ae04de316f
dequantization 24-bit in a separate commit. Originally committed as revision 18887 to svn://svn.ffmpeg.org/ffmpeg/trunk
1368 lines
48 KiB
C
1368 lines
48 KiB
C
/*
|
|
* AC-3 Audio Decoder
|
|
* This code was developed as part of Google Summer of Code 2006.
|
|
* E-AC-3 support was added as part of Google Summer of Code 2007.
|
|
*
|
|
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
|
|
* Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
|
|
* Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stddef.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include "libavutil/crc.h"
|
|
#include "internal.h"
|
|
#include "aac_ac3_parser.h"
|
|
#include "ac3_parser.h"
|
|
#include "ac3dec.h"
|
|
#include "ac3dec_data.h"
|
|
|
|
/** Large enough for maximum possible frame size when the specification limit is ignored */
|
|
#define AC3_FRAME_BUFFER_SIZE 32768
|
|
|
|
/**
|
|
* table for ungrouping 3 values in 7 bits.
|
|
* used for exponents and bap=2 mantissas
|
|
*/
|
|
static uint8_t ungroup_3_in_7_bits_tab[128][3];
|
|
|
|
|
|
/** tables for ungrouping mantissas */
|
|
static int b1_mantissas[32][3];
|
|
static int b2_mantissas[128][3];
|
|
static int b3_mantissas[8];
|
|
static int b4_mantissas[128][2];
|
|
static int b5_mantissas[16];
|
|
|
|
/**
|
|
* Quantization table: levels for symmetric. bits for asymmetric.
|
|
* reference: Table 7.18 Mapping of bap to Quantizer
|
|
*/
|
|
static const uint8_t quantization_tab[16] = {
|
|
0, 3, 5, 7, 11, 15,
|
|
5, 6, 7, 8, 9, 10, 11, 12, 14, 16
|
|
};
|
|
|
|
/** dynamic range table. converts codes to scale factors. */
|
|
static float dynamic_range_tab[256];
|
|
|
|
/** Adjustments in dB gain */
|
|
#define LEVEL_PLUS_3DB 1.4142135623730950
|
|
#define LEVEL_PLUS_1POINT5DB 1.1892071150027209
|
|
#define LEVEL_MINUS_1POINT5DB 0.8408964152537145
|
|
#define LEVEL_MINUS_3DB 0.7071067811865476
|
|
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605
|
|
#define LEVEL_MINUS_6DB 0.5000000000000000
|
|
#define LEVEL_MINUS_9DB 0.3535533905932738
|
|
#define LEVEL_ZERO 0.0000000000000000
|
|
#define LEVEL_ONE 1.0000000000000000
|
|
|
|
static const float gain_levels[9] = {
|
|
LEVEL_PLUS_3DB,
|
|
LEVEL_PLUS_1POINT5DB,
|
|
LEVEL_ONE,
|
|
LEVEL_MINUS_1POINT5DB,
|
|
LEVEL_MINUS_3DB,
|
|
LEVEL_MINUS_4POINT5DB,
|
|
LEVEL_MINUS_6DB,
|
|
LEVEL_ZERO,
|
|
LEVEL_MINUS_9DB
|
|
};
|
|
|
|
/**
|
|
* Table for center mix levels
|
|
* reference: Section 5.4.2.4 cmixlev
|
|
*/
|
|
static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
|
|
|
|
/**
|
|
* Table for surround mix levels
|
|
* reference: Section 5.4.2.5 surmixlev
|
|
*/
|
|
static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
|
|
|
|
/**
|
|
* Table for default stereo downmixing coefficients
|
|
* reference: Section 7.8.2 Downmixing Into Two Channels
|
|
*/
|
|
static const uint8_t ac3_default_coeffs[8][5][2] = {
|
|
{ { 2, 7 }, { 7, 2 }, },
|
|
{ { 4, 4 }, },
|
|
{ { 2, 7 }, { 7, 2 }, },
|
|
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, },
|
|
{ { 2, 7 }, { 7, 2 }, { 6, 6 }, },
|
|
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
|
|
{ { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
|
|
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
|
|
};
|
|
|
|
/**
|
|
* Symmetrical Dequantization
|
|
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
|
|
* Tables 7.19 to 7.23
|
|
*/
|
|
static inline int
|
|
symmetric_dequant(int code, int levels)
|
|
{
|
|
return ((code - (levels >> 1)) << 24) / levels;
|
|
}
|
|
|
|
/*
|
|
* Initialize tables at runtime.
