Michael Niedermayer 2886975773 CABAC -> range coder
Originally committed as revision 3655 to svn://svn.ffmpeg.org/ffmpeg/trunk
2004-10-30 02:16:27 +00:00

3163 lines
106 KiB
C

/*
* Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "avcodec.h"
#include "common.h"
#include "dsputil.h"
#include "rangecoder.h"
#define MID_STATE 128
#include "mpegvideo.h"
#undef NDEBUG
#include <assert.h>
#define MAX_DECOMPOSITIONS 8
#define MAX_PLANES 4
#define DWTELEM int
#define QROOT 8
#define LOSSLESS_QLOG -128
#define FRAC_BITS 8
static const int8_t quant3[256]={
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,
};
static const int8_t quant3b[256]={
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
};
static const int8_t quant5[256]={
0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
};
static const int8_t quant7[256]={
0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant9[256]={
0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,
-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-1,-1,
};
static const int8_t quant11[256]={
0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
};
static const int8_t quant13[256]={
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,
-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-6,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
-4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-2,-2,-1,
};
#define LOG2_OBMC_MAX 6
#define OBMC_MAX (1<<(LOG2_OBMC_MAX))
#if 0 //64*cubic
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0,
0, 0, 1, 2, 2, 3, 4, 6, 7, 8, 9,10,11,12,12,12,12,12,12,11,10, 9, 8, 7, 6, 4, 3, 2, 2, 1, 0, 0,
0, 1, 1, 2, 3, 5, 6, 8,10,11,13,14,15,16,17,18,18,17,16,15,14,13,11,10, 8, 6, 5, 3, 2, 1, 1, 0,
0, 1, 1, 3, 4, 6, 8,10,13,15,17,19,20,22,22,23,23,22,22,20,19,17,15,13,10, 8, 6, 4, 3, 1, 1, 0,
0, 1, 2, 4, 6, 8,10,13,16,19,21,23,25,27,28,29,29,28,27,25,23,21,19,16,13,10, 8, 6, 4, 2, 1, 0,
0, 1, 2, 4, 7,10,13,16,19,22,25,28,31,33,34,35,35,34,33,31,28,25,22,19,16,13,10, 7, 4, 2, 1, 0,
0, 1, 3, 5, 8,11,15,19,22,26,30,33,36,38,40,41,41,40,38,36,33,30,26,22,19,15,11, 8, 5, 3, 1, 0,
0, 1, 3, 6, 9,12,17,21,25,30,34,38,41,44,45,46,46,45,44,41,38,34,30,25,21,17,12, 9, 6, 3, 1, 0,
0, 1, 3, 6,10,14,19,23,28,33,38,42,45,48,51,52,52,51,48,45,42,38,33,28,23,19,14,10, 6, 3, 1, 0,
0, 1, 4, 7,11,15,20,25,31,36,41,45,49,52,55,56,56,55,52,49,45,41,36,31,25,20,15,11, 7, 4, 1, 0,
0, 2, 4, 7,12,16,22,27,33,38,44,48,52,56,58,60,60,58,56,52,48,44,38,33,27,22,16,12, 7, 4, 2, 0,
0, 1, 4, 8,12,17,22,28,34,40,45,51,55,58,61,62,62,61,58,55,51,45,40,34,28,22,17,12, 8, 4, 1, 0,
0, 2, 4, 8,12,18,23,29,35,41,46,52,56,60,62,64,64,62,60,56,52,46,41,35,29,23,18,12, 8, 4, 2, 0,
0, 2, 4, 8,12,18,23,29,35,41,46,52,56,60,62,64,64,62,60,56,52,46,41,35,29,23,18,12, 8, 4, 2, 0,
0, 1, 4, 8,12,17,22,28,34,40,45,51,55,58,61,62,62,61,58,55,51,45,40,34,28,22,17,12, 8, 4, 1, 0,
0, 2, 4, 7,12,16,22,27,33,38,44,48,52,56,58,60,60,58,56,52,48,44,38,33,27,22,16,12, 7, 4, 2, 0,
0, 1, 4, 7,11,15,20,25,31,36,41,45,49,52,55,56,56,55,52,49,45,41,36,31,25,20,15,11, 7, 4, 1, 0,
0, 1, 3, 6,10,14,19,23,28,33,38,42,45,48,51,52,52,51,48,45,42,38,33,28,23,19,14,10, 6, 3, 1, 0,
0, 1, 3, 6, 9,12,17,21,25,30,34,38,41,44,45,46,46,45,44,41,38,34,30,25,21,17,12, 9, 6, 3, 1, 0,
0, 1, 3, 5, 8,11,15,19,22,26,30,33,36,38,40,41,41,40,38,36,33,30,26,22,19,15,11, 8, 5, 3, 1, 0,
0, 1, 2, 4, 7,10,13,16,19,22,25,28,31,33,34,35,35,34,33,31,28,25,22,19,16,13,10, 7, 4, 2, 1, 0,
0, 1, 2, 4, 6, 8,10,13,16,19,21,23,25,27,28,29,29,28,27,25,23,21,19,16,13,10, 8, 6, 4, 2, 1, 0,
0, 1, 1, 3, 4, 6, 8,10,13,15,17,19,20,22,22,23,23,22,22,20,19,17,15,13,10, 8, 6, 4, 3, 1, 1, 0,
0, 1, 1, 2, 3, 5, 6, 8,10,11,13,14,15,16,17,18,18,17,16,15,14,13,11,10, 8, 6, 5, 3, 2, 1, 1, 0,
0, 0, 1, 2, 2, 3, 4, 6, 7, 8, 9,10,11,12,12,12,12,12,12,11,10, 9, 8, 7, 6, 4, 3, 2, 2, 1, 0, 0,
0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 8, 8, 7, 7, 6, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 1, 1, 2, 4, 5, 5, 6, 6, 5, 5, 4, 2, 1, 1, 0,
0, 1, 4, 6, 9,11,13,15,15,13,11, 9, 6, 4, 1, 0,
0, 2, 6,11,15,20,24,26,26,24,20,15,11, 6, 2, 0,
0, 4, 9,15,23,29,34,38,38,34,29,23,15, 9, 4, 0,
0, 5,11,20,29,38,45,49,49,45,38,29,20,11, 5, 0,
1, 5,13,24,34,45,53,57,57,53,45,34,24,13, 5, 1,
1, 6,15,26,38,49,57,62,62,57,49,38,26,15, 6, 1,
1, 6,15,26,38,49,57,62,62,57,49,38,26,15, 6, 1,
1, 5,13,24,34,45,53,57,57,53,45,34,24,13, 5, 1,
0, 5,11,20,29,38,45,49,49,45,38,29,20,11, 5, 0,
0, 4, 9,15,23,29,34,38,38,34,29,23,15, 9, 4, 0,
0, 2, 6,11,15,20,24,26,26,24,20,15,11, 6, 2, 0,
0, 1, 4, 6, 9,11,13,15,15,13,11, 9, 6, 4, 1, 0,
0, 1, 1, 2, 4, 5, 5, 6, 6, 5, 5, 4, 2, 1, 1, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
//error:0.000033
};
#elif 1 // 64*linear
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0,
0, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9,10,10, 9, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 0,
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9,10,11,12,13,14,14,13,12,11,10, 9, 8, 7, 7, 6, 5, 4, 3, 2, 1, 0,
1, 2, 3, 4, 5, 6, 7, 8,10,11,12,13,14,15,16,17,17,16,15,14,13,12,11,10, 8, 7, 6, 5, 4, 3, 2, 1,
1, 2, 3, 5, 6, 8, 9,10,12,13,14,16,17,19,20,21,21,20,19,17,16,14,13,12,10, 9, 8, 6, 5, 3, 2, 1,
1, 2, 4, 6, 7, 9,11,12,14,15,17,19,20,22,24,25,25,24,22,20,19,17,15,14,12,11, 9, 7, 6, 4, 2, 1,
1, 3, 5, 7, 8,10,12,14,16,18,20,22,23,25,27,29,29,27,25,23,22,20,18,16,14,12,10, 8, 7, 5, 3, 1,
1, 3, 5, 7,10,12,14,16,18,20,22,24,27,29,31,33,33,31,29,27,24,22,20,18,16,14,12,10, 7, 5, 3, 1,
1, 4, 6, 8,11,13,15,18,20,23,25,27,30,32,34,37,37,34,32,30,27,25,23,20,18,15,13,11, 8, 6, 4, 1,
1, 4, 7, 9,12,14,17,20,22,25,28,30,33,35,38,41,41,38,35,33,30,28,25,22,20,17,14,12, 9, 7, 4, 1,
1, 4, 7,10,13,16,19,22,24,27,30,33,36,39,42,45,45,42,39,36,33,30,27,24,22,19,16,13,10, 7, 4, 1,
2, 5, 8,11,14,17,20,23,27,30,33,36,39,42,45,48,48,45,42,39,36,33,30,27,23,20,17,14,11, 8, 5, 2,
2, 5, 8,12,15,19,22,25,29,32,35,39,42,46,49,52,52,49,46,42,39,35,32,29,25,22,19,15,12, 8, 5, 2,
2, 5, 9,13,16,20,24,27,31,34,38,42,45,49,53,56,56,53,49,45,42,38,34,31,27,24,20,16,13, 9, 5, 2,
2, 6,10,14,17,21,25,29,33,37,41,45,48,52,56,60,60,56,52,48,45,41,37,33,29,25,21,17,14,10, 6, 2,
2, 6,10,14,17,21,25,29,33,37,41,45,48,52,56,60,60,56,52,48,45,41,37,33,29,25,21,17,14,10, 6, 2,
2, 5, 9,13,16,20,24,27,31,34,38,42,45,49,53,56,56,53,49,45,42,38,34,31,27,24,20,16,13, 9, 5, 2,
2, 5, 8,12,15,19,22,25,29,32,35,39,42,46,49,52,52,49,46,42,39,35,32,29,25,22,19,15,12, 8, 5, 2,
2, 5, 8,11,14,17,20,23,27,30,33,36,39,42,45,48,48,45,42,39,36,33,30,27,23,20,17,14,11, 8, 5, 2,
1, 4, 7,10,13,16,19,22,24,27,30,33,36,39,42,45,45,42,39,36,33,30,27,24,22,19,16,13,10, 7, 4, 1,
1, 4, 7, 9,12,14,17,20,22,25,28,30,33,35,38,41,41,38,35,33,30,28,25,22,20,17,14,12, 9, 7, 4, 1,
1, 4, 6, 8,11,13,15,18,20,23,25,27,30,32,34,37,37,34,32,30,27,25,23,20,18,15,13,11, 8, 6, 4, 1,
1, 3, 5, 7,10,12,14,16,18,20,22,24,27,29,31,33,33,31,29,27,24,22,20,18,16,14,12,10, 7, 5, 3, 1,
1, 3, 5, 7, 8,10,12,14,16,18,20,22,23,25,27,29,29,27,25,23,22,20,18,16,14,12,10, 8, 7, 5, 3, 1,
1, 2, 4, 6, 7, 9,11,12,14,15,17,19,20,22,24,25,25,24,22,20,19,17,15,14,12,11, 9, 7, 6, 4, 2, 1,
1, 2, 3, 5, 6, 8, 9,10,12,13,14,16,17,19,20,21,21,20,19,17,16,14,13,12,10, 9, 8, 6, 5, 3, 2, 1,
1, 2, 3, 4, 5, 6, 7, 8,10,11,12,13,14,15,16,17,17,16,15,14,13,12,11,10, 8, 7, 6, 5, 4, 3, 2, 1,
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9,10,11,12,13,14,14,13,12,11,10, 9, 8, 7, 7, 6, 5, 4, 3, 2, 1, 0,
0, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9,10,10, 9, 8, 8, 7, 7, 6, 5, 5, 4, 3, 3, 2, 2, 1, 0,
0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
//error:0.000020
};
static const uint8_t obmc16[256]={
0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 1, 1, 0,
1, 2, 4, 5, 7, 8,10,11,11,10, 8, 7, 5, 4, 2, 1,
1, 4, 6, 9,11,14,16,19,19,16,14,11, 9, 6, 4, 1,
2, 5, 9,12,16,19,23,26,26,23,19,16,12, 9, 5, 2,
2, 7,11,16,20,25,29,34,34,29,25,20,16,11, 7, 2,
3, 8,14,19,25,30,36,41,41,36,30,25,19,14, 8, 3,
3,10,16,23,29,36,42,49,49,42,36,29,23,16,10, 3,
4,11,19,26,34,41,49,56,56,49,41,34,26,19,11, 4,
4,11,19,26,34,41,49,56,56,49,41,34,26,19,11, 4,
3,10,16,23,29,36,42,49,49,42,36,29,23,16,10, 3,
3, 8,14,19,25,30,36,41,41,36,30,25,19,14, 8, 3,
2, 7,11,16,20,25,29,34,34,29,25,20,16,11, 7, 2,
2, 5, 9,12,16,19,23,26,26,23,19,16,12, 9, 5, 2,
1, 4, 6, 9,11,14,16,19,19,16,14,11, 9, 6, 4, 1,
1, 2, 4, 5, 7, 8,10,11,11,10, 8, 7, 5, 4, 2, 1,
0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 1, 1, 0,
//error:0.000015
};
#else //64*cos
static const uint8_t obmc32[1024]={
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0,
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 9,10,11,11,12,12,12,12,11,11,10, 9, 7, 6, 5, 4, 3, 2, 1, 1, 0, 0,
0, 0, 1, 2, 3, 5, 6, 8, 9,11,12,14,15,16,17,17,17,17,16,15,14,12,11, 9, 8, 6, 5, 3, 2, 1, 0, 0,
0, 1, 1, 2, 4, 6, 8,10,12,15,17,19,20,21,22,23,23,22,21,20,19,17,15,12,10, 8, 6, 4, 2, 1, 1, 0,
0, 1, 2, 3, 5, 8,10,13,16,19,21,24,26,27,28,29,29,28,27,26,24,21,19,16,13,10, 8, 5, 3, 2, 1, 0,
0, 1, 2, 4, 6, 9,12,16,19,23,26,29,31,33,34,35,35,34,33,31,29,26,23,19,16,12, 9, 6, 4, 2, 1, 0,
