Passing an explicit filename to this command is only necessary if the documentation in the @file block refers to a file different from the one the block resides in. Originally committed as revision 22921 to svn://svn.ffmpeg.org/ffmpeg/trunk
		
			
				
	
	
		
			247 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			247 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * principal component analysis (PCA)
 | 
						|
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * principal component analysis (PCA)
 | 
						|
 */
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#include "pca.h"
 | 
						|
 | 
						|
typedef struct PCA{
 | 
						|
    int count;
 | 
						|
    int n;
 | 
						|
    double *covariance;
 | 
						|
    double *mean;
 | 
						|
}PCA;
 | 
						|
 | 
						|
PCA *ff_pca_init(int n){
 | 
						|
    PCA *pca;
 | 
						|
    if(n<=0)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    pca= av_mallocz(sizeof(PCA));
 | 
						|
    pca->n= n;
 | 
						|
    pca->count=0;
 | 
						|
    pca->covariance= av_mallocz(sizeof(double)*n*n);
 | 
						|
    pca->mean= av_mallocz(sizeof(double)*n);
 | 
						|
 | 
						|
    return pca;
 | 
						|
}
 | 
						|
 | 
						|
void ff_pca_free(PCA *pca){
 | 
						|
    av_freep(&pca->covariance);
 | 
						|
    av_freep(&pca->mean);
 | 
						|
    av_free(pca);
 | 
						|
}
 | 
						|
 | 
						|
void ff_pca_add(PCA *pca, double *v){
 | 
						|
    int i, j;
 | 
						|
    const int n= pca->n;
 | 
						|
 | 
						|
    for(i=0; i<n; i++){
 | 
						|
        pca->mean[i] += v[i];
 | 
						|
        for(j=i; j<n; j++)
 | 
						|
            pca->covariance[j + i*n] += v[i]*v[j];
 | 
						|
    }
 | 
						|
    pca->count++;
 | 
						|
}
 | 
						|
 | 
						|
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
 | 
						|
    int i, j, pass;
 | 
						|
    int k=0;
 | 
						|
    const int n= pca->n;
 | 
						|
    double z[n];
 | 
						|
 | 
						|
    memset(eigenvector, 0, sizeof(double)*n*n);
 | 
						|
 | 
						|
    for(j=0; j<n; j++){
 | 
						|
        pca->mean[j] /= pca->count;
 | 
						|
        eigenvector[j + j*n] = 1.0;
 | 
						|
        for(i=0; i<=j; i++){
 | 
						|
            pca->covariance[j + i*n] /= pca->count;
 | 
						|
            pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
 | 
						|
            pca->covariance[i + j*n] = pca->covariance[j + i*n];
 | 
						|
        }
 | 
						|
        eigenvalue[j]= pca->covariance[j + j*n];
 | 
						|
        z[j]= 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for(pass=0; pass < 50; pass++){
 | 
						|
        double sum=0;
 | 
						|
 | 
						|
        for(i=0; i<n; i++)
 | 
						|
            for(j=i+1; j<n; j++)
 | 
						|
                sum += fabs(pca->covariance[j + i*n]);
 | 
						|
 | 
						|
        if(sum == 0){
 | 
						|
            for(i=0; i<n; i++){
 | 
						|
                double maxvalue= -1;
 | 
						|
                for(j=i; j<n; j++){
 | 
						|
                    if(eigenvalue[j] > maxvalue){
 | 
						|
                        maxvalue= eigenvalue[j];
 | 
						|
                        k= j;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                eigenvalue[k]= eigenvalue[i];
 | 
						|
                eigenvalue[i]= maxvalue;
 | 
						|
                for(j=0; j<n; j++){
 | 
						|
                    double tmp= eigenvector[k + j*n];
 | 
						|
                    eigenvector[k + j*n]= eigenvector[i + j*n];
 | 
						|
                    eigenvector[i + j*n]= tmp;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return pass;
 | 
						|
        }
 | 
						|
 | 
						|
        for(i=0; i<n; i++){
 | 
						|
            for(j=i+1; j<n; j++){
 | 
						|
                double covar= pca->covariance[j + i*n];
 | 
						|
                double t,c,s,tau,theta, h;
 | 
						|
 | 
						|
                if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
 | 
						|
                    continue;
 | 
						|
                if(fabs(covar) == 0.0) //FIXME should not be needed
 | 
						|
                    continue;
