ffmpeg/libavcodec/alpha/dsputil_alpha.c
Falk Hüffner f9bb4bdffc Add Alpha assembly for pix_abs16x16. Optimized for pca56, no large win
on ev6.

Originally committed as revision 979 to svn://svn.ffmpeg.org/ffmpeg/trunk
2002-09-29 15:14:28 +00:00

344 lines
13 KiB
C

/*
* Alpha optimized DSP utils
* Copyright (c) 2002 Falk Hueffner <falk@debian.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "asm.h"
#include "../dsputil.h"
void simple_idct_axp(DCTELEM *block);
void put_pixels_axp_asm(uint8_t *block, const uint8_t *pixels,
int line_size, int h);
void put_pixels_clamped_mvi_asm(const DCTELEM *block, uint8_t *pixels,
int line_size);
void add_pixels_clamped_mvi_asm(const DCTELEM *block, uint8_t *pixels,
int line_size);
void get_pixels_mvi(DCTELEM *restrict block,
const uint8_t *restrict pixels, int line_size);
void diff_pixels_mvi(DCTELEM *block, const uint8_t *s1, const uint8_t *s2,
int stride);
int pix_abs8x8_mvi(uint8_t *pix1, uint8_t *pix2, int line_size);
int pix_abs16x16_mvi_asm(uint8_t *pix1, uint8_t *pix2, int line_size);
int pix_abs16x16_x2_mvi(uint8_t *pix1, uint8_t *pix2, int line_size);
int pix_abs16x16_y2_mvi(uint8_t *pix1, uint8_t *pix2, int line_size);
int pix_abs16x16_xy2_mvi(uint8_t *pix1, uint8_t *pix2, int line_size);
#if 0
/* These functions were the base for the optimized assembler routines,
and remain here for documentation purposes. */
static void put_pixels_clamped_mvi(const DCTELEM *block, uint8_t *pixels,
int line_size)
{
int i = 8;
uint64_t clampmask = zap(-1, 0xaa); /* 0x00ff00ff00ff00ff */
ASM_ACCEPT_MVI;
do {
uint64_t shorts0, shorts1;
shorts0 = ldq(block);
shorts0 = maxsw4(shorts0, 0);
shorts0 = minsw4(shorts0, clampmask);
stl(pkwb(shorts0), pixels);
shorts1 = ldq(block + 4);
shorts1 = maxsw4(shorts1, 0);
shorts1 = minsw4(shorts1, clampmask);
stl(pkwb(shorts1), pixels + 4);
pixels += line_size;
block += 8;
} while (--i);
}
void add_pixels_clamped_mvi(const DCTELEM *block, uint8_t *pixels,
int line_size)
{
int h = 8;
/* Keep this function a leaf function by generating the constants
manually (mainly for the hack value ;-). */
uint64_t clampmask = zap(-1, 0xaa); /* 0x00ff00ff00ff00ff */
uint64_t signmask = zap(-1, 0x33);
signmask ^= signmask >> 1; /* 0x8000800080008000 */
ASM_ACCEPT_MVI;
do {
uint64_t shorts0, pix0, signs0;
uint64_t shorts1, pix1, signs1;
shorts0 = ldq(block);
shorts1 = ldq(block + 4);
pix0 = unpkbw(ldl(pixels));
/* Signed subword add (MMX paddw). */
signs0 = shorts0 & signmask;
shorts0 &= ~signmask;
shorts0 += pix0;
shorts0 ^= signs0;
/* Clamp. */
shorts0 = maxsw4(shorts0, 0);
shorts0 = minsw4(shorts0, clampmask);
/* Next 4. */
pix1 = unpkbw(ldl(pixels + 4));
signs1 = shorts1 & signmask;
shorts1 &= ~signmask;
shorts1 += pix1;
shorts1 ^= signs1;
shorts1 = maxsw4(shorts1, 0);
shorts1 = minsw4(shorts1, clampmask);
stl(pkwb(shorts0), pixels);
stl(pkwb(shorts1), pixels + 4);
pixels += line_size;
block += 8;
} while (--h);
}
#endif
static void clear_blocks_axp(DCTELEM *blocks) {