0, 1, 3, 5, 7,11,15,19,23,26,30,34,37,39,40,41,41,40,39,37,34,30,26,23,19,15,11, 7, 5, 3, 1, 0,
0, 1, 3, 5, 9,12,17,21,26,30,35,38,42,44,46,47,47,46,44,42,38,35,30,26,21,17,12, 9, 5, 3, 1, 0,
0, 1, 3, 6, 9,14,19,24,29,34,38,43,46,49,51,52,52,51,49,46,43,38,34,29,24,19,14, 9, 6, 3, 1, 0,
0, 1, 3, 6,11,15,20,26,31,37,42,46,50,53,56,57,57,56,53,50,46,42,37,31,26,20,15,11, 6, 3, 1, 0,
0, 1, 3, 7,11,16,21,27,33,39,44,49,53,57,59,60,60,59,57,53,49,44,39,33,27,21,16,11, 7, 3, 1, 0,
0, 1, 4, 7,12,17,22,28,34,40,46,51,56,59,61,63,63,61,59,56,51,46,40,34,28,22,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,23,29,35,41,47,52,57,60,63,64,64,63,60,57,52,47,41,35,29,23,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,23,29,35,41,47,52,57,60,63,64,64,63,60,57,52,47,41,35,29,23,17,12, 7, 4, 1, 0,
0, 1, 4, 7,12,17,22,28,34,40,46,51,56,59,61,63,63,61,59,56,51,46,40,34,28,22,17,12, 7, 4, 1, 0,
0, 1, 3, 7,11,16,21,27,33,39,44,49,53,57,59,60,60,59,57,53,49,44,39,33,27,21,16,11, 7, 3, 1, 0,
0, 1, 3, 6,11,15,20,26,31,37,42,46,50,53,56,57,57,56,53,50,46,42,37,31,26,20,15,11, 6, 3, 1, 0,
0, 1, 3, 6, 9,14,19,24,29,34,38,43,46,49,51,52,52,51,49,46,43,38,34,29,24,19,14, 9, 6, 3, 1, 0,
0, 1, 3, 5, 9,12,17,21,26,30,35,38,42,44,46,47,47,46,44,42,38,35,30,26,21,17,12, 9, 5, 3, 1, 0,
0, 1, 3, 5, 7,11,15,19,23,26,30,34,37,39,40,41,41,40,39,37,34,30,26,23,19,15,11, 7, 5, 3, 1, 0,
0, 1, 2, 4, 6, 9,12,16,19,23,26,29,31,33,34,35,35,34,33,31,29,26,23,19,16,12, 9, 6, 4, 2, 1, 0,
0, 1, 2, 3, 5, 8,10,13,16,19,21,24,26,27,28,29,29,28,27,26,24,21,19,16,13,10, 8, 5, 3, 2, 1, 0,
0, 1, 1, 2, 4, 6, 8,10,12,15,17,19,20,21,22,23,23,22,21,20,19,17,15,12,10, 8, 6, 4, 2, 1, 1, 0,
0, 0, 1, 2, 3, 5, 6, 8, 9,11,12,14,15,16,17,17,17,17,16,15,14,12,11, 9, 8, 6, 5, 3, 2, 1, 0, 0,
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 9,10,11,11,12,12,12,12,11,11,10, 9, 7, 6, 5, 4, 3, 2, 1, 1, 0, 0,
0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
//error:0.000022
};
static const uint8_t obmc16[256]={
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1, 0, 0,
0, 1, 3, 6, 8,11,13,14,14,13,11, 8, 6, 3, 1, 0,
0, 2, 6,10,15,20,24,26,26,24,20,15,10, 6, 2, 0,
0, 3, 8,16,23,30,35,38,38,35,30,23,16, 8, 3, 0,
1, 4,11,20,30,39,46,49,49,46,39,30,20,11, 4, 1,
1, 5,13,24,35,46,54,58,58,54,46,35,24,13, 5, 1,
0, 5,14,26,38,49,58,63,63,58,49,38,26,14, 5, 0,
0, 5,14,26,38,49,58,63,63,58,49,38,26,14, 5, 0,
1, 5,13,24,35,46,54,58,58,54,46,35,24,13, 5, 1,
1, 4,11,20,30,39,46,49,49,46,39,30,20,11, 4, 1,
0, 3, 8,16,23,30,35,38,38,35,30,23,16, 8, 3, 0,
0, 2, 6,10,15,20,24,26,26,24,20,15,10, 6, 2, 0,
0, 1, 3, 6, 8,11,13,14,14,13,11, 8, 6, 3, 1, 0,
0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
//error:0.000022
};
#endif
//linear *64
static const uint8_t obmc8[64]={
1, 3, 5, 7, 7, 5, 3, 1,
3, 9,15,21,21,15, 9, 3,
5,15,25,35,35,25,15, 5,
7,21,35,49,49,35,21, 7,
7,21,35,49,49,35,21, 7,
5,15,25,35,35,25,15, 5,
3, 9,15,21,21,15, 9, 3,
1, 3, 5, 7, 7, 5, 3, 1,
//error:0.000000
};
//linear *64
static const uint8_t obmc4[16]={
4,12,12, 4,
12,36,36,12,
12,36,36,12,
4,12,12, 4,
//error:0.000000
};
static const uint8_t *obmc_tab[4]={
obmc32, obmc16, obmc8, obmc4
};
typedef struct BlockNode{
int16_t mx;
int16_t my;
uint8_t color[3];
uint8_t type;
//#define TYPE_SPLIT 1
#define BLOCK_INTRA 1
//#define TYPE_NOCOLOR 4
uint8_t level; //FIXME merge into type?
}BlockNode;
#define LOG2_MB_SIZE 4
#define MB_SIZE (1<<LOG2_MB_SIZE)
typedef struct SubBand{
int level;
int stride;
int width;
int height;
int qlog; ///< log(qscale)/log[2^(1/6)]
DWTELEM *buf;
int16_t *x;
DWTELEM *coeff;
struct SubBand *parent;
uint8_t state[/*7*2*/ 7 + 512][32];
}SubBand;
typedef struct Plane{
int width;
int height;
SubBand band[MAX_DECOMPOSITIONS][4];
}Plane;
typedef struct SnowContext{
// MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX)
AVCodecContext *avctx;
RangeCoder c;
DSPContext dsp;
AVFrame input_picture;
AVFrame current_picture;
AVFrame last_picture;
AVFrame mconly_picture;
// uint8_t q_context[16];
uint8_t header_state[32];
uint8_t block_state[128 + 32*128];
int keyframe;
int always_reset;
int version;
int spatial_decomposition_type;
int temporal_decomposition_type;
int spatial_decomposition_count;
int temporal_decomposition_count;
DWTELEM *spatial_dwt_buffer;
int colorspace_type;
int chroma_h_shift;
int chroma_v_shift;
int spatial_scalability;
int qlog;
int lambda;
int lambda2;
int mv_scale;
int qbias;
#define QBIAS_SHIFT 3
int b_width;
int b_height;
int block_max_depth;
Plane plane[MAX_PLANES];
BlockNode *block;
MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independant of MpegEncContext, so this will be removed then (FIXME/XXX)
}SnowContext;
#define QEXPSHIFT (7-FRAC_BITS+8) //FIXME try to change this to 0
static const uint8_t qexp[8]={
128, 140, 152, 166, 181, 197, 215, 235
// 64, 70, 76, 83, 91, 99, 108, 117
// 32, 35, 38, 41, 45, 49, 54, 59
// 16, 17, 19, 21, 23, 25, 27, 29
// 8, 9, 10, 10, 11, 12, 13, 15
};
static inline int mirror(int v, int m){
if (v<0) return -v;
else if(v>m) return 2*m-v;
else return v;
}
static inline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
int i;
if(v){
const int a= ABS(v);
const int e= av_log2(a);
#if 1
const int el= FFMIN(e, 10);
put_rac(c, state+0, 0);
for(i=0; i<el; i++){
put_rac(c, state+1+i, 1); //1..10
}
for(; i<e; i++){
put_rac(c, state+1+9, 1); //1..10
}
put_rac(c, state+1+FFMIN(i,9), 0);
for(i=e-1; i>=el; i--){
put_rac(c, state+22+9, (a>>i)&1); //22..31
}
for(; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + el, v < 0); //11..21
#else
put_rac(c, state+0, 0);
if(e<=9){
for(i=0; i<e; i++){
put_rac(c, state+1+i, 1); //1..10
}
put_rac(c, state+1+i, 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+i, (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + e, v < 0); //11..21
}else{
for(i=0; i<e; i++){
put_rac(c, state+1+FFMIN(i,9), 1); //1..10
}
put_rac(c, state+1+FFMIN(i,9), 0);
for(i=e-1; i>=0; i--){
put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
}
if(is_signed)
put_rac(c, state+11 + FFMIN(e,10), v < 0); //11..21
}
#endif
}else{
put_rac(c, state+0, 1);
}
}
static inline int get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
if(get_rac(c, state+0))
return 0;
else{
int i, e, a;
e= 0;
while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
e++;
}
a= 1;
for(i=e-1; i>=0; i--){
a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
}
if(is_signed && get_rac(c, state+11 + FFMIN(e,10))) //11..21
return -a;
else
return a;
}
}
static inline void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
assert(v>=0);
assert(log2>=-4);
while(v >= r){
put_rac(c, state+4+log2, 1);
v -= r;
log2++;
if(log2>0) r+=r;
}
put_rac(c, state+4+log2, 0);
for(i=log2-1; i>=0; i--){
put_rac(c, state+31-i, (v>>i)&1);
}
}
static inline int get_symbol2(RangeCoder *c, uint8_t *state, int log2){
int i;
int r= log2>=0 ? 1<<log2 : 1;
int v=0;
assert(log2>=-4);
while(get_rac(c, state+4+log2)){
v+= r;
log2++;
if(log2>0) r+=r;
}
for(i=log2-1; i>=0; i--){
v+= get_rac(c, state+31-i)<<i;
}
return v;
}
static always_inline void lift(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){
const int mirror_left= !highpass;
const int mirror_right= (width&1) ^ highpass;
const int w= (width>>1) - 1 + (highpass & width);
int i;
#define LIFT(src, ref, inv) ((src) + ((inv) ? - (ref) : + (ref)))
if(mirror_left){
dst[0] = LIFT(src[0], ((mul*2*ref[0]+add)>>shift), inverse);
dst += dst_step;
src += src_step;
}
for(i=0; i<w; i++){
dst[i*dst_step] = LIFT(src[i*src_step], ((mul*(ref[i*ref_step] + ref[(i+1)*ref_step])+add)>>shift), inverse);
}
if(mirror_right){
dst[w*dst_step] = LIFT(src[w*src_step], ((mul*2*ref[w*ref_step]+add)>>shift), inverse);
}
}
static always_inline void lift5(DWTELEM *dst, DWTELEM *src, DWTELEM *ref, int dst_step, int src_step, int ref_step, int width, int mul, int add, int shift, int highpass, int inverse){
const int mirror_left= !highpass;
const int mirror_right= (width&1) ^ highpass;
const int w= (width>>1) - 1 + (highpass & width);
int i;
if(mirror_left){
int r= 3*2*ref[0];
r += r>>4;
r += r>>8;
dst[0] = LIFT(src[0], ((r+add)>>shift), inverse);
dst += dst_step;
src += src_step;
}
for(i=0; i<w; i++){
int r= 3*(ref[i*ref_step] + ref[(i+1)*ref_step]);
r += r>>4;
r += r>>8;
dst[i*dst_step] = LIFT(src[i*src_step], ((r+add)>>shift), inverse);
}
if(mirror_right){
int r= 3*2*ref[w*ref_step];
r += r>>4;
r += r>>8;
dst[w*dst_step] = LIFT(src[w*src_step], ((r+add)>>shift), inverse);
}
}
static void inplace_lift(DWTELEM *dst, int width, int *coeffs, int n, int shift, int start, int inverse){
int x, i;
for(x=start; x<width; x+=2){
int64_t sum=0;
for(i=0; i<n; i++){
int x2= x + 2*i - n + 1;
if (x2< 0) x2= -x2;
else if(x2>=width) x2= 2*width-x2-2;
sum += coeffs[i]*(int64_t)dst[x2];
}
if(inverse) dst[x] -= (sum + (1<<shift)/2)>>shift;
else dst[x] += (sum + (1<<shift)/2)>>shift;
}
}
static void inplace_liftV(DWTELEM *dst, int width, int height, int stride, int *coeffs, int n, int shift, int start, int inverse){
int x, y, i;
for(y=start; y<height; y+=2){
for(x=0; x<width; x++){
int64_t sum=0;
for(i=0; i<n; i++){
int y2= y + 2*i - n + 1;