|
|
*/
|
|
static av_cold void ac3_tables_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* generate table for ungrouping 3 values in 7 bits
|
|
reference: Section 7.1.3 Exponent Decoding */
|
|
for(i=0; i<128; i++) {
|
|
ungroup_3_in_7_bits_tab[i][0] = i / 25;
|
|
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
|
|
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
|
|
}
|
|
|
|
/* generate grouped mantissa tables
|
|
reference: Section 7.3.5 Ungrouping of Mantissas */
|
|
for(i=0; i<32; i++) {
|
|
/* bap=1 mantissas */
|
|
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
|
|
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
|
|
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
|
|
}
|
|
for(i=0; i<128; i++) {
|
|
/* bap=2 mantissas */
|
|
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
|
|
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
|
|
b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
|
|
|
|
/* bap=4 mantissas */
|
|
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
|
|
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
|
|
}
|
|
/* generate ungrouped mantissa tables
|
|
reference: Tables 7.21 and 7.23 */
|
|
for(i=0; i<7; i++) {
|
|
/* bap=3 mantissas */
|
|
b3_mantissas[i] = symmetric_dequant(i, 7);
|
|
}
|
|
for(i=0; i<15; i++) {
|
|
/* bap=5 mantissas */
|
|
b5_mantissas[i] = symmetric_dequant(i, 15);
|
|
}
|
|
|
|
/* generate dynamic range table
|
|
reference: Section 7.7.1 Dynamic Range Control */
|
|
for(i=0; i<256; i++) {
|
|
int v = (i >> 5) - ((i >> 7) << 3) - 5;
|
|
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* AVCodec initialization
|
|
*/
|
|
static av_cold int ac3_decode_init(AVCodecContext *avctx)
|
|
{
|
|
AC3DecodeContext *s = avctx->priv_data;
|
|
s->avctx = avctx;
|
|
|
|
ac3_common_init();
|
|
ac3_tables_init();
|
|
ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
|
|
ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
|
|
ff_kbd_window_init(s->window, 5.0, 256);
|
|
dsputil_init(&s->dsp, avctx);
|
|
av_lfg_init(&s->dith_state, 0);
|
|
|
|
/* set bias values for float to int16 conversion */
|
|
if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
|
|
s->add_bias = 385.0f;
|
|
s->mul_bias = 1.0f;
|
|
} else {
|
|
s->add_bias = 0.0f;
|
|
s->mul_bias = 32767.0f;
|
|
}
|
|
|
|
/* allow downmixing to stereo or mono */
|
|
if (avctx->channels > 0 && avctx->request_channels > 0 &&
|
|
avctx->request_channels < avctx->channels &&
|
|
avctx->request_channels <= 2) {
|
|
avctx->channels = avctx->request_channels;
|
|
}
|
|
s->downmixed = 1;
|
|
|
|
/* allocate context input buffer */
|
|
if (avctx->error_recognition >= FF_ER_CAREFUL) {
|
|
s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
|
|
if (!s->input_buffer)
|
|
return AVERROR_NOMEM;
|
|
}
|
|
|
|
avctx->sample_fmt = SAMPLE_FMT_S16;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
|
|
* GetBitContext within AC3DecodeContext must point to
|
|
* the start of the synchronized AC-3 bitstream.
|
|
*/
|
|
static int ac3_parse_header(AC3DecodeContext *s)
|
|
{
|
|
GetBitContext *gbc = &s->gbc;
|
|
int i;
|
|
|
|
/* read the rest of the bsi. read twice for dual mono mode. */
|
|
i = !(s->channel_mode);
|
|
do {
|
|
skip_bits(gbc, 5); // skip dialog normalization
|
|
if (get_bits1(gbc))
|
|
skip_bits(gbc, 8); //skip compression
|
|
if (get_bits1(gbc))
|
|
skip_bits(gbc, 8); //skip language code
|
|
if (get_bits1(gbc))
|
|
skip_bits(gbc, 7); //skip audio production information
|
|
} while (i--);
|
|
|
|
skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
|
|
|
|
/* skip the timecodes (or extra bitstream information for Alternate Syntax)
|
|
TODO: read & use the xbsi1 downmix levels */
|
|
if (get_bits1(gbc))
|
|
skip_bits(gbc, 14); //skip timecode1 / xbsi1
|
|
if (get_bits1(gbc))
|
|
skip_bits(gbc, 14); //skip timecode2 / xbsi2
|
|
|
|
/* skip additional bitstream info */
|
|
if (get_bits1(gbc)) {
|
|
i = get_bits(gbc, 6);
|
|
do {
|
|
skip_bits(gbc, 8);
|
|
} while(i--);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Common function to parse AC-3 or E-AC-3 frame header
|
|
*/
|
|
static int parse_frame_header(AC3DecodeContext *s)
|
|
{
|
|
AC3HeaderInfo hdr;
|
|
int err;
|
|
|
|
err = ff_ac3_parse_header(&s->gbc, &hdr);
|
|
if(err)
|
|
return err;
|
|
|
|
/* get decoding parameters from header info */
|
|
s->bit_alloc_params.sr_code = hdr.sr_code;
|
|
s->channel_mode = hdr.channel_mode;
|
|
s->channel_layout = hdr.channel_layout;
|
|
s->lfe_on = hdr.lfe_on;
|
|
s->bit_alloc_params.sr_shift = hdr.sr_shift;
|
|
s->sample_rate = hdr.sample_rate;
|
|
s->bit_rate = hdr.bit_rate;
|
|
s->channels = hdr.channels;
|
|
s->fbw_channels = s->channels - s->lfe_on;
|
|
s->lfe_ch = s->fbw_channels + 1;
|
|
s->frame_size = hdr.frame_size;
|
|
s->center_mix_level = hdr.center_mix_level;
|
|
s->surround_mix_level = hdr.surround_mix_level;
|
|
s->num_blocks = hdr.num_blocks;
|
|
s->frame_type = hdr.frame_type;
|
|
s->substreamid = hdr.substreamid;
|
|
|
|
if(s->lfe_on) {
|
|
s->start_freq[s->lfe_ch] = 0;
|
|
s->end_freq[s->lfe_ch] = 7;
|
|
s->num_exp_groups[s->lfe_ch] = 2;
|
|
s->channel_in_cpl[s->lfe_ch] = 0;
|
|
}
|
|
|
|
if (hdr.bitstream_id <= 10) {
|
|
s->eac3 = 0;
|
|
s->snr_offset_strategy = 2;
|
|
s->block_switch_syntax = 1;
|
|
s->dither_flag_syntax = 1;
|
|
s->bit_allocation_syntax = 1;
|
|
s->fast_gain_syntax = 0;
|
|
s->first_cpl_leak = 0;
|
|
s->dba_syntax = 1;
|
|
s->skip_syntax = 1;
|
|
memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
|
|
return ac3_parse_header(s);
|
|
} else {
|
|
s->eac3 = 1;
|
|
return ff_eac3_parse_header(s);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set stereo downmixing coefficients based on frame header info.
