ffmpeg/libavcodec/proresenc.c
Kostya Shishkov 235d693286 prores: handle 444 chroma in right order
ProRes codes chroma blocks in 444 mode in different order than luma blocks,
so make both decoder and encoder read/write chroma blocks in right order.

Reported by Phil Barrett
2012-02-29 09:28:34 +01:00

904 lines
30 KiB
C

/*
* Apple ProRes encoder
*
* Copyright (c) 2012 Konstantin Shishkov
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/opt.h"
#include "avcodec.h"
#include "put_bits.h"
#include "bytestream.h"
#include "internal.h"
#include "proresdsp.h"
#include "proresdata.h"
#define CFACTOR_Y422 2
#define CFACTOR_Y444 3
#define MAX_MBS_PER_SLICE 8
#define MAX_PLANES 3 // should be increased to 4 when there's PIX_FMT_YUV444AP10
enum {
PRORES_PROFILE_PROXY = 0,
PRORES_PROFILE_LT,
PRORES_PROFILE_STANDARD,
PRORES_PROFILE_HQ,
};
#define NUM_MB_LIMITS 4
static const int prores_mb_limits[NUM_MB_LIMITS] = {
1620, // up to 720x576
2700, // up to 960x720
6075, // up to 1440x1080
9216, // up to 2048x1152
};
static const struct prores_profile {
const char *full_name;
uint32_t tag;
int min_quant;
int max_quant;
int br_tab[NUM_MB_LIMITS];
uint8_t quant[64];
} prores_profile_info[4] = {
{
.full_name = "proxy",
.tag = MKTAG('a', 'p', 'c', 'o'),
.min_quant = 4,
.max_quant = 8,
.br_tab = { 300, 242, 220, 194 },
.quant = {
4, 7, 9, 11, 13, 14, 15, 63,
7, 7, 11, 12, 14, 15, 63, 63,
9, 11, 13, 14, 15, 63, 63, 63,
11, 11, 13, 14, 63, 63, 63, 63,
11, 13, 14, 63, 63, 63, 63, 63,
13, 14, 63, 63, 63, 63, 63, 63,
13, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63, 63,
},
},
{
.full_name = "LT",
.tag = MKTAG('a', 'p', 'c', 's'),
.min_quant = 1,
.max_quant = 9,
.br_tab = { 720, 560, 490, 440 },
.quant = {
4, 5, 6, 7, 9, 11, 13, 15,
5, 5, 7, 8, 11, 13, 15, 17,
6, 7, 9, 11, 13, 15, 15, 17,
7, 7, 9, 11, 13, 15, 17, 19,
7, 9, 11, 13, 14, 16, 19, 23,
9, 11, 13, 14, 16, 19, 23, 29,
9, 11, 13, 15, 17, 21, 28, 35,
11, 13, 16, 17, 21, 28, 35, 41,
},
},
{
.full_name = "standard",
.tag = MKTAG('a', 'p', 'c', 'n'),
.min_quant = 1,
.max_quant = 6,
.br_tab = { 1050, 808, 710, 632 },
.quant = {
4, 4, 5, 5, 6, 7, 7, 9,
4, 4, 5, 6, 7, 7, 9, 9,
5, 5, 6, 7, 7, 9, 9, 10,
5, 5, 6, 7, 7, 9, 9, 10,
5, 6, 7, 7, 8, 9, 10, 12,
6, 7, 7, 8, 9, 10, 12, 15,
6, 7, 7, 9, 10, 11, 14, 17,
7, 7, 9, 10, 11, 14, 17, 21,
},
},
{
.full_name = "high quality",
.tag = MKTAG('a', 'p', 'c', 'h'),
.min_quant = 1,
.max_quant = 6,
.br_tab = { 1566, 1216, 1070, 950 },
.quant = {
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 5,
4, 4, 4, 4, 4, 4, 5, 5,
4, 4, 4, 4, 4, 5, 5, 6,
4, 4, 4, 4, 5, 5, 6, 7,
4, 4, 4, 4, 5, 6, 7, 7,
},
}
// for 4444 profile bitrate numbers are { 2350, 1828, 1600, 1425 }
};
#define TRELLIS_WIDTH 16
#define SCORE_LIMIT INT_MAX / 2
struct TrellisNode {
int prev_node;
int quant;
int bits;
int score;
};
#define MAX_STORED_Q 16
typedef struct ProresContext {
AVClass *class;
DECLARE_ALIGNED(16, DCTELEM, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16];
int16_t quants[MAX_STORED_Q][64];
int16_t custom_q[64];
ProresDSPContext dsp;
ScanTable scantable;
int mb_width, mb_height;
int mbs_per_slice;
int num_chroma_blocks, chroma_factor;
int slices_width;
int num_slices;
int num_planes;
int bits_per_mb;
int frame_size;
int profile;
const struct prores_profile *profile_info;
struct TrellisNode *nodes;
int *slice_q;
} ProresContext;
static void get_slice_data(ProresContext *ctx, const uint16_t *src,