if (y2< 0) y2= -y2;
else if(y2>=height) y2= 2*height-y2-2;
sum += coeffs[i]*(int64_t)dst[x + y2*stride];
}
if(inverse) dst[x + y*stride] -= (sum + (1<<shift)/2)>>shift;
else dst[x + y*stride] += (sum + (1<<shift)/2)>>shift;
}
}
}
#define SCALEX 1
#define LX0 0
#define LX1 1
#if 0 // more accurate 9/7
#define N1 2
#define SHIFT1 14
#define COEFFS1 (int[]){-25987,-25987}
#define N2 2
#define SHIFT2 19
#define COEFFS2 (int[]){-27777,-27777}
#define N3 2
#define SHIFT3 15
#define COEFFS3 (int[]){28931,28931}
#define N4 2
#define SHIFT4 15
#define COEFFS4 (int[]){14533,14533}
#elif 1 // 13/7 CRF
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 4
#define SHIFT2 4
#define COEFFS2 (int[]){-1,5,5,-1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#elif 1 // 3/5
#define LX0 1
#define LX1 0
#define SCALEX 0.5
#define N1 2
#define SHIFT1 1
#define COEFFS1 (int[]){1,1}
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 0
#define SHIFT3 0
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 0
#define COEFFS4 NULL
#elif 1 // 11/5
#define N1 0
#define SHIFT1 1
#define COEFFS1 NULL
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 2
#define SHIFT3 0
#define COEFFS3 (int[]){-1,-1}
#define N4 4
#define SHIFT4 7
#define COEFFS4 (int[]){-5,29,29,-5}
#define SCALEX 4
#elif 1 // 9/7 CDF
#define N1 2
#define SHIFT1 7
#define COEFFS1 (int[]){-203,-203}
#define N2 2
#define SHIFT2 12
#define COEFFS2 (int[]){-217,-217}
#define N3 2
#define SHIFT3 7
#define COEFFS3 (int[]){113,113}
#define N4 2
#define SHIFT4 9
#define COEFFS4 (int[]){227,227}
#define SCALEX 1
#elif 1 // 7/5 CDF
#define N1 0
#define SHIFT1 1
#define COEFFS1 NULL
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){-1,-1}
#define N3 2
#define SHIFT3 0
#define COEFFS3 (int[]){-1,-1}
#define N4 2
#define SHIFT4 4
#define COEFFS4 (int[]){3,3}
#elif 1 // 9/7 MN
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 2
#define SHIFT2 2
#define COEFFS2 (int[]){1,1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#else // 13/7 CRF
#define N1 4
#define SHIFT1 4
#define COEFFS1 (int[]){1,-9,-9,1}
#define N2 4
#define SHIFT2 4
#define COEFFS2 (int[]){-1,5,5,-1}
#define N3 0
#define SHIFT3 1
#define COEFFS3 NULL
#define N4 0
#define SHIFT4 1
#define COEFFS4 NULL
#endif
static void horizontal_decomposeX(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
const int w2= (width+1)>>1;
int A1,A2,A3,A4, x;
inplace_lift(b, width, COEFFS1, N1, SHIFT1, LX1, 0);
inplace_lift(b, width, COEFFS2, N2, SHIFT2, LX0, 0);
inplace_lift(b, width, COEFFS3, N3, SHIFT3, LX1, 0);
inplace_lift(b, width, COEFFS4, N4, SHIFT4, LX0, 0);
for(x=0; x<width2; x++){
temp[x ]= b[2*x ];
temp[x+w2]= b[2*x + 1];
}
if(width&1)
temp[x ]= b[2*x ];
memcpy(b, temp, width*sizeof(int));
}
static void horizontal_composeX(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
int A1,A2,A3,A4, x;
const int w2= (width+1)>>1;
memcpy(temp, b, width*sizeof(int));
for(x=0; x<width2; x++){
b[2*x ]= temp[x ];
b[2*x + 1]= temp[x+w2];
}
if(width&1)
b[2*x ]= temp[x ];
inplace_lift(b, width, COEFFS4, N4, SHIFT4, LX0, 1);
inplace_lift(b, width, COEFFS3, N3, SHIFT3, LX1, 1);
inplace_lift(b, width, COEFFS2, N2, SHIFT2, LX0, 1);
inplace_lift(b, width, COEFFS1, N1, SHIFT1, LX1, 1);
}
static void spatial_decomposeX(DWTELEM *buffer, int width, int height, int stride){
int x, y;
for(y=0; y<height; y++){
for(x=0; x<width; x++){
buffer[y*stride + x] *= SCALEX;
}
}
for(y=0; y<height; y++){
horizontal_decomposeX(buffer + y*stride, width);
}
inplace_liftV(buffer, width, height, stride, COEFFS1, N1, SHIFT1, LX1, 0);
inplace_liftV(buffer, width, height, stride, COEFFS2, N2, SHIFT2, LX0, 0);
inplace_liftV(buffer, width, height, stride, COEFFS3, N3, SHIFT3, LX1, 0);
inplace_liftV(buffer, width, height, stride, COEFFS4, N4, SHIFT4, LX0, 0);
}
static void spatial_composeX(DWTELEM *buffer, int width, int height, int stride){
int x, y;
inplace_liftV(buffer, width, height, stride, COEFFS4, N4, SHIFT4, LX0, 1);
inplace_liftV(buffer, width, height, stride, COEFFS3, N3, SHIFT3, LX1, 1);
inplace_liftV(buffer, width, height, stride, COEFFS2, N2, SHIFT2, LX0, 1);
inplace_liftV(buffer, width, height, stride, COEFFS1, N1, SHIFT1, LX1, 1);
for(y=0; y<height; y++){
horizontal_composeX(buffer + y*stride, width);
}
for(y=0; y<height; y++){
for(x=0; x<width; x++){
buffer[y*stride + x] /= SCALEX;
}
}
}
static void horizontal_decompose53i(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
int A1,A2,A3,A4, x;
const int w2= (width+1)>>1;
for(x=0; x<width2; x++){
temp[x ]= b[2*x ];
temp[x+w2]= b[2*x + 1];
}
if(width&1)
temp[x ]= b[2*x ];
#if 0
A2= temp[1 ];
A4= temp[0 ];
A1= temp[0+width2];
A1 -= (A2 + A4)>>1;
A4 += (A1 + 1)>>1;
b[0+width2] = A1;
b[0 ] = A4;
for(x=1; x+1<width2; x+=2){
A3= temp[x+width2];
A4= temp[x+1 ];
A3 -= (A2 + A4)>>1;
A2 += (A1 + A3 + 2)>>2;
b[x+width2] = A3;
b[x ] = A2;
A1= temp[x+1+width2];
A2= temp[x+2 ];
A1 -= (A2 + A4)>>1;
A4 += (A1 + A3 + 2)>>2;
b[x+1+width2] = A1;
b[x+1 ] = A4;
}
A3= temp[width-1];
A3 -= A2;
A2 += (A1 + A3 + 2)>>2;
b[width -1] = A3;
b[width2-1] = A2;
#else
lift(b+w2, temp+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 0);
lift(b , temp , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 0);
#endif
}
static void vertical_decompose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (b0[i] + b2[i])>>1;
}
}
static void vertical_decompose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (b0[i] + b2[i] + 2)>>2;
}
}
static void spatial_decompose53i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-2-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-2 , height-1)*stride;
for(y=-2; y<height; y+=2){
DWTELEM *b2= buffer + mirror(y+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(y+2, height-1)*stride;
{START_TIMER
if(b1 <= b3) horizontal_decompose53i(b2, width);
if(y+2 < height) horizontal_decompose53i(b3, width);
STOP_TIMER("horizontal_decompose53i")}
{START_TIMER
if(b1 <= b3) vertical_decompose53iH0(b1, b2, b3, width);
if(b0 <= b2) vertical_decompose53iL0(b0, b1, b2, width);
STOP_TIMER("vertical_decompose53i*")}
b0=b2;
b1=b3;
}
}
#define lift5 lift
#if 1
#define W_AM 3
#define W_AO 0
#define W_AS 1
#define W_BM 1
#define W_BO 8
#define W_BS 4
#undef lift5
#define W_CM 9999
#define W_CO 2
#define W_CS 2
#define W_DM 15
#define W_DO 16
#define W_DS 5
#elif 0
#define W_AM 55
#define W_AO 16
#define W_AS 5
#define W_BM 3
#define W_BO 32
#define W_BS 6
#define W_CM 127
#define W_CO 64
#define W_CS 7
#define W_DM 7
#define W_DO 8
#define W_DS 4
#elif 0
#define W_AM 97
#define W_AO 32
#define W_AS 6
#define W_BM 63
#define W_BO 512
#define W_BS 10
#define W_CM 13
#define W_CO 8
#define W_CS 4
#define W_DM 15
#define W_DO 16
#define W_DS 5
#else
#define W_AM 203
#define W_AO 64
#define W_AS 7
#define W_BM 217
#define W_BO 2048
#define W_BS 12
#define W_CM 113
#define W_CO 64
#define W_CS 7
#define W_DM 227
#define W_DO 128
#define W_DS 9
#endif
static void horizontal_decompose97i(DWTELEM *b, int width){
DWTELEM temp[width];
const int w2= (width+1)>>1;
lift (temp+w2, b +1, b , 1, 2, 2, width, -W_AM, W_AO, W_AS, 1, 0);
lift (temp , b , temp+w2, 1, 2, 1, width, -W_BM, W_BO, W_BS, 0, 0);
lift5(b +w2, temp+w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 0);
lift (b , temp , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 0);
}
static void vertical_decompose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
}
static void vertical_decompose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef lift5
b1[i] += (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS;
#else
int r= 3*(b0[i] + b2[i]);
r+= r>>4;
r+= r>>8;
b1[i] += (r+W_CO)>>W_CS;
#endif
}
}
static void vertical_decompose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS;
}
}
static void vertical_decompose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS;
}
}
static void spatial_decompose97i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-4-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-4 , height-1)*stride;
DWTELEM *b2= buffer + mirror(-4+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(-4+2, height-1)*stride;
for(y=-4; y<height; y+=2){
DWTELEM *b4= buffer + mirror(y+3, height-1)*stride;
DWTELEM *b5= buffer + mirror(y+4, height-1)*stride;
{START_TIMER
if(b3 <= b5) horizontal_decompose97i(b4, width);
if(y+4 < height) horizontal_decompose97i(b5, width);
if(width>400){
STOP_TIMER("horizontal_decompose97i")
}}
{START_TIMER
if(b3 <= b5) vertical_decompose97iH0(b3, b4, b5, width);
if(b2 <= b4) vertical_decompose97iL0(b2, b3, b4, width);
if(b1 <= b3) vertical_decompose97iH1(b1, b2, b3, width);
if(b0 <= b2) vertical_decompose97iL1(b0, b1, b2, width);
if(width>400){
STOP_TIMER("vertical_decompose97i")
}}
b0=b2;
b1=b3;
b2=b4;
b3=b5;
}
}
void ff_spatial_dwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
int level;
for(level=0; level<decomposition_count; level++){
switch(type){
case 0: spatial_decompose97i(buffer, width>>level, height>>level, stride<<level); break;
case 1: spatial_decompose53i(buffer, width>>level, height>>level, stride<<level); break;
case 2: spatial_decomposeX (buffer, width>>level, height>>level, stride<<level); break;