|
|
* reference: Section 7.8.2 Downmixing Into Two Channels
|
|
*/
|
|
static void set_downmix_coeffs(AC3DecodeContext *s)
|
|
{
|
|
int i;
|
|
float cmix = gain_levels[center_levels[s->center_mix_level]];
|
|
float smix = gain_levels[surround_levels[s->surround_mix_level]];
|
|
float norm0, norm1;
|
|
|
|
for(i=0; i<s->fbw_channels; i++) {
|
|
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
|
|
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
|
|
}
|
|
if(s->channel_mode > 1 && s->channel_mode & 1) {
|
|
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
|
|
}
|
|
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
|
|
int nf = s->channel_mode - 2;
|
|
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
|
|
}
|
|
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
|
|
int nf = s->channel_mode - 4;
|
|
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
|
|
}
|
|
|
|
/* renormalize */
|
|
norm0 = norm1 = 0.0;
|
|
for(i=0; i<s->fbw_channels; i++) {
|
|
norm0 += s->downmix_coeffs[i][0];
|
|
norm1 += s->downmix_coeffs[i][1];
|
|
}
|
|
norm0 = 1.0f / norm0;
|
|
norm1 = 1.0f / norm1;
|
|
for(i=0; i<s->fbw_channels; i++) {
|
|
s->downmix_coeffs[i][0] *= norm0;
|
|
s->downmix_coeffs[i][1] *= norm1;
|
|
}
|
|
|
|
if(s->output_mode == AC3_CHMODE_MONO) {
|
|
for(i=0; i<s->fbw_channels; i++)
|
|
s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode the grouped exponents according to exponent strategy.
|
|
* reference: Section 7.1.3 Exponent Decoding
|
|
*/
|
|
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
|
|
uint8_t absexp, int8_t *dexps)
|
|
{
|
|
int i, j, grp, group_size;
|
|
int dexp[256];
|
|
int expacc, prevexp;
|
|
|
|
/* unpack groups */
|
|
group_size = exp_strategy + (exp_strategy == EXP_D45);
|
|
for(grp=0,i=0; grp<ngrps; grp++) {
|
|
expacc = get_bits(gbc, 7);
|
|
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
|
|
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
|
|
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
|
|
}
|
|
|
|
/* convert to absolute exps and expand groups */
|
|
prevexp = absexp;
|
|
for(i=0,j=0; i<ngrps*3; i++) {
|
|
prevexp += dexp[i] - 2;
|
|
if (prevexp > 24U)
|
|
return -1;
|
|
switch (group_size) {
|
|
case 4: dexps[j++] = prevexp;
|
|
dexps[j++] = prevexp;
|
|
case 2: dexps[j++] = prevexp;
|
|
case 1: dexps[j++] = prevexp;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Generate transform coefficients for each coupled channel in the coupling
|
|
* range using the coupling coefficients and coupling coordinates.
|
|
* reference: Section 7.4.3 Coupling Coordinate Format
|
|
*/
|
|
static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
|
|
{
|
|
int i, j, ch, bnd, subbnd;
|
|
|
|
subbnd = -1;
|
|
i = s->start_freq[CPL_CH];
|
|
for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
|
|
do {
|
|
subbnd++;
|
|
for(j=0; j<12; j++) {
|
|
for(ch=1; ch<=s->fbw_channels; ch++) {
|
|
if(s->channel_in_cpl[ch]) {
|
|
s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
|
|
if (ch == 2 && s->phase_flags[bnd])
|
|
s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
} while(s->cpl_band_struct[subbnd]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Grouped mantissas for 3-level 5-level and 11-level quantization
|
|
*/
|
|
typedef struct {
|
|
int b1_mant[2];
|
|
int b2_mant[2];
|
|
int b4_mant;
|
|
int b1;
|
|
int b2;
|
|
int b4;
|
|
} mant_groups;
|
|
|
|
/**
|
|
* Decode the transform coefficients for a particular channel
|
|
* reference: Section 7.3 Quantization and Decoding of Mantissas
|
|
*/
|
|
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
|
|
{
|
|
int start_freq = s->start_freq[ch_index];
|
|
int end_freq = s->end_freq[ch_index];
|
|
uint8_t *baps = s->bap[ch_index];
|
|
int8_t *exps = s->dexps[ch_index];
|
|
int *coeffs = s->fixed_coeffs[ch_index];
|
|
GetBitContext *gbc = &s->gbc;
|
|
int freq;
|
|
|
|
for(freq = start_freq; freq < end_freq; freq++){
|
|
int bap = baps[freq];
|
|
int mantissa;
|
|
switch(bap){
|
|
case 0:
|
|
mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
|
|
break;
|
|
case 1:
|
|
if(m->b1){
|
|
m->b1--;
|
|
mantissa = m->b1_mant[m->b1];
|
|
}
|
|
else{
|
|
int bits = get_bits(gbc, 5);
|
|
mantissa = b1_mantissas[bits][0];
|
|
m->b1_mant[1] = b1_mantissas[bits][1];
|
|
m->b1_mant[0] = b1_mantissas[bits][2];
|
|
m->b1 = 2;
|
|
}
|
|
break;
|
|
case 2:
|
|
if(m->b2){
|
|
m->b2--;
|
|
mantissa = m->b2_mant[m->b2];
|
|
}
|
|
else{
|
|
int bits = get_bits(gbc, 7);
|
|
mantissa = b2_mantissas[bits][0];
|
|
m->b2_mant[1] = b2_mantissas[bits][1];
|
|
m->b2_mant[0] = b2_mantissas[bits][2];
|
|
m->b2 = 2;
|
|
}
|
|
break;
|
|
case 3:
|
|
mantissa = b3_mantissas[get_bits(gbc, 3)];
|
|
break;
|
|
case 4:
|
|
if(m->b4){
|
|
m->b4 = 0;
|
|
mantissa = m->b4_mant;
|
|
}
|
|
else{
|
|
int bits = get_bits(gbc, 7);
|
|
mantissa = b4_mantissas[bits][0];
