && h->pps.transform_8x8_mode){
|
|
if(IS_8x8DCT(top_type)){
|
|
h->non_zero_count_cache[4+8*0]=
|
|
h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
|
|
h->non_zero_count_cache[6+8*0]=
|
|
h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
|
|
}
|
|
if(IS_8x8DCT(left_type[0])){
|
|
h->non_zero_count_cache[3+8*1]=
|
|
h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
|
|
}
|
|
if(IS_8x8DCT(left_type[1])){
|
|
h->non_zero_count_cache[3+8*3]=
|
|
h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
|
|
}
|
|
|
|
if(IS_8x8DCT(mb_type)){
|
|
h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
|
|
h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
|
|
|
|
h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
|
|
h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
|
|
|
|
h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
|
|
h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
|
|
|
|
h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
|
|
h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
|
|
}
|
|
}
|
|
|
|
if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
|
|
int list;
|
|
for(list=0; list<h->list_count; list++){
|
|
if(USES_LIST(top_type, list)){
|
|
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
|
|
const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ] + (MB_MBAFF ? 20 : 2);
|
|
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
|
|
h->ref_cache[list][scan8[0] + 0 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
|
|
h->ref_cache[list][scan8[0] + 2 - 1*8]=
|
|
h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
|
|
}else{
|
|
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
|
|
*(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101U;
|
|
}
|
|
|
|
if(!IS_INTERLACED(mb_type^left_type[0])){
|
|
if(USES_LIST(left_type[0], list)){
|
|
const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
|
|
const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
|
|
int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ] + (MB_MBAFF ? 20 : 2);
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
|
|
*(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
|
|
h->ref_cache[list][scan8[0] - 1 + 0 ]=
|
|
h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
|
|
h->ref_cache[list][scan8[0] - 1 +16 ]=
|
|
h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
|
|
}else{
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
|
|
*(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
|
|
h->ref_cache[list][scan8[0] - 1 + 0 ]=
|
|
h->ref_cache[list][scan8[0] - 1 + 8 ]=
|
|
h->ref_cache[list][scan8[0] - 1 + 16 ]=
|
|
h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gets the predicted intra4x4 prediction mode.
|
|
*/
|
|
static inline int pred_intra_mode(H264Context *h, int n){
|
|
const int index8= scan8[n];
|
|
const int left= h->intra4x4_pred_mode_cache[index8 - 1];
|
|
const int top = h->intra4x4_pred_mode_cache[index8 - 8];
|
|
const int min= FFMIN(left, top);
|
|
|
|
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
|
|
|
|
if(min<0) return DC_PRED;
|
|
else return min;
|
|
}
|
|
|
|
static inline void write_back_non_zero_count(H264Context *h){
|
|
const int mb_xy= h->mb_xy;
|
|
|
|
AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
|
|
AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
|
|
*((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
|
|
*((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
|
|
AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
|
|
}
|
|
|
|
static inline void write_back_motion(H264Context *h, int mb_type){
|
|
MpegEncContext * const s = &h->s;
|
|
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
|
|
const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
|
|
int list;
|
|
|
|
if(!USES_LIST(mb_type, 0))
|
|
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
|
|
|
|
for(list=0; list<h->list_count; list++){
|
|
int y, b_stride;
|
|
int16_t (*mv_dst)[2];
|
|
int16_t (*mv_src)[2];
|
|
|
|
if(!USES_LIST(mb_type, list))
|
|
continue;
|
|
|
|
b_stride = h->b_stride;
|
|
mv_dst = &s->current_picture.motion_val[list][b_xy];
|
|
mv_src = &h->mv_cache[list][scan8[0]];
|
|
for(y=0; y<4; y++){
|
|
AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
|
|
}
|
|
if( CABAC ) {
|
|
int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
|
|
int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
|
|
if(IS_SKIP(mb_type))
|
|
fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
|
|
else
|
|
for(y=0; y<4; y++){
|
|
AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
|
|
}
|
|
}
|
|
|
|
{
|
|
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
|
|
ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
|
|
ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
|
|
ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
|
|
ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
|
|
}
|
|
}
|
|
|
|
if(h->slice_type_nos == FF_B_TYPE && CABAC){
|
|
if(IS_8X8(mb_type)){
|
|
uint8_t *direct_table = &h->direct_table[b8_xy];
|
|
direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
|
|
direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
|
|
direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline int get_dct8x8_allowed(H264Context *h){
|
|
if(h->sps.direct_8x8_inference_flag)
|
|
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
|
|
else
|
|
return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
|
|
}
|
|
|
|
static void predict_field_decoding_flag(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
|
|
? s->current_picture.mb_type[mb_xy-1]
|
|
: (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
|
|
? s->current_picture.mb_type[mb_xy-s->mb_stride]
|
|
: 0;
|
|
h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
|
|
}
|
|
|
|
/**
|
|
* decodes a P_SKIP or B_SKIP macroblock
|
|
*/
|
|
static void decode_mb_skip(H264Context *h){
|
|
MpegEncContext * const s = &h->s;
|
|
const int mb_xy= h->mb_xy;
|
|
int mb_type=0;
|
|
|
|
memset(h->non_zero_count[mb_xy], 0, 32);
|
|
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
|
|
|
|
if(MB_FIELD)
|
|
mb_type|= MB_TYPE_INTERLACED;
|
|
|
|
if( h->slice_type_nos == FF_B_TYPE )
|
|
{
|
|
// just for fill_caches. pred_direct_motion will set the real mb_type
|
|
mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
|
|
|
|
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
|
ff_h264_pred_direct_motion(h, &mb_type);
|
|
mb_type|= MB_TYPE_SKIP;
|
|
}
|
|
else
|
|
{
|
|
int mx, my;
|
|
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
|
|
|
|
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
|
pred_pskip_motion(h, &mx, &my);
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
|
|
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
|
|
}
|
|
|
|
write_back_motion(h, mb_type);
|
|
s->current_picture.mb_type[mb_xy]= mb_type;
|
|
s->current_picture.qscale_table[mb_xy]= s->qscale;
|
|
h->slice_table[ mb_xy ]= h->slice_num;
|
|
h->prev_mb_skipped= 1;
|
|
}
|
|
|
|
#include "h264_mvpred.h" //For pred_pskip_motion()
|
|
|
|
#endif /* AVCODEC_H264_H */
|