}
}
}
static void horizontal_compose53i(DWTELEM *b, int width){
DWTELEM temp[width];
const int width2= width>>1;
const int w2= (width+1)>>1;
int A1,A2,A3,A4, x;
#if 0
A2= temp[1 ];
A4= temp[0 ];
A1= temp[0+width2];
A1 -= (A2 + A4)>>1;
A4 += (A1 + 1)>>1;
b[0+width2] = A1;
b[0 ] = A4;
for(x=1; x+1<width2; x+=2){
A3= temp[x+width2];
A4= temp[x+1 ];
A3 -= (A2 + A4)>>1;
A2 += (A1 + A3 + 2)>>2;
b[x+width2] = A3;
b[x ] = A2;
A1= temp[x+1+width2];
A2= temp[x+2 ];
A1 -= (A2 + A4)>>1;
A4 += (A1 + A3 + 2)>>2;
b[x+1+width2] = A1;
b[x+1 ] = A4;
}
A3= temp[width-1];
A3 -= A2;
A2 += (A1 + A3 + 2)>>2;
b[width -1] = A3;
b[width2-1] = A2;
#else
lift(temp , b , b+w2, 1, 1, 1, width, 1, 2, 2, 0, 1);
lift(temp+w2, b+w2, temp, 1, 1, 1, width, -1, 0, 1, 1, 1);
#endif
for(x=0; x<width2; x++){
b[2*x ]= temp[x ];
b[2*x + 1]= temp[x+w2];
}
if(width&1)
b[2*x ]= temp[x ];
}
static void vertical_compose53iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (b0[i] + b2[i])>>1;
}
}
static void vertical_compose53iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (b0[i] + b2[i] + 2)>>2;
}
}
static void spatial_compose53i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-1-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-1 , height-1)*stride;
for(y=-1; y<=height; y+=2){
DWTELEM *b2= buffer + mirror(y+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(y+2, height-1)*stride;
{START_TIMER
if(b1 <= b3) vertical_compose53iL0(b1, b2, b3, width);
if(b0 <= b2) vertical_compose53iH0(b0, b1, b2, width);
STOP_TIMER("vertical_compose53i*")}
{START_TIMER
if(y-1 >= 0) horizontal_compose53i(b0, width);
if(b0 <= b2) horizontal_compose53i(b1, width);
STOP_TIMER("horizontal_compose53i")}
b0=b2;
b1=b3;
}
}
static void horizontal_compose97i(DWTELEM *b, int width){
DWTELEM temp[width];
const int w2= (width+1)>>1;
lift (temp , b , b +w2, 1, 1, 1, width, W_DM, W_DO, W_DS, 0, 1);
lift5(temp+w2, b +w2, temp , 1, 1, 1, width, W_CM, W_CO, W_CS, 1, 1);
lift (b , temp , temp+w2, 2, 1, 1, width, -W_BM, W_BO, W_BS, 0, 1);
lift (b+1 , temp+w2, b , 2, 1, 2, width, -W_AM, W_AO, W_AS, 1, 1);
}
static void vertical_compose97iH0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (W_AM*(b0[i] + b2[i])+W_AO)>>W_AS;
}
}
static void vertical_compose97iH1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
#ifdef lift5
b1[i] -= (W_CM*(b0[i] + b2[i])+W_CO)>>W_CS;
#else
int r= 3*(b0[i] + b2[i]);
r+= r>>4;
r+= r>>8;
b1[i] -= (r+W_CO)>>W_CS;
#endif
}
}
static void vertical_compose97iL0(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] += (W_BM*(b0[i] + b2[i])+W_BO)>>W_BS;
}
}
static void vertical_compose97iL1(DWTELEM *b0, DWTELEM *b1, DWTELEM *b2, int width){
int i;
for(i=0; i<width; i++){
b1[i] -= (W_DM*(b0[i] + b2[i])+W_DO)>>W_DS;
}
}
static void spatial_compose97i(DWTELEM *buffer, int width, int height, int stride){
int y;
DWTELEM *b0= buffer + mirror(-3-1, height-1)*stride;
DWTELEM *b1= buffer + mirror(-3 , height-1)*stride;
DWTELEM *b2= buffer + mirror(-3+1, height-1)*stride;
DWTELEM *b3= buffer + mirror(-3+2, height-1)*stride;
for(y=-3; y<=height; y+=2){
DWTELEM *b4= buffer + mirror(y+3, height-1)*stride;
DWTELEM *b5= buffer + mirror(y+4, height-1)*stride;
if(stride == width && y+4 < height && 0){
int x;
for(x=0; x<width/2; x++)
b5[x] += 64*2;
for(; x<width; x++)
b5[x] += 169*2;
}
{START_TIMER
if(b3 <= b5) vertical_compose97iL1(b3, b4, b5, width);
if(b2 <= b4) vertical_compose97iH1(b2, b3, b4, width);
if(b1 <= b3) vertical_compose97iL0(b1, b2, b3, width);
if(b0 <= b2) vertical_compose97iH0(b0, b1, b2, width);
if(width>400){
STOP_TIMER("vertical_compose97i")}}
{START_TIMER
if(y-1>= 0) horizontal_compose97i(b0, width);
if(b0 <= b2) horizontal_compose97i(b1, width);
if(width>400 && b0 <= b2){
STOP_TIMER("horizontal_compose97i")}}
b0=b2;
b1=b3;
b2=b4;
b3=b5;
}
}
void ff_spatial_idwt(DWTELEM *buffer, int width, int height, int stride, int type, int decomposition_count){
int level;
for(level=decomposition_count-1; level>=0; level--){
switch(type){
case 0: spatial_compose97i(buffer, width>>level, height>>level, stride<<level); break;
case 1: spatial_compose53i(buffer, width>>level, height>>level, stride<<level); break;
case 2: spatial_composeX (buffer, width>>level, height>>level, stride<<level); break;
}
}
}
static void encode_subband_c0run(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
const int w= b->width;
const int h= b->height;
int x, y;
if(1){
int run=0;
int runs[w*h];
int run_index=0;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(!(/*ll|*/l|lt|t|rt|p)){
if(v){
runs[run_index++]= run;
run=0;
}else{
run++;
}
}
}
}
runs[run_index++]= run;
run_index=0;
run= runs[run_index++];
put_symbol2(&s->c, b->state[1], run, 3);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v, p=0;
int /*ll=0, */l=0, lt=0, t=0, rt=0;
v= src[x + y*stride];
if(y){
t= src[x + (y-1)*stride];
if(x){
lt= src[x - 1 + (y-1)*stride];
}
if(x + 1 < w){
rt= src[x + 1 + (y-1)*stride];
}
}
if(x){
l= src[x - 1 + y*stride];
/*if(x > 1){
if(orientation==1) ll= src[y + (x-2)*stride];
else ll= src[x - 2 + y*stride];
}*/
}
if(parent){
int px= x>>1;
int py= y>>1;
if(px<b->parent->width && py<b->parent->height)
p= parent[px + py*2*stride];
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p));
put_rac(&s->c, &b->state[0][context], !!v);
}else{
if(!run){
run= runs[run_index++];
put_symbol2(&s->c, b->state[1], run, 3);
assert(v);
}else{
run--;
assert(!v);
}
}
if(v){
int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p));
put_symbol2(&s->c, b->state[context + 2], ABS(v)-1, context-4);
put_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3b[l&0xFF] + 3*quant3b[t&0xFF]], v<0);
}
}
}
}
}
static void encode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
// encode_subband_qtree(s, b, src, parent, stride, orientation);
// encode_subband_z0run(s, b, src, parent, stride, orientation);
encode_subband_c0run(s, b, src, parent, stride, orientation);
// encode_subband_dzr(s, b, src, parent, stride, orientation);
}
static inline void decode_subband(SnowContext *s, SubBand *b, DWTELEM *src, DWTELEM *parent, int stride, int orientation){
const int w= b->width;
const int h= b->height;
int x,y;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
int qmul= qexp[qlog&7]<<(qlog>>3);
int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
START_TIMER
if(b->buf == s->spatial_dwt_buffer || s->qlog == LOSSLESS_QLOG){
qadd= 0;
qmul= 1<<QEXPSHIFT;
}
if(1){
int run;
int index=0;
int prev_index=-1;
int prev2_index=0;
int parent_index= 0;
int prev_parent_index= 0;
for(y=0; y<b->height; y++)
memset(&src[y*stride], 0, b->width*sizeof(DWTELEM));
run= get_symbol2(&s->c, b->state[1], 3);
for(y=0; y<h; y++){
int v=0;
int lt=0, t=0, rt=0;
if(y && b->x[prev_index] == 0){
rt= b->coeff[prev_index];
}
for(x=0; x<w; x++){
int p=0;
const int l= v;
lt= t; t= rt;
if(y){
if(b->x[prev_index] <= x)
prev_index++;
if(b->x[prev_index] == x + 1)
rt= b->coeff[prev_index];
else
rt=0;
}
if(parent){
if(x>>1 > b->parent->x[parent_index]){
parent_index++;
}
if(x>>1 == b->parent->x[parent_index]){
p= b->parent->coeff[parent_index];
}
}
if(/*ll|*/l|lt|t|rt|p){
int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p));
v=get_rac(&s->c, &b->state[0][context]);
}else{
if(!run){
run= get_symbol2(&s->c, b->state[1], 3);
v=1;
}else{
run--;
v=0;
if(y && parent){
int max_run;
max_run= FFMIN(run, b->x[prev_index] - x - 2);
max_run= FFMIN(max_run, 2*b->parent->x[parent_index] - x - 1);
x+= max_run;
run-= max_run;
}
}
}
if(v){
int context= av_log2(/*ABS(ll) + */3*ABS(l) + ABS(lt) + 2*ABS(t) + ABS(rt) + ABS(p));
v= get_symbol2(&s->c, b->state[context + 2], context-4) + 1;
if(get_rac(&s->c, &b->state[0][16 + 1 + 3 + quant3b[l&0xFF] + 3*quant3b[t&0xFF]])){
src[x + y*stride]=-(( v*qmul + qadd)>>(QEXPSHIFT));
v= -v;
}else{
src[x + y*stride]= (( v*qmul + qadd)>>(QEXPSHIFT));
}
b->x[index]=x; //FIXME interleave x/coeff
b->coeff[index++]= v;
}
}
b->x[index++]= w+1; //end marker
prev_index= prev2_index;
prev2_index= index;
if(parent){
while(b->parent->x[parent_index] != b->parent->width+1)
parent_index++;
parent_index++;
if(y&1){
prev_parent_index= parent_index;
}else{
parent_index= prev_parent_index;
}
}
}
b->x[index++]= w+1; //end marker
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("decode_subband")
}
return;
}
}
static void reset_contexts(SnowContext *s){
int plane_index, level, orientation;
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
memset(s->plane[plane_index].band[level][orientation].state, MID_STATE, sizeof(s->plane[plane_index].band[level][orientation].state));
}
}
}
memset(s->header_state, MID_STATE, sizeof(s->header_state));
memset(s->block_state, MID_STATE, sizeof(s->block_state));
}
static int alloc_blocks(SnowContext *s){
int w= -((-s->avctx->width )>>LOG2_MB_SIZE);
int h= -((-s->avctx->height)>>LOG2_MB_SIZE);
s->b_width = w;
s->b_height= h;
s->block= av_mallocz(w * h * sizeof(BlockNode) << (s->block_max_depth*2));
return 0;
}
static inline void copy_rac_state(RangeCoder *d, RangeCoder *s){
uint8_t *bytestream= d->bytestream;
uint8_t *bytestream_start= d->bytestream_start;