|
|
m->b4_mant = b4_mantissas[bits][1];
|
|
m->b4 = 1;
|
|
}
|
|
break;
|
|
case 5:
|
|
mantissa = b5_mantissas[get_bits(gbc, 4)];
|
|
break;
|
|
default: /* 6 to 15 */
|
|
mantissa = get_bits(gbc, quantization_tab[bap]);
|
|
/* Shift mantissa and sign-extend it. */
|
|
mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
|
|
break;
|
|
}
|
|
coeffs[freq] = mantissa >> exps[freq];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove random dithering from coefficients with zero-bit mantissas
|
|
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
|
|
*/
|
|
static void remove_dithering(AC3DecodeContext *s) {
|
|
int ch, i;
|
|
int end=0;
|
|
int *coeffs;
|
|
uint8_t *bap;
|
|
|
|
for(ch=1; ch<=s->fbw_channels; ch++) {
|
|
if(!s->dither_flag[ch]) {
|
|
coeffs = s->fixed_coeffs[ch];
|
|
bap = s->bap[ch];
|
|
if(s->channel_in_cpl[ch])
|
|
end = s->start_freq[CPL_CH];
|
|
else
|
|
end = s->end_freq[ch];
|
|
for(i=0; i<end; i++) {
|
|
if(!bap[i])
|
|
coeffs[i] = 0;
|
|
}
|
|
if(s->channel_in_cpl[ch]) {
|
|
bap = s->bap[CPL_CH];
|
|
for(; i<s->end_freq[CPL_CH]; i++) {
|
|
if(!bap[i])
|
|
coeffs[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
|
|
mant_groups *m)
|
|
{
|
|
if (!s->channel_uses_aht[ch]) {
|
|
ac3_decode_transform_coeffs_ch(s, ch, m);
|
|
} else {
|
|
/* if AHT is used, mantissas for all blocks are encoded in the first
|
|
block of the frame. */
|
|
int bin;
|
|
if (!blk)
|
|
ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
|
|
for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
|
|
s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode the transform coefficients.
|
|
*/
|
|
static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
|
|
{
|
|
int ch, end;
|
|
int got_cplchan = 0;
|
|
mant_groups m;
|
|
|
|
m.b1 = m.b2 = m.b4 = 0;
|
|
|
|
for (ch = 1; ch <= s->channels; ch++) {
|
|
/* transform coefficients for full-bandwidth channel */
|
|
decode_transform_coeffs_ch(s, blk, ch, &m);
|
|
/* tranform coefficients for coupling channel come right after the
|
|
coefficients for the first coupled channel*/
|
|
if (s->channel_in_cpl[ch]) {
|
|
if (!got_cplchan) {
|
|
decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
|
|
calc_transform_coeffs_cpl(s);
|
|
got_cplchan = 1;
|
|
}
|
|
end = s->end_freq[CPL_CH];
|
|
} else {
|
|
end = s->end_freq[ch];
|
|
}
|
|
do
|
|
s->fixed_coeffs[ch][end] = 0;
|
|
while(++end < 256);
|
|
}
|
|
|
|
/* zero the dithered coefficients for appropriate channels */
|
|
remove_dithering(s);
|
|
}
|
|
|
|
/**
|
|
* Stereo rematrixing.
|
|
* reference: Section 7.5.4 Rematrixing : Decoding Technique
|
|
*/
|
|
static void do_rematrixing(AC3DecodeContext *s)
|
|
{
|
|
int bnd, i;
|
|
int end, bndend;
|
|
int tmp0, tmp1;
|
|
|
|
end = FFMIN(s->end_freq[1], s->end_freq[2]);
|
|
|
|
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
|
|
if(s->rematrixing_flags[bnd]) {
|
|
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
|
|
for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
|
|
tmp0 = s->fixed_coeffs[1][i];
|
|
tmp1 = s->fixed_coeffs[2][i];
|
|
s->fixed_coeffs[1][i] = tmp0 + tmp1;
|
|
s->fixed_coeffs[2][i] = tmp0 - tmp1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Inverse MDCT Transform.
|
|
* Convert frequency domain coefficients to time-domain audio samples.
|
|
* reference: Section 7.9.4 Transformation Equations
|
|
*/
|
|
static inline void do_imdct(AC3DecodeContext *s, int channels)
|
|
{
|
|
int ch;
|
|
float add_bias = s->add_bias;
|
|
if(s->out_channels==1 && channels>1)
|
|
add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
|
|
|
|
for (ch=1; ch<=channels; ch++) {
|
|
if (s->block_switch[ch]) {
|
|
int i;
|
|
float *x = s->tmp_output+128;
|
|
for(i=0; i<128; i++)
|
|
x[i] = s->transform_coeffs[ch][2*i];
|
|
ff_imdct_half(&s->imdct_256, s->tmp_output, x);
|
|
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
|
|
for(i=0; i<128; i++)
|
|
x[i] = s->transform_coeffs[ch][2*i+1];
|
|
ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
|
|
} else {
|
|
ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
|
|
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
|
|
memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Downmix the output to mono or stereo.
|
|
*/
|
|
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
|
|
{
|
|
int i, j;
|
|
float v0, v1;
|
|
if(out_ch == 2) {
|
|
for(i=0; i<len; i++) {
|
|
v0 = v1 = 0.0f;
|
|
for(j=0; j<in_ch; j++) {
|
|
v0 += samples[j][i] * matrix[j][0];
|
|
v1 += samples[j][i] * matrix[j][1];
|
|
}
|
|
samples[0][i] = v0;
|
|
samples[1][i] = v1;
|
|
}
|
|
} else if(out_ch == 1) {
|
|
for(i=0; i<len; i++) {
|
|
v0 = 0.0f;
|
|
for(j=0; j<in_ch; j++)
|
|
v0 += samples[j][i] * matrix[j][0];
|
|
samples[0][i] = v0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Upmix delay samples from stereo to original channel layout.