uint64_t *p = (uint64_t *) blocks;
int n = sizeof(DCTELEM) * 6 * 64;
do {
p[0] = 0;
p[1] = 0;
p[2] = 0;
p[3] = 0;
p[4] = 0;
p[5] = 0;
p[6] = 0;
p[7] = 0;
p += 8;
n -= 8 * 8;
} while (n);
}
static inline uint64_t avg2_no_rnd(uint64_t a, uint64_t b)
{
return (a & b) + (((a ^ b) & BYTE_VEC(0xfe)) >> 1);
}
static inline uint64_t avg2(uint64_t a, uint64_t b)
{
return (a | b) - (((a ^ b) & BYTE_VEC(0xfe)) >> 1);
}
#if 0
/* The XY2 routines basically utilize this scheme, but reuse parts in
each iteration. */
static inline uint64_t avg4(uint64_t l1, uint64_t l2, uint64_t l3, uint64_t l4)
{
uint64_t r1 = ((l1 & ~BYTE_VEC(0x03)) >> 2)
+ ((l2 & ~BYTE_VEC(0x03)) >> 2)
+ ((l3 & ~BYTE_VEC(0x03)) >> 2)
+ ((l4 & ~BYTE_VEC(0x03)) >> 2);
uint64_t r2 = (( (l1 & BYTE_VEC(0x03))
+ (l2 & BYTE_VEC(0x03))
+ (l3 & BYTE_VEC(0x03))
+ (l4 & BYTE_VEC(0x03))
+ BYTE_VEC(0x02)) >> 2) & BYTE_VEC(0x03);
return r1 + r2;
}
#endif
#define OP(LOAD, STORE) \
do { \
STORE(LOAD(pixels), block); \
pixels += line_size; \
block += line_size; \
} while (--h)
#define OP_X2(LOAD, STORE) \
do { \
uint64_t pix1, pix2; \
\
pix1 = LOAD(pixels); \
pix2 = pix1 >> 8 | ((uint64_t) pixels[8] << 56); \
STORE(AVG2(pix1, pix2), block); \
pixels += line_size; \
block += line_size; \
} while (--h)
#define OP_Y2(LOAD, STORE) \
do { \
uint64_t pix = LOAD(pixels); \
do { \
uint64_t next_pix; \
\
pixels += line_size; \
next_pix = LOAD(pixels); \
STORE(AVG2(pix, next_pix), block); \
block += line_size; \
pix = next_pix; \
} while (--h); \
} while (0)
#define OP_XY2(LOAD, STORE) \
do { \
uint64_t pix1 = LOAD(pixels); \
uint64_t pix2 = pix1 >> 8 | ((uint64_t) pixels[8] << 56); \
uint64_t pix_l = (pix1 & BYTE_VEC(0x03)) \
+ (pix2 & BYTE_VEC(0x03)); \
uint64_t pix_h = ((pix1 & ~BYTE_VEC(0x03)) >> 2) \
+ ((pix2 & ~BYTE_VEC(0x03)) >> 2); \
\
do { \
uint64_t npix1, npix2; \
uint64_t npix_l, npix_h; \
uint64_t avg; \
\
pixels += line_size; \
npix1 = LOAD(pixels); \
npix2 = npix1 >> 8 | ((uint64_t) pixels[8] << 56); \
npix_l = (npix1 & BYTE_VEC(0x03)) \
+ (npix2 & BYTE_VEC(0x03)); \
npix_h = ((npix1 & ~BYTE_VEC(0x03)) >> 2) \
+ ((npix2 & ~BYTE_VEC(0x03)) >> 2); \
avg = (((pix_l + npix_l + AVG4_ROUNDER) >> 2) & BYTE_VEC(0x03)) \
+ pix_h + npix_h; \
STORE(avg, block); \
\
block += line_size; \
pix_l = npix_l; \
pix_h = npix_h; \
} while (--h); \
} while (0)
#define MAKE_OP(OPNAME, SUFF, OPKIND, STORE) \
static void OPNAME ## _pixels ## SUFF ## _axp \
(uint8_t *restrict block, const uint8_t *restrict pixels, \
int line_size, int h) \
{ \
if ((size_t) pixels & 0x7) { \
OPKIND(uldq, STORE); \
} else { \
OPKIND(ldq, STORE); \
} \
} \
\
static void OPNAME ## _pixels16 ## SUFF ## _axp \
(uint8_t *restrict block, const uint8_t *restrict pixels, \
int line_size, int h) \
{ \
OPNAME ## _pixels ## SUFF ## _axp(block, pixels, line_size, h); \
OPNAME ## _pixels ## SUFF ## _axp(block + 8, pixels + 8, line_size, h); \
}
#define PIXOP(OPNAME, STORE) \
MAKE_OP(OPNAME, , OP, STORE) \