*d= *s;
d->bytestream= bytestream;
d->bytestream_start= bytestream_start;
}
//near copy & paste from dsputil, FIXME
static int pix_sum(uint8_t * pix, int line_size, int w)
{
int s, i, j;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j++) {
s += pix[0];
pix ++;
}
pix += line_size - w;
}
return s;
}
//near copy & paste from dsputil, FIXME
static int pix_norm1(uint8_t * pix, int line_size, int w)
{
int s, i, j;
uint32_t *sq = squareTbl + 256;
s = 0;
for (i = 0; i < w; i++) {
for (j = 0; j < w; j ++) {
s += sq[pix[0]];
pix ++;
}
pix += line_size - w;
}
return s;
}
static inline void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int type){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<rem_depth;
BlockNode block;
int i,j;
block.color[0]= l;
block.color[1]= cb;
block.color[2]= cr;
block.mx= mx;
block.my= my;
block.type= type;
block.level= level;
for(j=0; j<block_w; j++){
for(i=0; i<block_w; i++){
s->block[index + i + j*w]= block;
}
}
}
static inline void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index){
const int offset[3]= {
y*c-> stride + x,
((y*c->uvstride + x)>>1),
((y*c->uvstride + x)>>1),
};
int i;
for(i=0; i<3; i++){
c->src[0][i]= src [i];
c->ref[0][i]= ref [i] + offset[i];
}
assert(!ref_index);
}
//FIXME copy&paste
#define P_LEFT P[1]
#define P_TOP P[2]
#define P_TOPRIGHT P[3]
#define P_MEDIAN P[4]
#define P_MV1 P[9]
#define FLAG_QPEL 1 //must be 1
static int encode_q_branch(SnowContext *s, int level, int x, int y){
uint8_t p_buffer[1024];
uint8_t i_buffer[1024];
uint8_t p_state[sizeof(s->block_state)];
uint8_t i_state[sizeof(s->block_state)];
RangeCoder pc, ic;
uint8_t *pbbak= s->c.bytestream;
uint8_t *pbbak_start= s->c.bytestream_start;
int score, score2, iscore, i_len, p_len, block_s, sum;
const int w= s->b_width << s->block_max_depth;
const int h= s->b_height << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
const int block_w= 1<<(LOG2_MB_SIZE - level);
static BlockNode null_block= { //FIXME add border maybe
.color= {128,128,128},
.mx= 0,
.my= 0,
.type= 0,
.level= 0,
};
int trx= (x+1)<<rem_depth;
int try= (y+1)<<rem_depth;
BlockNode *left = x ? &s->block[index-1] : &null_block;
BlockNode *top = y ? &s->block[index-w] : &null_block;
BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
BlockNode *tl = y && x ? &s->block[index-w-1] : left;
BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int pl = left->color[0];
int pcb= left->color[1];
int pcr= left->color[2];
int pmx= mid_pred(left->mx, top->mx, tr->mx);
int pmy= mid_pred(left->my, top->my, tr->my);
int mx=0, my=0;
int l,cr,cb, i;
const int stride= s->current_picture.linesize[0];
const int uvstride= s->current_picture.linesize[1];
const int instride= s->input_picture.linesize[0];
const int uvinstride= s->input_picture.linesize[1];
uint8_t *new_l = s->input_picture.data[0] + (x + y* instride)*block_w;
uint8_t *new_cb= s->input_picture.data[1] + (x + y*uvinstride)*block_w/2;
uint8_t *new_cr= s->input_picture.data[2] + (x + y*uvinstride)*block_w/2;
uint8_t current_mb[3][stride*block_w];
uint8_t *current_data[3]= {&current_mb[0][0], &current_mb[1][0], &current_mb[2][0]};
int P[10][2];
int16_t last_mv[3][2];
int qpel= !!(s->avctx->flags & CODEC_FLAG_QPEL); //unused
const int shift= 1+qpel;
MotionEstContext *c= &s->m.me;
int mx_context= av_log2(2*ABS(left->mx - top->mx));
int my_context= av_log2(2*ABS(left->my - top->my));
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
assert(sizeof(s->block_state) >= 256);
if(s->keyframe){
set_blocks(s, level, x, y, pl, pcb, pcr, pmx, pmy, BLOCK_INTRA);
return 0;
}
//FIXME optimize
for(i=0; i<block_w; i++)
memcpy(&current_mb[0][0] + stride*i, new_l + instride*i, block_w);
for(i=0; i<block_w>>1; i++)
memcpy(&current_mb[1][0] + uvstride*i, new_cb + uvinstride*i, block_w>>1);
for(i=0; i<block_w>>1; i++)
memcpy(&current_mb[2][0] + uvstride*i, new_cr + uvinstride*i, block_w>>1);
// clip predictors / edge ?
P_LEFT[0]= left->mx;
P_LEFT[1]= left->my;
P_TOP [0]= top->mx;
P_TOP [1]= top->my;
P_TOPRIGHT[0]= tr->mx;
P_TOPRIGHT[1]= tr->my;
last_mv[0][0]= s->block[index].mx;
last_mv[0][1]= s->block[index].my;
last_mv[1][0]= right->mx;
last_mv[1][1]= right->my;
last_mv[2][0]= bottom->mx;
last_mv[2][1]= bottom->my;
s->m.mb_stride=2;
s->m.mb_x=
s->m.mb_y= 0;
s->m.me.skip= 0;
init_ref(c, current_data, s->last_picture.data, NULL, block_w*x, block_w*y, 0);
assert(s->m.me. stride == stride);
assert(s->m.me.uvstride == uvstride);
c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_MV;
c->xmin = - x*block_w - 16+2;
c->ymin = - y*block_w - 16+2;
c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2;
c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-2;
if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
if(P_TOPRIGHT[0] < (c->xmin<<shift)) P_TOPRIGHT[0]= (c->xmin<<shift);
if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
if (!y) {
c->pred_x= P_LEFT[0];
c->pred_y= P_LEFT[1];
} else {
c->pred_x = P_MEDIAN[0];
c->pred_y = P_MEDIAN[1];
}
score= ff_epzs_motion_search(&s->m, &mx, &my, P, 0, /*ref_index*/ 0, last_mv,
(1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
assert(mx >= c->xmin);
assert(mx <= c->xmax);
assert(my >= c->ymin);
assert(my <= c->ymax);
score= s->m.me.sub_motion_search(&s->m, &mx, &my, score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
score= ff_get_mb_score(&s->m, mx, my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
//FIXME if mb_cmp != SSE then intra cant be compared currently and mb_penalty vs. lambda2
// subpel search
pc= s->c;
pc.bytestream_start=
pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
memcpy(p_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&pc, &p_state[4 + s_context], 1);
put_rac(&pc, &p_state[1 + left->type + top->type], 0);
put_symbol(&pc, &p_state[128 + 32*mx_context], mx - pmx, 1);
put_symbol(&pc, &p_state[128 + 32*my_context], my - pmy, 1);
p_len= pc.bytestream - pc.bytestream_start;
score += (s->lambda2*(p_len*8
+ (pc.outstanding_count - s->c.outstanding_count)*8
+ (-av_log2(pc.range) + av_log2(s->c.range))
))>>FF_LAMBDA_SHIFT;
block_s= block_w*block_w;
sum = pix_sum(&current_mb[0][0], stride, block_w);
l= (sum + block_s/2)/block_s;
iscore = pix_norm1(&current_mb[0][0], stride, block_w) - 2*l*sum + l*l*block_s;
block_s= block_w*block_w>>2;
sum = pix_sum(&current_mb[1][0], uvstride, block_w>>1);
cb= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
sum = pix_sum(&current_mb[2][0], uvstride, block_w>>1);
cr= (sum + block_s/2)/block_s;
// iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
ic= s->c;
ic.bytestream_start=
ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
memcpy(i_state, s->block_state, sizeof(s->block_state));
if(level!=s->block_max_depth)
put_rac(&ic, &i_state[4 + s_context], 1);
put_rac(&ic, &i_state[1 + left->type + top->type], 1);
put_symbol(&ic, &i_state[32], l-pl , 1);
put_symbol(&ic, &i_state[64], cb-pcb, 1);
put_symbol(&ic, &i_state[96], cr-pcr, 1);
i_len= ic.bytestream - ic.bytestream_start;
iscore += (s->lambda2*(i_len*8
+ (ic.outstanding_count - s->c.outstanding_count)*8
+ (-av_log2(ic.range) + av_log2(s->c.range))
))>>FF_LAMBDA_SHIFT;
// assert(score==256*256*256*64-1);
assert(iscore < 255*255*256 + s->lambda2*10);
assert(iscore >= 0);
assert(l>=0 && l<=255);
assert(pl>=0 && pl<=255);
if(level==0){
int varc= iscore >> 8;
int vard= score >> 8;
if (vard <= 64 || vard < varc)
c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
else
c->scene_change_score+= s->m.qscale;
}
if(level!=s->block_max_depth){
put_rac(&s->c, &s->block_state[4 + s_context], 0);
score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
if(score2 < score && score2 < iscore)
return score2;
}
if(iscore < score){
memcpy(pbbak, i_buffer, i_len);
s->c= ic;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + i_len;
set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, BLOCK_INTRA);
memcpy(s->block_state, i_state, sizeof(s->block_state));
return iscore;
}else{
memcpy(pbbak, p_buffer, p_len);
s->c= pc;
s->c.bytestream_start= pbbak_start;
s->c.bytestream= pbbak + p_len;
set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, 0);
memcpy(s->block_state, p_state, sizeof(s->block_state));
return score;
}
}
static void decode_q_branch(SnowContext *s, int level, int x, int y){
const int w= s->b_width << s->block_max_depth;
const int rem_depth= s->block_max_depth - level;
const int index= (x + y*w) << rem_depth;
static BlockNode null_block= { //FIXME add border maybe
.color= {128,128,128},
.mx= 0,
.my= 0,
.type= 0,
.level= 0,
};
int trx= (x+1)<<rem_depth;
BlockNode *left = x ? &s->block[index-1] : &null_block;
BlockNode *top = y ? &s->block[index-w] : &null_block;
BlockNode *tl = y && x ? &s->block[index-w-1] : left;
BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
if(s->keyframe){
set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, BLOCK_INTRA);
return;
}
if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
int type;
int l = left->color[0];
int cb= left->color[1];
int cr= left->color[2];
int mx= mid_pred(left->mx, top->mx, tr->mx);
int my= mid_pred(left->my, top->my, tr->my);
