ffmpeg/libavcodec/aacenc_quantization.h
Claudio Freire 8df9bf8e39 AAC encoder: refactor to resynchronize MIPS port
This patch refactors the AAC coders to reuse code
between the MIPS port and the regular, portable C code.
There were two main functions that had to use
hand-optimized versions of quantization code:
 - search_for_quantizers_twoloop
 - codebook_trellis_rate

Those two were split into their own template header
files so they can be inlined inside both the MIPS port
and the generic code. In each context, they'll link
to their specialized implementations, and thus be
optimized by the compiler.

This approach I believe is better than maintaining
several copies of each function. As past experience has
proven, having to keep those in sync was error prone.
In this way, they will remain in sync by default.

Also, an implementation of the dequantized output
argument for the optimized quantize_and_encode
functions is included in the patch. While the current
implementation of search_for_pred still isn't using
it, future iterations of main prediction probably will.
It should not imply any measurable performance hit while
not being used.
2015-09-16 23:14:26 -03:00

275 lines
12 KiB
C

/*
* AAC encoder intensity stereo
* Copyright (C) 2015 Rostislav Pehlivanov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder quantizer
* @author Rostislav Pehlivanov ( atomnuker gmail com )
*/
#ifndef AVCODEC_AACENC_QUANTIZATION_H
#define AVCODEC_AACENC_QUANTIZATION_H
#include "aactab.h"
#include "aacenc.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
/**
* Calculate rate distortion cost for quantizing with given codebook
*
* @return quantization distortion
*/
static av_always_inline float quantize_and_encode_band_cost_template(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *out,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int BT_ZERO, int BT_UNSIGNED,
int BT_PAIR, int BT_ESC, int BT_NOISE, int BT_STEREO,
const float ROUNDING)
{
const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512;
const float Q = ff_aac_pow2sf_tab [q_idx];
const float Q34 = ff_aac_pow34sf_tab[q_idx];
const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
const float CLIPPED_ESCAPE = 165140.0f*IQ;
int i, j;
float cost = 0;
const int dim = BT_PAIR ? 2 : 4;
int resbits = 0;
int off;
if (BT_ZERO || BT_NOISE || BT_STEREO) {
for (i = 0; i < size; i++)
cost += in[i]*in[i];
if (bits)
*bits = 0;
if (out) {
for (i = 0; i < size; i += dim)
for (j = 0; j < dim; j++)
out[i+j] = 0.0f;
}
return cost * lambda;
}
if (!scaled) {
abs_pow34_v(s->scoefs, in, size);
scaled = s->scoefs;
}
quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, aac_cb_maxval[cb], ROUNDING);
if (BT_UNSIGNED) {
off = 0;
} else {
off = aac_cb_maxval[cb];
}
for (i = 0; i < size; i += dim) {
const float *vec;
int *quants = s->qcoefs + i;
int curidx = 0;
int curbits;
float quantized, rd = 0.0f;
for (j = 0; j < dim; j++) {
curidx *= aac_cb_range[cb];
curidx += quants[j] + off;
}
curbits = ff_aac_spectral_bits[cb-1][curidx];
vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
if (BT_UNSIGNED) {
for (j = 0; j < dim; j++) {
float t = fabsf(in[i+j]);
float di;
if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
if (t >= CLIPPED_ESCAPE) {
quantized = CLIPPED_ESCAPE;
curbits += 21;
} else {
int c = av_clip_uintp2(quant(t, Q, ROUNDING), 13);
quantized = c*cbrtf(c)*IQ;
curbits += av_log2(c)*2 - 4 + 1;
}
} else {
quantized = vec[j]*IQ;
}
di = t - quantized;
if (out)
out[i+j] = in[i+j] >= 0 ? quantized : -quantized;
if (vec[j] != 0.0f)
curbits++;
rd += di*di;
}
} else {
for (j = 0; j < dim; j++) {
quantized = vec[j]*IQ;
if (out)
out[i+j] = quantized;
rd += (in[i+j] - quantized)*(in[i+j] - quantized);
}
}