|
|
*/
|
|
static void ac3_upmix_delay(AC3DecodeContext *s)
|
|
{
|
|
int channel_data_size = sizeof(s->delay[0]);
|
|
switch(s->channel_mode) {
|
|
case AC3_CHMODE_DUALMONO:
|
|
case AC3_CHMODE_STEREO:
|
|
/* upmix mono to stereo */
|
|
memcpy(s->delay[1], s->delay[0], channel_data_size);
|
|
break;
|
|
case AC3_CHMODE_2F2R:
|
|
memset(s->delay[3], 0, channel_data_size);
|
|
case AC3_CHMODE_2F1R:
|
|
memset(s->delay[2], 0, channel_data_size);
|
|
break;
|
|
case AC3_CHMODE_3F2R:
|
|
memset(s->delay[4], 0, channel_data_size);
|
|
case AC3_CHMODE_3F1R:
|
|
memset(s->delay[3], 0, channel_data_size);
|
|
case AC3_CHMODE_3F:
|
|
memcpy(s->delay[2], s->delay[1], channel_data_size);
|
|
memset(s->delay[1], 0, channel_data_size);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Decode band structure for coupling, spectral extension, or enhanced coupling.
|
|
* @param[in] gbc bit reader context
|
|
* @param[in] blk block number
|
|
* @param[in] eac3 flag to indicate E-AC-3
|
|
* @param[in] ecpl flag to indicate enhanced coupling
|
|
* @param[in] start_subband subband number for start of range
|
|
* @param[in] end_subband subband number for end of range
|
|
* @param[in] default_band_struct default band structure table
|
|
* @param[out] band_struct decoded band structure
|
|
* @param[out] num_bands number of bands (optionally NULL)
|
|
* @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
|
|
*/
|
|
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
|
|
int ecpl, int start_subband, int end_subband,
|
|
const uint8_t *default_band_struct,
|
|
uint8_t *band_struct, int *num_bands,
|
|
uint8_t *band_sizes)
|
|
{
|
|
int subbnd, bnd, n_subbands, n_bands=0;
|
|
uint8_t bnd_sz[22];
|
|
|
|
n_subbands = end_subband - start_subband;
|
|
|
|
/* decode band structure from bitstream or use default */
|
|
if (!eac3 || get_bits1(gbc)) {
|
|
for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
|
|
band_struct[subbnd] = get_bits1(gbc);
|
|
}
|
|
} else if (!blk) {
|
|
memcpy(band_struct,
|
|
&default_band_struct[start_subband+1],
|
|
n_subbands-1);
|
|
}
|
|
band_struct[n_subbands-1] = 0;
|
|
|
|
/* calculate number of bands and band sizes based on band structure.
|
|
note that the first 4 subbands in enhanced coupling span only 6 bins
|
|
instead of 12. */
|
|
if (num_bands || band_sizes ) {
|
|
n_bands = n_subbands;
|
|
bnd_sz[0] = ecpl ? 6 : 12;
|
|
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
|
|
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
|
|
if (band_struct[subbnd-1]) {
|
|
n_bands--;
|
|
bnd_sz[bnd] += subbnd_size;
|
|
} else {
|
|
bnd_sz[++bnd] = subbnd_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* set optional output params */
|
|
if (num_bands)
|
|
*num_bands = n_bands;
|
|
if (band_sizes)
|
|
memcpy(band_sizes, bnd_sz, n_bands);
|
|
}
|
|
|
|
/**
|
|
* Decode a single audio block from the AC-3 bitstream.
|
|
*/
|
|
static int decode_audio_block(AC3DecodeContext *s, int blk)
|
|
{
|
|
int fbw_channels = s->fbw_channels;
|
|
int channel_mode = s->channel_mode;
|
|
int i, bnd, seg, ch;
|
|
int different_transforms;
|
|
int downmix_output;
|
|
int cpl_in_use;
|
|
GetBitContext *gbc = &s->gbc;
|
|
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
|
|
|
|
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
|
|
|
|
/* block switch flags */
|
|
different_transforms = 0;
|
|
if (s->block_switch_syntax) {
|
|
for (ch = 1; ch <= fbw_channels; ch++) {
|
|
s->block_switch[ch] = get_bits1(gbc);
|
|
if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
|
|
different_transforms = 1;
|
|
}
|
|
}
|
|
|
|
/* dithering flags */
|
|
if (s->dither_flag_syntax) {
|
|
for (ch = 1; ch <= fbw_channels; ch++) {
|
|
s->dither_flag[ch] = get_bits1(gbc);
|
|
}
|
|
}
|
|
|
|
/* dynamic range */
|
|
i = !(s->channel_mode);
|
|
do {
|
|
if(get_bits1(gbc)) {
|
|
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
|
|
s->avctx->drc_scale)+1.0;
|
|
} else if(blk == 0) {
|
|
s->dynamic_range[i] = 1.0f;
|
|
}
|
|
} while(i--);
|
|
|
|
/* spectral extension strategy */
|
|
if (s->eac3 && (!blk || get_bits1(gbc))) {
|
|
if (get_bits1(gbc)) {
|
|
ff_log_missing_feature(s->avctx, "Spectral extension", 1);
|
|
return -1;
|
|
}
|
|
/* TODO: parse spectral extension strategy info */
|
|
}
|
|
|
|
/* TODO: spectral extension coordinates */
|
|
|
|
/* coupling strategy */
|
|
if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
|
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
|
if (!s->eac3)
|
|
s->cpl_in_use[blk] = get_bits1(gbc);
|
|
if (s->cpl_in_use[blk]) {
|
|
/* coupling in use */
|
|
int cpl_start_subband, cpl_end_subband;
|
|
|
|
if (channel_mode < AC3_CHMODE_STEREO) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
|
|
return -1;
|
|
}
|
|
|
|
/* check for enhanced coupling */
|
|
if (s->eac3 && get_bits1(gbc)) {
|
|
/* TODO: parse enhanced coupling strategy info */
|
|
ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
|
|
return -1;
|
|
}
|
|
|
|
/* determine which channels are coupled */
|
|
if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
|
|
s->channel_in_cpl[1] = 1;
|
|
s->channel_in_cpl[2] = 1;
|
|
} else {
|
|
for (ch = 1; ch <= fbw_channels; ch++)
|
|
s->channel_in_cpl[ch] = get_bits1(gbc);
|
|
}
|
|
|
|
/* phase flags in use */
|
|
if (channel_mode == AC3_CHMODE_STEREO)
|
|
s->phase_flags_in_use = get_bits1(gbc);
|
|
|
|
/* coupling frequency range */
|
|
/* TODO: modify coupling end freq if spectral extension is used */
|
|
cpl_start_subband = get_bits(gbc, 4);
|
|
cpl_end_subband = get_bits(gbc, 4) + 3;
|
|