int mx_context= av_log2(2*ABS(left->mx - top->mx)) + 0*av_log2(2*ABS(tr->mx - top->mx));
int my_context= av_log2(2*ABS(left->my - top->my)) + 0*av_log2(2*ABS(tr->my - top->my));
type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
if(type){
l += get_symbol(&s->c, &s->block_state[32], 1);
cb+= get_symbol(&s->c, &s->block_state[64], 1);
cr+= get_symbol(&s->c, &s->block_state[96], 1);
}else{
mx+= get_symbol(&s->c, &s->block_state[128 + 32*mx_context], 1);
my+= get_symbol(&s->c, &s->block_state[128 + 32*my_context], 1);
}
set_blocks(s, level, x, y, l, cb, cr, mx, my, type);
}else{
decode_q_branch(s, level+1, 2*x+0, 2*y+0);
decode_q_branch(s, level+1, 2*x+1, 2*y+0);
decode_q_branch(s, level+1, 2*x+0, 2*y+1);
decode_q_branch(s, level+1, 2*x+1, 2*y+1);
}
}
static void encode_blocks(SnowContext *s){
int x, y;
int w= s->b_width;
int h= s->b_height;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
encode_q_branch(s, 0, x, y);
}
}
}
static void decode_blocks(SnowContext *s){
int x, y;
int w= s->b_width;
int h= s->b_height;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
decode_q_branch(s, 0, x, y);
}
}
}
static void mc_block(uint8_t *dst, uint8_t *src, uint8_t *tmp, int stride, int b_w, int b_h, int dx, int dy){
int x, y;
START_TIMER
for(y=0; y < b_h+5; y++){
for(x=0; x < b_w; x++){
int a0= src[x ];
int a1= src[x + 1];
int a2= src[x + 2];
int a3= src[x + 3];
int a4= src[x + 4];
int a5= src[x + 5];
// int am= 9*(a1+a2) - (a0+a3);
int am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5);
// int am= 18*(a2+a3) - 2*(a1+a4);
// int aL= (-7*a0 + 105*a1 + 35*a2 - 5*a3)>>3;
// int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3;
// if(b_w==16) am= 8*(a1+a2);
if(dx<8) tmp[x]= (32*a2*( 8-dx) + am* dx + 128)>>8;
else tmp[x]= ( am*(16-dx) + 32*a3*(dx-8) + 128)>>8;
/* if (dx< 4) tmp[x + y*stride]= (16*a1*( 4-dx) + aL* dx + 32)>>6;
else if(dx< 8) tmp[x + y*stride]= ( aL*( 8-dx) + am*(dx- 4) + 32)>>6;
else if(dx<12) tmp[x + y*stride]= ( am*(12-dx) + aR*(dx- 8) + 32)>>6;
else tmp[x + y*stride]= ( aR*(16-dx) + 16*a2*(dx-12) + 32)>>6;*/
}
tmp += stride;
src += stride;
}
tmp -= (b_h+5)*stride;
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
int a0= tmp[x + 0*stride];
int a1= tmp[x + 1*stride];
int a2= tmp[x + 2*stride];
int a3= tmp[x + 3*stride];
int a4= tmp[x + 4*stride];
int a5= tmp[x + 5*stride];
int am= 20*(a2+a3) - 5*(a1+a4) + (a0+a5);
// int am= 18*(a2+a3) - 2*(a1+a4);
/* int aL= (-7*a0 + 105*a1 + 35*a2 - 5*a3)>>3;
int aR= (-7*a3 + 105*a2 + 35*a1 - 5*a0)>>3;*/
// if(b_w==16) am= 8*(a1+a2);
if(dy<8) dst[x]= (32*a2*( 8-dy) + am* dy + 128)>>8;
else dst[x]= ( am*(16-dy) + 32*a3*(dy-8) + 128)>>8;
/* if (dy< 4) tmp[x + y*stride]= (16*a1*( 4-dy) + aL* dy + 32)>>6;
else if(dy< 8) tmp[x + y*stride]= ( aL*( 8-dy) + am*(dy- 4) + 32)>>6;
else if(dy<12) tmp[x + y*stride]= ( am*(12-dy) + aR*(dy- 8) + 32)>>6;
else tmp[x + y*stride]= ( aR*(16-dy) + 16*a2*(dy-12) + 32)>>6;*/
}
dst += stride;
tmp += stride;
}
STOP_TIMER("mc_block")
}
#define mca(dx,dy,b_w)\
static void mc_block_hpel ## dx ## dy ## b_w(uint8_t *dst, uint8_t *src, int stride, int h){\
uint8_t tmp[stride*(b_w+5)];\
assert(h==b_w);\
mc_block(dst, src-2-2*stride, tmp, stride, b_w, b_w, dx, dy);\
}
mca( 0, 0,16)
mca( 8, 0,16)
mca( 0, 8,16)
mca( 8, 8,16)
mca( 0, 0,8)
mca( 8, 0,8)
mca( 0, 8,8)
mca( 8, 8,8)
static void pred_block(SnowContext *s, uint8_t *dst, uint8_t *src, uint8_t *tmp, int stride, int sx, int sy, int b_w, int b_h, BlockNode *block, int plane_index, int w, int h){
if(block->type){
int x, y;
const int color= block->color[plane_index];
for(y=0; y < b_h; y++){
for(x=0; x < b_w; x++){
dst[x + y*stride]= color;
}
}
}else{
const int scale= plane_index ? s->mv_scale : 2*s->mv_scale;
int mx= block->mx*scale;
int my= block->my*scale;
const int dx= mx&15;
const int dy= my&15;
sx += (mx>>4) - 2;
sy += (my>>4) - 2;
src += sx + sy*stride;
if( (unsigned)sx >= w - b_w - 4
|| (unsigned)sy >= h - b_h - 4){
ff_emulated_edge_mc(tmp + MB_SIZE, src, stride, b_w+5, b_h+5, sx, sy, w, h);
src= tmp + MB_SIZE;
}
if((dx&3) || (dy&3) || b_w!=b_h || (b_w!=4 && b_w!=8 && b_w!=16))
mc_block(dst, src, tmp, stride, b_w, b_h, dx, dy);
else
s->dsp.put_h264_qpel_pixels_tab[2-(b_w>>3)][dy+(dx>>2)](dst,src + 2 + 2*stride,stride);
}
}
static always_inline int same_block(BlockNode *a, BlockNode *b){
return !((a->mx - b->mx) | (a->my - b->my) | a->type | b->type);
}
//FIXME name clenup (b_w, block_w, b_width stuff)
static always_inline void add_yblock(SnowContext *s, DWTELEM *dst, uint8_t *dst8, uint8_t *src, uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int plane_index){
const int b_width = s->b_width << s->block_max_depth;
const int b_height= s->b_height << s->block_max_depth;
const int b_stride= b_width;
BlockNode *lt= &s->block[b_x + b_y*b_stride];
BlockNode *rt= lt+1;
BlockNode *lb= lt+b_stride;
BlockNode *rb= lb+1;
uint8_t *block[4];
uint8_t tmp[src_stride*(b_h+5)]; //FIXME align
int x,y;
if(b_x<0){
lt= rt;
lb= rb;
}else if(b_x + 1 >= b_width){
rt= lt;
rb= lb;
}
if(b_y<0){
lt= lb;
rt= rb;
}else if(b_y + 1 >= b_height){
lb= lt;
rb= rt;
}
if(src_x<0){ //FIXME merge with prev & always round internal width upto *16
obmc -= src_x;
b_w += src_x;
src_x=0;
}else if(src_x + b_w > w){
b_w = w - src_x;
}
if(src_y<0){
obmc -= src_y*obmc_stride;
b_h += src_y;
src_y=0;
}else if(src_y + b_h> h){
b_h = h - src_y;
}
if(b_w<=0 || b_h<=0) return;
assert(src_stride > 7*MB_SIZE);
dst += src_x + src_y*dst_stride;
dst8+= src_x + src_y*src_stride;
// src += src_x + src_y*src_stride;
block[0]= tmp+3*MB_SIZE;
pred_block(s, block[0], src, tmp, src_stride, src_x, src_y, b_w, b_h, lt, plane_index, w, h);
if(same_block(lt, rt)){
block[1]= block[0];
}else{
block[1]= tmp + 4*MB_SIZE;
pred_block(s, block[1], src, tmp, src_stride, src_x, src_y, b_w, b_h, rt, plane_index, w, h);
}
if(same_block(lt, lb)){
block[2]= block[0];
}else if(same_block(rt, lb)){
block[2]= block[1];
}else{
block[2]= tmp+5*MB_SIZE;
pred_block(s, block[2], src, tmp, src_stride, src_x, src_y, b_w, b_h, lb, plane_index, w, h);
}
if(same_block(lt, rb) ){
block[3]= block[0];
}else if(same_block(rt, rb)){
block[3]= block[1];
}else if(same_block(lb, rb)){
block[3]= block[2];
}else{
block[3]= tmp+6*MB_SIZE;
pred_block(s, block[3], src, tmp, src_stride, src_x, src_y, b_w, b_h, rb, plane_index, w, h);
}
#if 0
for(y=0; y<b_h; y++){
for(x=0; x<b_w; x++){
int v= obmc [x + y*obmc_stride] * block[3][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc2= obmc + (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc2[x + y*obmc_stride] * block[2][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc3[x + y*obmc_stride] * block[1][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
for(y=0; y<b_h; y++){
uint8_t *obmc3= obmc + obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc4[x + y*obmc_stride] * block[0][x + y*src_stride] * (256/OBMC_MAX);
if(add) dst[x + y*dst_stride] += v;
else dst[x + y*dst_stride] -= v;
}
}
#else
for(y=0; y<b_h; y++){
//FIXME ugly missue of obmc_stride
uint8_t *obmc1= obmc + y*obmc_stride;
uint8_t *obmc2= obmc1+ (obmc_stride>>1);
uint8_t *obmc3= obmc1+ obmc_stride*(obmc_stride>>1);
uint8_t *obmc4= obmc3+ (obmc_stride>>1);
for(x=0; x<b_w; x++){
int v= obmc1[x] * block[3][x + y*src_stride]
+obmc2[x] * block[2][x + y*src_stride]
+obmc3[x] * block[1][x + y*src_stride]
+obmc4[x] * block[0][x + y*src_stride];
v <<= 8 - LOG2_OBMC_MAX;
if(FRAC_BITS != 8){
v += 1<<(7 - FRAC_BITS);
v >>= 8 - FRAC_BITS;
}
if(add){
v += dst[x + y*dst_stride];
v = (v + (1<<(FRAC_BITS-1))) >> FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*src_stride] = v;
}else{
dst[x + y*dst_stride] -= v;
}
}
}
#endif
}
static always_inline void predict_plane(SnowContext *s, DWTELEM *buf, int plane_index, int add){
Plane *p= &s->plane[plane_index];
const int mb_w= s->b_width << s->block_max_depth;
const int mb_h= s->b_height << s->block_max_depth;
int x, y, mb_x, mb_y;
int block_size = MB_SIZE >> s->block_max_depth;
int block_w = plane_index ? block_size/2 : block_size;
const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
int obmc_stride= plane_index ? block_size : 2*block_size;
int ref_stride= s->current_picture.linesize[plane_index];
uint8_t *ref = s->last_picture.data[plane_index];
uint8_t *dst8= s->current_picture.data[plane_index];
int w= p->width;
int h= p->height;
START_TIMER
if(s->keyframe || (s->avctx->debug&512)){
if(add){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
v >>= FRAC_BITS;
if(v&(~255)) v= ~(v>>31);
dst8[x + y*ref_stride]= v;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
buf[x + y*w]-= 128<<FRAC_BITS;
}
}
}
return;
}
for(mb_y=0; mb_y<=mb_h; mb_y++){
for(mb_x=0; mb_x<=mb_w; mb_x++){
START_TIMER
add_yblock(s, buf, dst8, ref, obmc,
block_w*mb_x - block_w/2,
block_w*mb_y - block_w/2,
block_w, block_w,
w, h,
w, ref_stride, obmc_stride,
mb_x - 1, mb_y - 1,
add, plane_index);
STOP_TIMER("add_yblock")
}
}
STOP_TIMER("predict_plane")
}
static void quantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int bias){
const int level= b->level;
const int w= b->width;
const int h= b->height;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