cost += rd * lambda + curbits;
resbits += curbits;
if (cost >= uplim)
return uplim;
if (pb) {
put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
if (BT_UNSIGNED)
for (j = 0; j < dim; j++)
if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
put_bits(pb, 1, in[i+j] < 0.0f);
if (BT_ESC) {
for (j = 0; j < 2; j++) {
if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
int coef = av_clip_uintp2(quant(fabsf(in[i+j]), Q, ROUNDING), 13);
int len = av_log2(coef);
put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
put_sbits(pb, len, coef);
}
}
}
}
}
if (bits)
*bits = resbits;
return cost;
}
static inline float quantize_and_encode_band_cost_NONE(struct AACEncContext *s, PutBitContext *pb,
const float *in, float *quant, const float *scaled,
int size, int scale_idx, int cb,
const float lambda, const float uplim,
int *bits) {
av_assert0(0);
return 0.0f;
}
#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, ROUNDING) \
static float quantize_and_encode_band_cost_ ## NAME( \
struct AACEncContext *s, \
PutBitContext *pb, const float *in, float *quant, \
const float *scaled, int size, int scale_idx, \
int cb, const float lambda, const float uplim, \
int *bits) { \
return quantize_and_encode_band_cost_template( \
s, pb, in, quant, scaled, size, scale_idx, \
BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC, BT_NOISE, BT_STEREO, \
ROUNDING); \
}
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1, 0, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC_RTZ, 0, 1, 1, 1, 0, 0, ROUND_TO_ZERO)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NOISE, 0, 0, 0, 0, 1, 0, ROUND_STANDARD)
QUANTIZE_AND_ENCODE_BAND_COST_FUNC(STEREO,0, 0, 0, 0, 0, 1, ROUND_STANDARD)
static float (*const quantize_and_encode_band_cost_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *quant,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
static float (*const quantize_and_encode_band_cost_rtz_arr[])(
struct AACEncContext *s,
PutBitContext *pb, const float *in, float *quant,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits) = {
quantize_and_encode_band_cost_ZERO,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_SQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_UQUAD,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_SPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_UPAIR,
quantize_and_encode_band_cost_ESC_RTZ,
quantize_and_encode_band_cost_NONE, /* CB 12 doesn't exist */
quantize_and_encode_band_cost_NOISE,
quantize_and_encode_band_cost_STEREO,
quantize_and_encode_band_cost_STEREO,
};
#define quantize_and_encode_band_cost( \
s, pb, in, quant, scaled, size, scale_idx, cb, \
lambda, uplim, bits, rtz) \
((rtz) ? quantize_and_encode_band_cost_rtz_arr : quantize_and_encode_band_cost_arr)[cb]( \
s, pb, in, quant, scaled, size, scale_idx, cb, \
lambda, uplim, bits)
static inline float quantize_band_cost(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int rtz)
{
return quantize_and_encode_band_cost(s, NULL, in, NULL, scaled, size, scale_idx,
cb, lambda, uplim, bits, rtz);
}
static inline int quantize_band_cost_bits(struct AACEncContext *s, const float *in,
const float *scaled, int size, int scale_idx,
int cb, const float lambda, const float uplim,
int *bits, int rtz)
{
int _bits;
quantize_and_encode_band_cost(s, NULL, in, NULL, scaled, size, scale_idx,
cb, 0.0f, uplim, &_bits, rtz);
if (bits) {
*bits = _bits;
}
return _bits;
}
static inline void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
const float *in, float *out, int size, int scale_idx,
int cb, const float lambda, int rtz)
{
quantize_and_encode_band_cost(s, pb, in, out, NULL, size, scale_idx, cb, lambda,
INFINITY, NULL, rtz);
}
#endif /* AVCODEC_AACENC_QUANTIZATION_H */