 | 
						|
                if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
 | 
						|
                    pca->covariance[j + i*n]=0.0;
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
 | 
						|
                theta=0.5*h/covar;
 | 
						|
                t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
 | 
						|
                if(theta < 0.0) t = -t;
 | 
						|
 | 
						|
                c=1.0/sqrt(1+t*t);
 | 
						|
                s=t*c;
 | 
						|
                tau=s/(1.0+c);
 | 
						|
                z[i] -= t*covar;
 | 
						|
                z[j] += t*covar;
 | 
						|
 | 
						|
#define ROTATE(a,i,j,k,l) {\
 | 
						|
    double g=a[j + i*n];\
 | 
						|
    double h=a[l + k*n];\
 | 
						|
    a[j + i*n]=g-s*(h+g*tau);\
 | 
						|
    a[l + k*n]=h+s*(g-h*tau); }
 | 
						|
                for(k=0; k<n; k++) {
 | 
						|
                    if(k!=i && k!=j){
 | 
						|
                        ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
 | 
						|
                    }
 | 
						|
                    ROTATE(eigenvector,k,i,k,j)
 | 
						|
                }
 | 
						|
                pca->covariance[j + i*n]=0.0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (i=0; i<n; i++) {
 | 
						|
            eigenvalue[i] += z[i];
 | 
						|
            z[i]=0.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TEST
 | 
						|
 | 
						|
#undef printf
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include "lfg.h"
 | 
						|
 | 
						|
int main(void){
 | 
						|
    PCA *pca;
 | 
						|
    int i, j, k;
 | 
						|
#define LEN 8
 | 
						|
    double eigenvector[LEN*LEN];
 | 
						|
    double eigenvalue[LEN];
 | 
						|
    AVLFG prng;
 | 
						|
 | 
						|
    av_lfg_init(&prng, 1);
 | 
						|
 | 
						|
    pca= ff_pca_init(LEN);
 | 
						|
 | 
						|
    for(i=0; i<9000000; i++){
 | 
						|
        double v[2*LEN+100];
 | 
						|
        double sum=0;
 | 
						|
        int pos = av_lfg_get(&prng) % LEN;
 | 
						|
        int v2  = av_lfg_get(&prng) % 101 - 50;
 | 
						|
        v[0]    = av_lfg_get(&prng) % 101 - 50;
 | 
						|
        for(j=1; j<8; j++){
 | 
						|
            if(j<=pos) v[j]= v[0];
 | 
						|
            else       v[j]= v2;
 | 
						|
            sum += v[j];
 | 
						|
        }
 | 
						|
/*        for(j=0; j<LEN; j++){
 | 
						|
            v[j] -= v[pos];
 | 
						|
        }*/
 | 
						|
//        sum += av_lfg_get(&prng) % 10;
 | 
						|
/*        for(j=0; j<LEN; j++){
 | 
						|
            v[j] -= sum/LEN;
 | 
						|
        }*/
 | 
						|
//        lbt1(v+100,v+100,LEN);
 | 
						|
        ff_pca_add(pca, v);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    ff_pca(pca, eigenvector, eigenvalue);
 | 
						|
    for(i=0; i<LEN; i++){
 | 
						|
        pca->count= 1;
 | 
						|
        pca->mean[i]= 0;
 | 
						|
 | 
						|
//        (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
 | 
						|
 | 
						|
 | 
						|
//        pca.covariance[i + i*LEN]= pow(0.5, fabs
 | 
						|
        for(j=i; j<LEN; j++){
 | 
						|
            printf("%f ", pca->covariance[i + j*LEN]);
 | 
						|
        }
 | 
						|
        printf("\n");
 | 
						|
    }
 | 
						|
 | 
						|
#if 1
 | 
						|
    for(i=0; i<LEN; i++){
 | 
						|
        double v[LEN];
 | 
						|
        double error=0;
 | 
						|
        memset(v, 0, sizeof(v));
 | 
						|
        for(j=0; j<LEN; j++){
 | 
						|
            for(k=0; k<LEN; k++){
 | 
						|
                v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
 | 
						|
            }
 | 
						|
            v[j] /= eigenvalue[i];
 | 
						|
            error += fabs(v[j] - eigenvector[i + j*LEN]);
 | 
						|
        }
 | 
						|
        printf("%f ", error);
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
#endif
 | 
						|
    for(i=0; i<LEN; i++){
 | 
						|
        for(j=0; j<LEN; j++){
 | 
						|
            printf("%9.6f ", eigenvector[i + j*LEN]);
 | 
						|
        }
 | 
						|
        printf("  %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#endif
 |