const int qmul= qexp[qlog&7]<<(qlog>>3);
int x,y, thres1, thres2;
START_TIMER
assert(QROOT==8);
if(s->qlog == LOSSLESS_QLOG) return;
bias= bias ? 0 : (3*qmul)>>3;
thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
thres2= 2*thres1;
if(!bias){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
src[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i/= qmul; //FIXME optimize
src[x + y*stride]= -i;
}
}else
src[x + y*stride]= 0;
}
}
}else{
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if((unsigned)(i+thres1) > thres2){
if(i>=0){
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
src[x + y*stride]= i;
}else{
i= -i;
i<<= QEXPSHIFT;
i= (i + bias) / qmul; //FIXME optimize
src[x + y*stride]= -i;
}
}else
src[x + y*stride]= 0;
}
}
}
if(level+1 == s->spatial_decomposition_count){
// STOP_TIMER("quantize")
}
}
static void dequantize(SnowContext *s, SubBand *b, DWTELEM *src, int stride){
const int w= b->width;
const int h= b->height;
const int qlog= clip(s->qlog + b->qlog, 0, 128);
const int qmul= qexp[qlog&7]<<(qlog>>3);
const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
int x,y;
START_TIMER
if(s->qlog == LOSSLESS_QLOG) return;
assert(QROOT==8);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= src[x + y*stride];
if(i<0){
src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
}else if(i>0){
src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
}
}
}
if(w > 200 /*level+1 == s->spatial_decomposition_count*/){
STOP_TIMER("dquant")
}
}
static void decorrelate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=h-1; y>=0; y--){
for(x=w-1; x>=0; x--){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] -= src[i - 1];
}else{
if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] -= src[i - 1];
}
}else{
if(y) src[i] -= src[i - stride];
}
}
}
}
static void correlate(SnowContext *s, SubBand *b, DWTELEM *src, int stride, int inverse, int use_median){
const int w= b->width;
const int h= b->height;
int x,y;
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int i= x + y*stride;
if(x){
if(use_median){
if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
else src[i] += src[i - 1];
}else{
if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
else src[i] += src[i - 1];
}
}else{
if(y) src[i] += src[i - stride];
}
}
}
}
static void encode_header(SnowContext *s){
int plane_index, level, orientation;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
put_rac(&s->c, kstate, s->keyframe);
if(s->keyframe || s->always_reset)
reset_contexts(s);
if(s->keyframe){
put_symbol(&s->c, s->header_state, s->version, 0);
put_rac(&s->c, s->header_state, s->always_reset);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
put_rac(&s->c, s->header_state, s->spatial_scalability);
// put_rac(&s->c, s->header_state, s->rate_scalability);
for(plane_index=0; plane_index<2; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
if(orientation==2) continue;
put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
}
}
}
}
put_symbol(&s->c, s->header_state, s->spatial_decomposition_type, 0);
put_symbol(&s->c, s->header_state, s->qlog, 1);
put_symbol(&s->c, s->header_state, s->mv_scale, 0);
put_symbol(&s->c, s->header_state, s->qbias, 1);
put_symbol(&s->c, s->header_state, s->block_max_depth, 0);
}
static int decode_header(SnowContext *s){
int plane_index, level, orientation;
uint8_t kstate[32];
memset(kstate, MID_STATE, sizeof(kstate));
s->keyframe= get_rac(&s->c, kstate);
if(s->keyframe || s->always_reset)
reset_contexts(s);
if(s->keyframe){
s->version= get_symbol(&s->c, s->header_state, 0);
if(s->version>0){
av_log(s->avctx, AV_LOG_ERROR, "version %d not supported", s->version);
return -1;
}
s->always_reset= get_rac(&s->c, s->header_state);
s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
s->spatial_decomposition_count= get_symbol(&s->c, s->header_state, 0);
s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
s->spatial_scalability= get_rac(&s->c, s->header_state);
// s->rate_scalability= get_rac(&s->c, s->header_state);
for(plane_index=0; plane_index<3; plane_index++){
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1:0; orientation<4; orientation++){
int q;
if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
else q= get_symbol(&s->c, s->header_state, 1);
s->plane[plane_index].band[level][orientation].qlog= q;
}
}
}
}
s->spatial_decomposition_type= get_symbol(&s->c, s->header_state, 0);
if(s->spatial_decomposition_type > 2){
av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type);
return -1;
}
s->qlog= get_symbol(&s->c, s->header_state, 1);
s->mv_scale= get_symbol(&s->c, s->header_state, 0);
s->qbias= get_symbol(&s->c, s->header_state, 1);
s->block_max_depth= get_symbol(&s->c, s->header_state, 0);
return 0;
}
static int common_init(AVCodecContext *avctx){
SnowContext *s = avctx->priv_data;
int width, height;
int level, orientation, plane_index, dec;
s->avctx= avctx;
dsputil_init(&s->dsp, avctx);
#define mcf(dx,dy)\
s->dsp.put_qpel_pixels_tab [0][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[0][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[0][dy+dx/4];\
s->dsp.put_qpel_pixels_tab [1][dy+dx/4]=\
s->dsp.put_no_rnd_qpel_pixels_tab[1][dy+dx/4]=\
s->dsp.put_h264_qpel_pixels_tab[1][dy+dx/4];
mcf( 0, 0)
mcf( 4, 0)
mcf( 8, 0)
mcf(12, 0)
mcf( 0, 4)
mcf( 4, 4)
mcf( 8, 4)
mcf(12, 4)
mcf( 0, 8)
mcf( 4, 8)
mcf( 8, 8)
mcf(12, 8)
mcf( 0,12)
mcf( 4,12)
mcf( 8,12)
mcf(12,12)
#define mcfh(dx,dy)\
s->dsp.put_pixels_tab [0][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[0][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 16;\
s->dsp.put_pixels_tab [1][dy/4+dx/8]=\
s->dsp.put_no_rnd_pixels_tab[1][dy/4+dx/8]=\
mc_block_hpel ## dx ## dy ## 8;
mcfh(0, 0)
mcfh(8, 0)
mcfh(0, 8)
mcfh(8, 8)
dec= s->spatial_decomposition_count= 5;
s->spatial_decomposition_type= avctx->prediction_method; //FIXME add decorrelator type r transform_type
s->chroma_h_shift= 1; //FIXME XXX
s->chroma_v_shift= 1;
// dec += FFMAX(s->chroma_h_shift, s->chroma_v_shift);
width= s->avctx->width;
height= s->avctx->height;
s->spatial_dwt_buffer= av_mallocz(width*height*sizeof(DWTELEM));
s->mv_scale= (s->avctx->flags & CODEC_FLAG_QPEL) ? 2 : 4;
s->block_max_depth= (s->avctx->flags & CODEC_FLAG_4MV) ? 1 : 0;
for(plane_index=0; plane_index<3; plane_index++){
int w= s->avctx->width;
int h= s->avctx->height;
if(plane_index){
w>>= s->chroma_h_shift;
h>>= s->chroma_v_shift;
}
s->plane[plane_index].width = w;
s->plane[plane_index].height= h;
//av_log(NULL, AV_LOG_DEBUG, "%d %d\n", w, h);
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
b->buf= s->spatial_dwt_buffer;
b->level= level;
b->stride= s->plane[plane_index].width << (s->spatial_decomposition_count - level);
b->width = (w + !(orientation&1))>>1;
b->height= (h + !(orientation>1))>>1;
if(orientation&1) b->buf += (w+1)>>1;
if(orientation>1) b->buf += b->stride>>1;
if(level)
b->parent= &s->plane[plane_index].band[level-1][orientation];
b->x = av_mallocz(((b->width+1) * b->height+1)*sizeof(int16_t));
b->coeff= av_mallocz(((b->width+1) * b->height+1)*sizeof(DWTELEM));
}
w= (w+1)>>1;
h= (h+1)>>1;
}
}
reset_contexts(s);
/*
width= s->width= avctx->width;
height= s->height= avctx->height;
assert(width && height);
*/
s->avctx->get_buffer(s->avctx, &s->mconly_picture);
return 0;
}
static void calculate_vissual_weight(SnowContext *s, Plane *p){
int width = p->width;
int height= p->height;
int level, orientation, x, y;
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
DWTELEM *buf= b->buf;
int64_t error=0;
memset(s->spatial_dwt_buffer, 0, sizeof(int)*width*height);
buf[b->width/2 + b->height/2*b->stride]= 256*256;
ff_spatial_idwt(s->spatial_dwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= s->spatial_dwt_buffer[x + y*width];
error += d*d;
}
}
b->qlog= (int)(log(352256.0/sqrt(error)) / log(pow(2.0, 1.0/QROOT))+0.5);
// av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", level, orientation, b->qlog/*, sqrt(error)*/);
}
}
}
static int encode_init(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
int plane_index;
if(avctx->strict_std_compliance >= 0){
av_log(avctx, AV_LOG_ERROR, "this codec is under development, files encoded with it wont be decodeable with future versions!!!\n"
"use vstrict=-1 to use it anyway\n");
return -1;
}
common_init(avctx);
alloc_blocks(s);
s->version=0;
s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
h263_encode_init(&s->m); //mv_penalty
for(plane_index=0; plane_index<3; plane_index++){
calculate_vissual_weight(s, &s->plane[plane_index]);
}
avctx->coded_frame= &s->current_picture;
switch(avctx->pix_fmt){
// case PIX_FMT_YUV444P:
// case PIX_FMT_YUV422P:
case PIX_FMT_YUV420P:
case PIX_FMT_GRAY8:
// case PIX_FMT_YUV411P:
// case PIX_FMT_YUV410P:
s->colorspace_type= 0;
break;
/* case PIX_FMT_RGBA32:
s->colorspace= 1;
break;*/
default:
av_log(avctx, AV_LOG_ERROR, "format not supported\n");
return -1;
}
// avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
s->chroma_h_shift= 1;
s->chroma_v_shift= 1;
return 0;
}
static int frame_start(SnowContext *s){
AVFrame tmp;
int w= s->avctx->width; //FIXME round up to x16 ?