int linesize, int x, int y, int w, int h,
DCTELEM *blocks,
int mbs_per_slice, int blocks_per_mb, int is_chroma)
{
const uint16_t *esrc;
const int mb_width = 4 * blocks_per_mb;
int elinesize;
int i, j, k;
for (i = 0; i < mbs_per_slice; i++, src += mb_width) {
if (x >= w) {
memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb
* sizeof(*blocks));
return;
}
if (x + mb_width <= w && y + 16 <= h) {
esrc = src;
elinesize = linesize;
} else {
int bw, bh, pix;
const int estride = 16 / sizeof(*ctx->emu_buf);
esrc = ctx->emu_buf;
elinesize = 16;
bw = FFMIN(w - x, mb_width);
bh = FFMIN(h - y, 16);
for (j = 0; j < bh; j++) {
memcpy(ctx->emu_buf + j * estride, src + j * linesize,
bw * sizeof(*src));
pix = ctx->emu_buf[j * estride + bw - 1];
for (k = bw; k < mb_width; k++)
ctx->emu_buf[j * estride + k] = pix;
}
for (; j < 16; j++)
memcpy(ctx->emu_buf + j * estride,
ctx->emu_buf + (bh - 1) * estride,
mb_width * sizeof(*ctx->emu_buf));
}
if (!is_chroma) {
ctx->dsp.fdct(esrc, elinesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + 8, linesize, blocks);
blocks += 64;
}
ctx->dsp.fdct(src + linesize * 4, linesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks);
blocks += 64;
}
} else {
ctx->dsp.fdct(esrc, elinesize, blocks);
blocks += 64;
ctx->dsp.fdct(src + linesize * 4, linesize, blocks);
blocks += 64;
if (blocks_per_mb > 2) {
ctx->dsp.fdct(src + 8, linesize, blocks);
blocks += 64;
ctx->dsp.fdct(src + linesize * 4 + 8, linesize, blocks);
blocks += 64;
}
}
x += mb_width;
}
}
/**
* Write an unsigned rice/exp golomb codeword.
*/
static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val)
{
unsigned int rice_order, exp_order, switch_bits, switch_val;
int exponent;
/* number of prefix bits to switch between Rice and expGolomb */
switch_bits = (codebook & 3) + 1;
rice_order = codebook >> 5; /* rice code order */
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
switch_val = switch_bits << rice_order;
if (val >= switch_val) {
val -= switch_val - (1 << exp_order);
exponent = av_log2(val);
put_bits(pb, exponent - exp_order + switch_bits, 0);
put_bits(pb, 1, 1);
put_bits(pb, exponent, val);
} else {
exponent = val >> rice_order;
if (exponent)
put_bits(pb, exponent, 0);
put_bits(pb, 1, 1);
if (rice_order)
put_sbits(pb, rice_order, val);
}
}
#define GET_SIGN(x) ((x) >> 31)
#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x))
static void encode_dcs(PutBitContext *pb, DCTELEM *blocks,
int blocks_per_slice, int scale)
{
int i;
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
prev_dc = (blocks[0] - 0x4000) / scale;
encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc));
sign = 0;
codebook = 3;
blocks += 64;
for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
dc = (blocks[0] - 0x4000) / scale;
delta = dc - prev_dc;
new_sign = GET_SIGN(delta);
delta = (delta ^ sign) - sign;
code = MAKE_CODE(delta);
encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code);
codebook = (code + (code & 1)) >> 1;
codebook = FFMIN(codebook, 3);
sign = new_sign;
prev_dc = dc;
}
}
static void encode_acs(PutBitContext *pb, DCTELEM *blocks,
int blocks_per_slice,
int plane_size_factor,
const uint8_t *scan, const int16_t *qmat)
{
int idx, i;
int run, level, run_cb, lev_cb;
int max_coeffs, abs_level;
max_coeffs = blocks_per_slice << 6;
run_cb = ff_prores_run_to_cb_index[4];
lev_cb = ff_prores_lev_to_cb_index[2];
run = 0;
for (i = 1; i < 64; i++) {