if (cpl_start_subband >= cpl_end_subband) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
|
|
cpl_start_subband, cpl_end_subband);
|
|
return -1;
|
|
}
|
|
s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
|
|
s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
|
|
|
|
decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
|
|
cpl_end_subband,
|
|
ff_eac3_default_cpl_band_struct,
|
|
s->cpl_band_struct, &s->num_cpl_bands, NULL);
|
|
} else {
|
|
/* coupling not in use */
|
|
for (ch = 1; ch <= fbw_channels; ch++) {
|
|
s->channel_in_cpl[ch] = 0;
|
|
s->first_cpl_coords[ch] = 1;
|
|
}
|
|
s->first_cpl_leak = s->eac3;
|
|
s->phase_flags_in_use = 0;
|
|
}
|
|
} else if (!s->eac3) {
|
|
if(!blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
|
|
return -1;
|
|
} else {
|
|
s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
|
|
}
|
|
}
|
|
cpl_in_use = s->cpl_in_use[blk];
|
|
|
|
/* coupling coordinates */
|
|
if (cpl_in_use) {
|
|
int cpl_coords_exist = 0;
|
|
|
|
for (ch = 1; ch <= fbw_channels; ch++) {
|
|
if (s->channel_in_cpl[ch]) {
|
|
if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
|
|
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
|
|
s->first_cpl_coords[ch] = 0;
|
|
cpl_coords_exist = 1;
|
|
master_cpl_coord = 3 * get_bits(gbc, 2);
|
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
|
|
cpl_coord_exp = get_bits(gbc, 4);
|
|
cpl_coord_mant = get_bits(gbc, 4);
|
|
if (cpl_coord_exp == 15)
|
|
s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
|
|
else
|
|
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
|
|
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
|
|
}
|
|
} else if (!blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* channel not in coupling */
|
|
s->first_cpl_coords[ch] = 1;
|
|
}
|
|
}
|
|
/* phase flags */
|
|
if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
|
|
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
|
|
s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* stereo rematrixing strategy and band structure */
|
|
if (channel_mode == AC3_CHMODE_STEREO) {
|
|
if ((s->eac3 && !blk) || get_bits1(gbc)) {
|
|
s->num_rematrixing_bands = 4;
|
|
if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
|
|
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
|
|
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
|
|
s->rematrixing_flags[bnd] = get_bits1(gbc);
|
|
} else if (!blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* exponent strategies for each channel */
|
|
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
|
if (!s->eac3)
|
|
s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
|
|
if(s->exp_strategy[blk][ch] != EXP_REUSE)
|
|
bit_alloc_stages[ch] = 3;
|
|
}
|
|
|
|
/* channel bandwidth */
|
|
for (ch = 1; ch <= fbw_channels; ch++) {
|
|
s->start_freq[ch] = 0;
|
|
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
|
int group_size;
|
|
int prev = s->end_freq[ch];
|
|
if (s->channel_in_cpl[ch])
|
|
s->end_freq[ch] = s->start_freq[CPL_CH];
|
|
else {
|
|
int bandwidth_code = get_bits(gbc, 6);
|
|
if (bandwidth_code > 60) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
|
|
return -1;
|
|
}
|
|
s->end_freq[ch] = bandwidth_code * 3 + 73;
|
|
}
|
|
group_size = 3 << (s->exp_strategy[blk][ch] - 1);
|
|
s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
|
|
if(blk > 0 && s->end_freq[ch] != prev)
|
|
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
|
}
|
|
}
|
|
if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
|
|
s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
|
|
(3 << (s->exp_strategy[blk][CPL_CH] - 1));
|
|
}
|
|
|
|
/* decode exponents for each channel */
|
|
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
|
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
|
s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
|
|
if (decode_exponents(gbc, s->exp_strategy[blk][ch],
|
|
s->num_exp_groups[ch], s->dexps[ch][0],
|
|
&s->dexps[ch][s->start_freq[ch]+!!ch])) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
|
|
return -1;
|
|
}
|
|
if(ch != CPL_CH && ch != s->lfe_ch)
|
|
skip_bits(gbc, 2); /* skip gainrng */
|
|
}
|
|
}
|
|
|
|
/* bit allocation information */
|
|
if (s->bit_allocation_syntax) {
|
|
if (get_bits1(gbc)) {
|
|
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
|
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
|
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
|
|
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
|
|
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
|
|
for(ch=!cpl_in_use; ch<=s->channels; ch++)
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
|
} else if (!blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
|
|
if(!s->eac3 || !blk){
|
|
if(s->snr_offset_strategy && get_bits1(gbc)) {
|
|
int snr = 0;
|
|
int csnr;
|
|
csnr = (get_bits(gbc, 6) - 15) << 4;
|
|
for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
|
|
/* snr offset */
|
|
if (ch == i || s->snr_offset_strategy == 2)
|
|
snr = (csnr + get_bits(gbc, 4)) << 2;
|
|
/* run at least last bit allocation stage if snr offset changes */
|
|
if(blk && s->snr_offset[ch] != snr) {
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
|
|
}
|
|
s->snr_offset[ch] = snr;
|
|
|
|
/* fast gain (normal AC-3 only) */
|
|
if (!s->eac3) {
|
|
int prev = s->fast_gain[ch];
|
|
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
|
/* run last 2 bit allocation stages if fast gain changes */
|
|
if(blk && prev != s->fast_gain[ch])
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
|
}
|
|
}
|
|