int h= s->avctx->height;
if(s->current_picture.data[0]){
draw_edges(s->current_picture.data[0], s->current_picture.linesize[0], w , h , EDGE_WIDTH );
draw_edges(s->current_picture.data[1], s->current_picture.linesize[1], w>>1, h>>1, EDGE_WIDTH/2);
draw_edges(s->current_picture.data[2], s->current_picture.linesize[2], w>>1, h>>1, EDGE_WIDTH/2);
}
tmp= s->last_picture;
s->last_picture= s->current_picture;
s->current_picture= tmp;
s->current_picture.reference= 1;
if(s->avctx->get_buffer(s->avctx, &s->current_picture) < 0){
av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return -1;
}
return 0;
}
static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
AVFrame *pict = data;
const int width= s->avctx->width;
const int height= s->avctx->height;
int level, orientation, plane_index;
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
s->input_picture = *pict;
s->keyframe=avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
pict->pict_type= s->keyframe ? FF_I_TYPE : FF_P_TYPE;
if(pict->quality){
s->qlog= rint(QROOT*log(pict->quality / (float)FF_QP2LAMBDA)/log(2));
//<64 >60
s->qlog += 61;
}else{
s->qlog= LOSSLESS_QLOG;
}
frame_start(s);
s->current_picture.key_frame= s->keyframe;
if(pict->pict_type == P_TYPE){
int block_width = (width +15)>>4;
int block_height= (height+15)>>4;
int stride= s->current_picture.linesize[0];
assert(s->current_picture.data[0]);
assert(s->last_picture.data[0]);
s->m.avctx= s->avctx;
s->m.current_picture.data[0]= s->current_picture.data[0];
s->m. last_picture.data[0]= s-> last_picture.data[0];
s->m. new_picture.data[0]= s-> input_picture.data[0];
s->m.current_picture_ptr= &s->m.current_picture;
s->m. last_picture_ptr= &s->m. last_picture;
s->m.linesize=
s->m. last_picture.linesize[0]=
s->m. new_picture.linesize[0]=
s->m.current_picture.linesize[0]= stride;
s->m.uvlinesize= s->current_picture.linesize[1];
s->m.width = width;
s->m.height= height;
s->m.mb_width = block_width;
s->m.mb_height= block_height;
s->m.mb_stride= s->m.mb_width+1;
s->m.b8_stride= 2*s->m.mb_width+1;
s->m.f_code=1;
s->m.pict_type= pict->pict_type;
s->m.me_method= s->avctx->me_method;
s->m.me.scene_change_score=0;
s->m.flags= s->avctx->flags;
s->m.quarter_sample= (s->avctx->flags & CODEC_FLAG_QPEL)!=0;
s->m.out_format= FMT_H263;
s->m.unrestricted_mv= 1;
s->lambda = s->m.lambda= pict->quality * 3/2; //FIXME bug somewhere else
s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
s->m.dsp= s->dsp; //move
ff_init_me(&s->m);
}
redo_frame:
s->qbias= pict->pict_type == P_TYPE ? 2 : 0;
encode_header(s);
encode_blocks(s);
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
// int bits= put_bits_count(&s->c.pb);
//FIXME optimize
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
}
}
predict_plane(s, s->spatial_dwt_buffer, plane_index, 0);
if( plane_index==0
&& pict->pict_type == P_TYPE
&& s->m.me.scene_change_score > s->avctx->scenechange_threshold){
ff_init_range_encoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
pict->pict_type= FF_I_TYPE;
s->keyframe=1;
reset_contexts(s);
goto redo_frame;
}
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]= (s->spatial_dwt_buffer[y*w + x] + (1<<(FRAC_BITS-1)))>>FRAC_BITS;
}
}
}
ff_spatial_dwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
quantize(s, b, b->buf, b->stride, s->qbias);
if(orientation==0)
decorrelate(s, b, b->buf, b->stride, pict->pict_type == P_TYPE, 0);
encode_subband(s, b, b->buf, b->parent ? b->parent->buf : NULL, b->stride, orientation);
assert(b->parent==NULL || b->parent->stride == b->stride*2);
if(orientation==0)
correlate(s, b, b->buf, b->stride, 1, 0);
}
}
// av_log(NULL, AV_LOG_DEBUG, "plane:%d bits:%d\n", plane_index, put_bits_count(&s->c.pb) - bits);
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
dequantize(s, b, b->buf, b->stride);
}
}
ff_spatial_idwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]<<=FRAC_BITS;
}
}
}
{START_TIMER
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
STOP_TIMER("pred-conv")}
if(s->avctx->flags&CODEC_FLAG_PSNR){
int64_t error= 0;
if(pict->data[plane_index]) //FIXME gray hack
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int d= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
error += d*d;
}
}
s->avctx->error[plane_index] += error;
s->current_picture.error[plane_index] = error;
}
}
if(s->last_picture.data[0])
avctx->release_buffer(avctx, &s->last_picture);
emms_c();
return ff_rac_terminate(c);
}
static void common_end(SnowContext *s){
int plane_index, level, orientation;
av_freep(&s->spatial_dwt_buffer);
av_freep(&s->m.me.scratchpad);
av_freep(&s->m.me.map);
av_freep(&s->m.me.score_map);
av_freep(&s->block);
for(plane_index=0; plane_index<3; plane_index++){
for(level=s->spatial_decomposition_count-1; level>=0; level--){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &s->plane[plane_index].band[level][orientation];
av_freep(&b->x);
av_freep(&b->coeff);
}
}
}
}
static int encode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
common_end(s);
return 0;
}
static int decode_init(AVCodecContext *avctx)
{
// SnowContext *s = avctx->priv_data;
common_init(avctx);
return 0;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
SnowContext *s = avctx->priv_data;
RangeCoder * const c= &s->c;
int bytes_read;
AVFrame *picture = data;
int level, orientation, plane_index;
/* no supplementary picture */
if (buf_size == 0)
return 0;
ff_init_range_decoder(c, buf, buf_size);
ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
s->current_picture.pict_type= FF_I_TYPE; //FIXME I vs. P
decode_header(s);
if(!s->block) alloc_blocks(s);
frame_start(s);
//keyframe flag dupliaction mess FIXME
if(avctx->debug&FF_DEBUG_PICT_INFO)
av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
decode_blocks(s);
for(plane_index=0; plane_index<3; plane_index++){
Plane *p= &s->plane[plane_index];
int w= p->width;
int h= p->height;
int x, y;
if(s->avctx->debug&2048){
memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
for(y=0; y<h; y++){
for(x=0; x<w; x++){
int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
}
}
}
for(level=0; level<s->spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
SubBand *b= &p->band[level][orientation];
decode_subband(s, b, b->buf, b->parent ? b->parent->buf : NULL, b->stride, orientation);
if(orientation==0){
correlate(s, b, b->buf, b->stride, 1, 0);
dequantize(s, b, b->buf, b->stride);
assert(b->buf == s->spatial_dwt_buffer);
}
}
}
ff_spatial_idwt(s->spatial_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
if(s->qlog == LOSSLESS_QLOG){
for(y=0; y<h; y++){
for(x=0; x<w; x++){
s->spatial_dwt_buffer[y*w + x]<<=FRAC_BITS;
}
}
}
{START_TIMER
predict_plane(s, s->spatial_dwt_buffer, plane_index, 1);
STOP_TIMER("predict_plane conv2")}
}
emms_c();
if(s->last_picture.data[0])
avctx->release_buffer(avctx, &s->last_picture);
if(!(s->avctx->debug&2048))
*picture= s->current_picture;
else
*picture= s->mconly_picture;
*data_size = sizeof(AVFrame);
bytes_read= c->bytestream - c->bytestream_start;
if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
return bytes_read;
}
static int decode_end(AVCodecContext *avctx)
{
SnowContext *s = avctx->priv_data;
common_end(s);
return 0;
}
AVCodec snow_decoder = {
"snow",
CODEC_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
decode_init,
NULL,
decode_end,
decode_frame,
0 /*CODEC_CAP_DR1*/ /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
NULL
};
AVCodec snow_encoder = {
"snow",
CODEC_TYPE_VIDEO,
CODEC_ID_SNOW,
sizeof(SnowContext),
encode_init,
encode_frame,
encode_end,
};
#if 0
#undef malloc
#undef free
#undef printf
int main(){
int width=256;
int height=256;
int buffer[2][width*height];
SnowContext s;
int i;
s.spatial_decomposition_count=6;
s.spatial_decomposition_type=1;
printf("testing 5/3 DWT\n");
for(i=0; i<width*height; i++)
buffer[0][i]= buffer[1][i]= random()%54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(buffer[0][i]!= buffer[1][i]) printf("fsck: %d %d %d\n",i, buffer[0][i], buffer[1][i]);
printf("testing 9/7 DWT\n");
s.spatial_decomposition_type=0;
for(i=0; i<width*height; i++)
buffer[0][i]= buffer[1][i]= random()%54321 - 12345;
ff_spatial_dwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
ff_spatial_idwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(i=0; i<width*height; i++)
if(buffer[0][i]!= buffer[1][i]) printf("fsck: %d %d %d\n",i, buffer[0][i], buffer[1][i]);
printf("testing AC coder\n");
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_encoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
START_TIMER
put_symbol(&s.c, s.header_state, i*i*i/3*ABS(i), 1);
STOP_TIMER("put_symbol")
}
ff_rac_terminate(&s.c);
memset(s.header_state, 0, sizeof(s.header_state));
ff_init_range_decoder(&s.c, buffer[0], 256*256);
ff_init_cabac_states(&s.c, ff_h264_lps_range, ff_h264_mps_state, ff_h264_lps_state, 64);
for(i=-256; i<256; i++){
int j;
START_TIMER
j= get_symbol(&s.c, s.header_state, 1);
STOP_TIMER("get_symbol")
if(j!=i*i*i/3*ABS(i)) printf("fsck: %d != %d\n", i, j);
}
{
int level, orientation, x, y;
int64_t errors[8][4];
int64_t g=0;
memset(errors, 0, sizeof(errors));
s.spatial_decomposition_count=3;
s.spatial_decomposition_type=0;
for(level=0; level<s.spatial_decomposition_count; level++){
for(orientation=level ? 1 : 0; orientation<4; orientation++){
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
if(orientation&1) buf+=w;
if(orientation>1) buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
buf[w/2 + h/2*stride]= 256*256;
ff_spatial_idwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(ABS(width/2-x)<9 && ABS(height/2-y)<9 && level==2) printf("%8lld ", d);
}
if(ABS(height/2-y)<9 && level==2) printf("\n");
}
error= (int)(sqrt(error)+0.5);
errors[level][orientation]= error;
if(g) g=ff_gcd(g, error);
else g= error;
}
}
printf("static int const visual_weight[][4]={\n");
for(level=0; level<s.spatial_decomposition_count; level++){
printf(" {");
for(orientation=0; orientation<4; orientation++){
printf("%8lld,", errors[level][orientation]/g);
}
printf("},\n");
}
printf("};\n");
{
int level=2;
int orientation=3;
int w= width >> (s.spatial_decomposition_count-level);
int h= height >> (s.spatial_decomposition_count-level);
int stride= width << (s.spatial_decomposition_count-level);
DWTELEM *buf= buffer[0];
int64_t error=0;
buf+=w;
buf+=stride>>1;
memset(buffer[0], 0, sizeof(int)*width*height);
#if 1
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int tab[4]={0,2,3,1};
buffer[0][x+width*y]= 256*256*tab[(x&1) + 2*(y&1)];
}
}
ff_spatial_dwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
#else
for(y=0; y<h; y++){
for(x=0; x<w; x++){
buf[x + y*stride ]=169;
buf[x + y*stride-w]=64;
}
}
ff_spatial_idwt(buffer[0], width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
#endif
for(y=0; y<height; y++){
for(x=0; x<width; x++){
int64_t d= buffer[0][x + y*width];
error += d*d;
if(ABS(width/2-x)<9 && ABS(height/2-y)<9) printf("%8lld ", d);
}
if(ABS(height/2-y)<9) printf("\n");
}
}
}
return 0;
}
#endif