for (idx = scan[i]; idx < max_coeffs; idx += 64) {
level = blocks[idx] / qmat[scan[i]];
if (level) {
abs_level = FFABS(level);
encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run);
encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb],
abs_level - 1);
put_sbits(pb, 1, GET_SIGN(level));
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
run = 0;
} else {
run++;
}
}
}
}
static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb,
const uint16_t *src, int linesize,
int mbs_per_slice, DCTELEM *blocks,
int blocks_per_mb, int plane_size_factor,
const int16_t *qmat)
{
int blocks_per_slice, saved_pos;
saved_pos = put_bits_count(pb);
blocks_per_slice = mbs_per_slice * blocks_per_mb;
encode_dcs(pb, blocks, blocks_per_slice, qmat[0]);
encode_acs(pb, blocks, blocks_per_slice, plane_size_factor,
ctx->scantable.permutated, qmat);
flush_put_bits(pb);
return (put_bits_count(pb) - saved_pos) >> 3;
}
static int encode_slice(AVCodecContext *avctx, const AVFrame *pic,
PutBitContext *pb,
int sizes[4], int x, int y, int quant,
int mbs_per_slice)
{
ProresContext *ctx = avctx->priv_data;
int i, xp, yp;
int total_size = 0;
const uint16_t *src;
int slice_width_factor = av_log2(mbs_per_slice);
int num_cblocks, pwidth;
int plane_factor, is_chroma;
uint16_t *qmat;
if (quant < MAX_STORED_Q) {
qmat = ctx->quants[quant];
} else {
qmat = ctx->custom_q;
for (i = 0; i < 64; i++)
qmat[i] = ctx->profile_info->quant[i] * quant;
}
for (i = 0; i < ctx->num_planes; i++) {
is_chroma = (i == 1 || i == 2);
plane_factor = slice_width_factor + 2;
if (is_chroma)
plane_factor += ctx->chroma_factor - 3;
if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) {
xp = x << 4;
yp = y << 4;
num_cblocks = 4;
pwidth = avctx->width;
} else {
xp = x << 3;
yp = y << 4;
num_cblocks = 2;
pwidth = avctx->width >> 1;
}
src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp;
get_slice_data(ctx, src, pic->linesize[i], xp, yp,
pwidth, avctx->height, ctx->blocks[0],
mbs_per_slice, num_cblocks, is_chroma);
sizes[i] = encode_slice_plane(ctx, pb, src, pic->linesize[i],
mbs_per_slice, ctx->blocks[0],
num_cblocks, plane_factor,
qmat);
total_size += sizes[i];
}
return total_size;
}
static inline int estimate_vlc(unsigned codebook, int val)
{
unsigned int rice_order, exp_order, switch_bits, switch_val;
int exponent;
/* number of prefix bits to switch between Rice and expGolomb */
switch_bits = (codebook & 3) + 1;
rice_order = codebook >> 5; /* rice code order */
exp_order = (codebook >> 2) & 7; /* exp golomb code order */
switch_val = switch_bits << rice_order;
if (val >= switch_val) {
val -= switch_val - (1 << exp_order);
exponent = av_log2(val);
return exponent * 2 - exp_order + switch_bits + 1;
} else {
return (val >> rice_order) + rice_order + 1;
}
}
static int estimate_dcs(int *error, DCTELEM *blocks, int blocks_per_slice,
int scale)
{
int i;
int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
int bits;
prev_dc = (blocks[0] - 0x4000) / scale;
bits = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc));
sign = 0;
codebook = 3;
blocks += 64;
*error += FFABS(blocks[0] - 0x4000) % scale;
for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
dc = (blocks[0] - 0x4000) / scale;
*error += FFABS(blocks[0] - 0x4000) % scale;
delta = dc - prev_dc;
new_sign = GET_SIGN(delta);
delta = (delta ^ sign) - sign;
code = MAKE_CODE(delta);
bits += estimate_vlc(ff_prores_dc_codebook[codebook], code);