} else if (!s->eac3 && !blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* fast gain (E-AC-3 only) */
|
|
if (s->fast_gain_syntax && get_bits1(gbc)) {
|
|
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
|
int prev = s->fast_gain[ch];
|
|
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
|
/* run last 2 bit allocation stages if fast gain changes */
|
|
if(blk && prev != s->fast_gain[ch])
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
|
}
|
|
} else if (s->eac3 && !blk) {
|
|
for (ch = !cpl_in_use; ch <= s->channels; ch++)
|
|
s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
|
|
}
|
|
|
|
/* E-AC-3 to AC-3 converter SNR offset */
|
|
if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
|
|
skip_bits(gbc, 10); // skip converter snr offset
|
|
}
|
|
|
|
/* coupling leak information */
|
|
if (cpl_in_use) {
|
|
if (s->first_cpl_leak || get_bits1(gbc)) {
|
|
int fl = get_bits(gbc, 3);
|
|
int sl = get_bits(gbc, 3);
|
|
/* run last 2 bit allocation stages for coupling channel if
|
|
coupling leak changes */
|
|
if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
|
|
sl != s->bit_alloc_params.cpl_slow_leak)) {
|
|
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
|
|
}
|
|
s->bit_alloc_params.cpl_fast_leak = fl;
|
|
s->bit_alloc_params.cpl_slow_leak = sl;
|
|
} else if (!s->eac3 && !blk) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
|
|
return -1;
|
|
}
|
|
s->first_cpl_leak = 0;
|
|
}
|
|
|
|
/* delta bit allocation information */
|
|
if (s->dba_syntax && get_bits1(gbc)) {
|
|
/* delta bit allocation exists (strategy) */
|
|
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
|
s->dba_mode[ch] = get_bits(gbc, 2);
|
|
if (s->dba_mode[ch] == DBA_RESERVED) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
|
return -1;
|
|
}
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
|
}
|
|
/* channel delta offset, len and bit allocation */
|
|
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
|
if (s->dba_mode[ch] == DBA_NEW) {
|
|
s->dba_nsegs[ch] = get_bits(gbc, 3);
|
|
for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
|
|
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
|
|
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
|
|
s->dba_values[ch][seg] = get_bits(gbc, 3);
|
|
}
|
|
/* run last 2 bit allocation stages if new dba values */
|
|
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
|
}
|
|
}
|
|
} else if(blk == 0) {
|
|
for(ch=0; ch<=s->channels; ch++) {
|
|
s->dba_mode[ch] = DBA_NONE;
|
|
}
|
|
}
|
|
|
|
/* Bit allocation */
|
|
for(ch=!cpl_in_use; ch<=s->channels; ch++) {
|
|
if(bit_alloc_stages[ch] > 2) {
|
|
/* Exponent mapping into PSD and PSD integration */
|
|
ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
|
|
s->start_freq[ch], s->end_freq[ch],
|
|
s->psd[ch], s->band_psd[ch]);
|
|
}
|
|
if(bit_alloc_stages[ch] > 1) {
|
|
/* Compute excitation function, Compute masking curve, and
|
|
Apply delta bit allocation */
|
|
if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
|
|
s->start_freq[ch], s->end_freq[ch],
|
|
s->fast_gain[ch], (ch == s->lfe_ch),
|
|
s->dba_mode[ch], s->dba_nsegs[ch],
|
|
s->dba_offsets[ch], s->dba_lengths[ch],
|
|
s->dba_values[ch], s->mask[ch])) {
|
|
av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
|
|
return -1;
|
|
}
|
|
}
|
|
if(bit_alloc_stages[ch] > 0) {
|
|
/* Compute bit allocation */
|
|
const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
|
|
ff_eac3_hebap_tab : ff_ac3_bap_tab;
|
|
ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
|
|
s->start_freq[ch], s->end_freq[ch],
|
|
s->snr_offset[ch],
|
|
s->bit_alloc_params.floor,
|
|
bap_tab, s->bap[ch]);
|
|
}
|
|
}
|
|
|
|
/* unused dummy data */
|
|
if (s->skip_syntax && get_bits1(gbc)) {
|
|
int skipl = get_bits(gbc, 9);
|
|
while(skipl--)
|
|
skip_bits(gbc, 8);
|
|
}
|
|
|
|
/* unpack the transform coefficients
|
|
this also uncouples channels if coupling is in use. */
|
|
decode_transform_coeffs(s, blk);
|
|
|
|
/* TODO: generate enhanced coupling coordinates and uncouple */
|
|
|
|
/* TODO: apply spectral extension */
|
|
|
|
/* recover coefficients if rematrixing is in use */
|
|
if(s->channel_mode == AC3_CHMODE_STEREO)
|
|
do_rematrixing(s);
|
|
|
|
/* apply scaling to coefficients (headroom, dynrng) */
|
|
for(ch=1; ch<=s->channels; ch++) {
|
|
float gain = s->mul_bias / 4194304.0f;
|
|
if(s->channel_mode == AC3_CHMODE_DUALMONO) {
|
|
gain *= s->dynamic_range[ch-1];
|
|
} else {
|
|
gain *= s->dynamic_range[0];
|
|
}
|
|
s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
|
|
}
|
|
|
|
/* downmix and MDCT. order depends on whether block switching is used for
|
|
any channel in this block. this is because coefficients for the long
|
|
and short transforms cannot be mixed. */
|
|
downmix_output = s->channels != s->out_channels &&
|
|
!((s->output_mode & AC3_OUTPUT_LFEON) &&
|
|
s->fbw_channels == s->out_channels);
|
|
if(different_transforms) {
|
|
/* the delay samples have already been downmixed, so we upmix the delay
|
|
samples in order to reconstruct all channels before downmixing. */
|
|
if(s->downmixed) {
|
|
s->downmixed = 0;
|
|
ac3_upmix_delay(s);
|
|
}
|
|
|
|
do_imdct(s, s->channels);
|
|
|
|
if(downmix_output) {
|
|
s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
|
|
}
|
|
} else {
|
|
if(downmix_output) {
|
|
s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
|
|
}
|
|
|
|
if(downmix_output && !s->downmixed) {
|
|
s->downmixed = 1;
|
|
s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
|
|
}
|
|
|
|
do_imdct(s, s->out_channels);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Decode a single AC-3 frame.