MAKE_OP(OPNAME, _x2, OP_X2, STORE) \
MAKE_OP(OPNAME, _y2, OP_Y2, STORE) \
MAKE_OP(OPNAME, _xy2, OP_XY2, STORE)
/* Rounding primitives. */
#define AVG2 avg2
#define AVG4 avg4
#define AVG4_ROUNDER BYTE_VEC(0x02)
#define STORE(l, b) stq(l, b)
PIXOP(put, STORE);
#undef STORE
#define STORE(l, b) stq(AVG2(l, ldq(b)), b);
PIXOP(avg, STORE);
/* Not rounding primitives. */
#undef AVG2
#undef AVG4
#undef AVG4_ROUNDER
#undef STORE
#define AVG2 avg2_no_rnd
#define AVG4 avg4_no_rnd
#define AVG4_ROUNDER BYTE_VEC(0x01)
#define STORE(l, b) stq(l, b)
PIXOP(put_no_rnd, STORE);
#undef STORE
#define STORE(l, b) stq(AVG2(l, ldq(b)), b);
PIXOP(avg_no_rnd, STORE);
void put_pixels16_axp_asm(uint8_t *block, const uint8_t *pixels,
int line_size, int h)
{
put_pixels_axp_asm(block, pixels, line_size, h);
put_pixels_axp_asm(block + 8, pixels + 8, line_size, h);
}
void dsputil_init_alpha(void)
{
put_pixels_tab[0][0] = put_pixels16_axp_asm;
put_pixels_tab[0][1] = put_pixels16_x2_axp;
put_pixels_tab[0][2] = put_pixels16_y2_axp;
put_pixels_tab[0][3] = put_pixels16_xy2_axp;
put_no_rnd_pixels_tab[0][0] = put_pixels16_axp_asm;
put_no_rnd_pixels_tab[0][1] = put_no_rnd_pixels16_x2_axp;
put_no_rnd_pixels_tab[0][2] = put_no_rnd_pixels16_y2_axp;
put_no_rnd_pixels_tab[0][3] = put_no_rnd_pixels16_xy2_axp;
avg_pixels_tab[0][0] = avg_pixels16_axp;
avg_pixels_tab[0][1] = avg_pixels16_x2_axp;
avg_pixels_tab[0][2] = avg_pixels16_y2_axp;
avg_pixels_tab[0][3] = avg_pixels16_xy2_axp;
avg_no_rnd_pixels_tab[0][0] = avg_no_rnd_pixels16_axp;
avg_no_rnd_pixels_tab[0][1] = avg_no_rnd_pixels16_x2_axp;
avg_no_rnd_pixels_tab[0][2] = avg_no_rnd_pixels16_y2_axp;
avg_no_rnd_pixels_tab[0][3] = avg_no_rnd_pixels16_xy2_axp;
put_pixels_tab[1][0] = put_pixels_axp_asm;
put_pixels_tab[1][1] = put_pixels_x2_axp;
put_pixels_tab[1][2] = put_pixels_y2_axp;
put_pixels_tab[1][3] = put_pixels_xy2_axp;
put_no_rnd_pixels_tab[1][0] = put_pixels_axp_asm;
put_no_rnd_pixels_tab[1][1] = put_no_rnd_pixels_x2_axp;
put_no_rnd_pixels_tab[1][2] = put_no_rnd_pixels_y2_axp;
put_no_rnd_pixels_tab[1][3] = put_no_rnd_pixels_xy2_axp;
avg_pixels_tab[1][0] = avg_pixels_axp;
avg_pixels_tab[1][1] = avg_pixels_x2_axp;
avg_pixels_tab[1][2] = avg_pixels_y2_axp;
avg_pixels_tab[1][3] = avg_pixels_xy2_axp;
avg_no_rnd_pixels_tab[1][0] = avg_no_rnd_pixels_axp;
avg_no_rnd_pixels_tab[1][1] = avg_no_rnd_pixels_x2_axp;
avg_no_rnd_pixels_tab[1][2] = avg_no_rnd_pixels_y2_axp;
avg_no_rnd_pixels_tab[1][3] = avg_no_rnd_pixels_xy2_axp;
clear_blocks = clear_blocks_axp;
/* amask clears all bits that correspond to present features. */
if (amask(AMASK_MVI) == 0) {
put_pixels_clamped = put_pixels_clamped_mvi_asm;
add_pixels_clamped = add_pixels_clamped_mvi_asm;
get_pixels = get_pixels_mvi;
diff_pixels = diff_pixels_mvi;
pix_abs8x8 = pix_abs8x8_mvi;
pix_abs16x16 = pix_abs16x16_mvi_asm;
pix_abs16x16_x2 = pix_abs16x16_x2_mvi;
pix_abs16x16_y2 = pix_abs16x16_y2_mvi;
pix_abs16x16_xy2 = pix_abs16x16_xy2_mvi;
}
}