|
|
*/
|
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
|
|
AVPacket *avpkt)
|
|
{
|
|
const uint8_t *buf = avpkt->data;
|
|
int buf_size = avpkt->size;
|
|
AC3DecodeContext *s = avctx->priv_data;
|
|
int16_t *out_samples = (int16_t *)data;
|
|
int blk, ch, err;
|
|
const uint8_t *channel_map;
|
|
const float *output[AC3_MAX_CHANNELS];
|
|
|
|
/* initialize the GetBitContext with the start of valid AC-3 Frame */
|
|
if (s->input_buffer) {
|
|
/* copy input buffer to decoder context to avoid reading past the end
|
|
of the buffer, which can be caused by a damaged input stream. */
|
|
memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
|
|
init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
|
|
} else {
|
|
init_get_bits(&s->gbc, buf, buf_size * 8);
|
|
}
|
|
|
|
/* parse the syncinfo */
|
|
*data_size = 0;
|
|
err = parse_frame_header(s);
|
|
|
|
/* check that reported frame size fits in input buffer */
|
|
if(s->frame_size > buf_size) {
|
|
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
|
err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
|
|
}
|
|
|
|
/* check for crc mismatch */
|
|
if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
|
|
if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
|
|
av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
|
|
err = AAC_AC3_PARSE_ERROR_CRC;
|
|
}
|
|
}
|
|
|
|
if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
|
|
switch(err) {
|
|
case AAC_AC3_PARSE_ERROR_SYNC:
|
|
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
|
|
return -1;
|
|
case AAC_AC3_PARSE_ERROR_BSID:
|
|
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
|
|
break;
|
|
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
|
|
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
|
break;
|
|
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
|
|
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
|
|
break;
|
|
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
|
|
/* skip frame if CRC is ok. otherwise use error concealment. */
|
|
/* TODO: add support for substreams and dependent frames */
|
|
if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
|
|
av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
|
|
return s->frame_size;
|
|
} else {
|
|
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
|
|
}
|
|
break;
|
|
default:
|
|
av_log(avctx, AV_LOG_ERROR, "invalid header\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* if frame is ok, set audio parameters */
|
|
if (!err) {
|
|
avctx->sample_rate = s->sample_rate;
|
|
avctx->bit_rate = s->bit_rate;
|
|
|
|
/* channel config */
|
|
s->out_channels = s->channels;
|
|
s->output_mode = s->channel_mode;
|
|
if(s->lfe_on)
|
|
s->output_mode |= AC3_OUTPUT_LFEON;
|
|
if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
|
|
avctx->request_channels < s->channels) {
|
|
s->out_channels = avctx->request_channels;
|
|
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
|
s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
|
|
}
|
|
avctx->channels = s->out_channels;
|
|
avctx->channel_layout = s->channel_layout;
|
|
|
|
/* set downmixing coefficients if needed */
|
|
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
|
|
s->fbw_channels == s->out_channels)) {
|
|
set_downmix_coeffs(s);
|
|
}
|
|
} else if (!s->out_channels) {
|
|
s->out_channels = avctx->channels;
|
|
if(s->out_channels < s->channels)
|
|
s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
|
}
|
|
|
|
/* decode the audio blocks */
|
|
channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
|
|
for (ch = 0; ch < s->out_channels; ch++)
|
|
output[ch] = s->output[channel_map[ch]];
|
|
for (blk = 0; blk < s->num_blocks; blk++) {
|
|
if (!err && decode_audio_block(s, blk)) {
|
|
av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
|
|
err = 1;
|
|
}
|
|
s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
|
|
out_samples += 256 * s->out_channels;
|
|
}
|
|
*data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
|
|
return s->frame_size;
|
|
}
|
|
|
|
/**
|
|
* Uninitialize the AC-3 decoder.
|
|
*/
|
|
static av_cold int ac3_decode_end(AVCodecContext *avctx)
|
|
{
|
|
AC3DecodeContext *s = avctx->priv_data;
|
|
ff_mdct_end(&s->imdct_512);
|
|
ff_mdct_end(&s->imdct_256);
|
|
|
|
av_freep(&s->input_buffer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
AVCodec ac3_decoder = {
|
|
.name = "ac3",
|
|
.type = CODEC_TYPE_AUDIO,
|
|
.id = CODEC_ID_AC3,
|
|
.priv_data_size = sizeof (AC3DecodeContext),
|
|
.init = ac3_decode_init,
|
|
.close = ac3_decode_end,
|
|
.decode = ac3_decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
|
};
|
|
|
|
AVCodec eac3_decoder = {
|
|
.name = "eac3",
|
|
.type = CODEC_TYPE_AUDIO,
|
|
.id = CODEC_ID_EAC3,
|
|
.priv_data_size = sizeof (AC3DecodeContext),
|
|
.init = ac3_decode_init,
|
|
.close = ac3_decode_end,
|
|
.decode = ac3_decode_frame,
|
|
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
|
|
};
|