codebook = (code + (code & 1)) >> 1;
codebook = FFMIN(codebook, 3);
sign = new_sign;
prev_dc = dc;
}
return bits;
}
static int estimate_acs(int *error, DCTELEM *blocks, int blocks_per_slice,
int plane_size_factor,
const uint8_t *scan, const int16_t *qmat)
{
int idx, i;
int run, level, run_cb, lev_cb;
int max_coeffs, abs_level;
int bits = 0;
max_coeffs = blocks_per_slice << 6;
run_cb = ff_prores_run_to_cb_index[4];
lev_cb = ff_prores_lev_to_cb_index[2];
run = 0;
for (i = 1; i < 64; i++) {
for (idx = scan[i]; idx < max_coeffs; idx += 64) {
level = blocks[idx] / qmat[scan[i]];
*error += FFABS(blocks[idx]) % qmat[scan[i]];
if (level) {
abs_level = FFABS(level);
bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run);
bits += estimate_vlc(ff_prores_ac_codebook[lev_cb],
abs_level - 1) + 1;
run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
run = 0;
} else {
run++;
}
}
}
return bits;
}
static int estimate_slice_plane(ProresContext *ctx, int *error, int plane,
const uint16_t *src, int linesize,
int mbs_per_slice,
int blocks_per_mb, int plane_size_factor,
const int16_t *qmat)
{
int blocks_per_slice;
int bits;
blocks_per_slice = mbs_per_slice * blocks_per_mb;
bits = estimate_dcs(error, ctx->blocks[plane], blocks_per_slice, qmat[0]);
bits += estimate_acs(error, ctx->blocks[plane], blocks_per_slice,
plane_size_factor, ctx->scantable.permutated, qmat);
return FFALIGN(bits, 8);
}
static int find_slice_quant(AVCodecContext *avctx, const AVFrame *pic,
int trellis_node, int x, int y, int mbs_per_slice)
{
ProresContext *ctx = avctx->priv_data;
int i, q, pq, xp, yp;
const uint16_t *src;
int slice_width_factor = av_log2(mbs_per_slice);
int num_cblocks[MAX_PLANES], pwidth;
int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES];
const int min_quant = ctx->profile_info->min_quant;
const int max_quant = ctx->profile_info->max_quant;
int error, bits, bits_limit;
int mbs, prev, cur, new_score;
int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH];
int overquant;
uint16_t *qmat;
mbs = x + mbs_per_slice;
for (i = 0; i < ctx->num_planes; i++) {
is_chroma[i] = (i == 1 || i == 2);
plane_factor[i] = slice_width_factor + 2;
if (is_chroma[i])
plane_factor[i] += ctx->chroma_factor - 3;
if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) {
xp = x << 4;
yp = y << 4;
num_cblocks[i] = 4;
pwidth = avctx->width;
} else {
xp = x << 3;
yp = y << 4;
num_cblocks[i] = 2;
pwidth = avctx->width >> 1;
}
src = (const uint16_t*)(pic->data[i] + yp * pic->linesize[i]) + xp;
get_slice_data(ctx, src, pic->linesize[i], xp, yp,
pwidth, avctx->height, ctx->blocks[i],
mbs_per_slice, num_cblocks[i], is_chroma[i]);
}
for (q = min_quant; q < max_quant + 2; q++) {
ctx->nodes[trellis_node + q].prev_node = -1;
ctx->nodes[trellis_node + q].quant = q;
}
// todo: maybe perform coarser quantising to fit into frame size when needed
for (q = min_quant; q <= max_quant; q++) {
bits = 0;
error = 0;
for (i = 0; i < ctx->num_planes; i++) {
bits += estimate_slice_plane(ctx, &error, i,
src, pic->linesize[i],
mbs_per_slice,
num_cblocks[i], plane_factor[i],
ctx->quants[q]);
}
if (bits > 65000 * 8) {
error = SCORE_LIMIT;
break;
}
slice_bits[q] = bits;
slice_score[q] = error;
}
if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) {
slice_bits[max_quant + 1] = slice_bits[max_quant];
slice_score[max_quant + 1] = slice_score[max_quant] + 1;
overquant = max_quant;
} else {
for (q = max_quant + 1; q < 128; q++) {
bits = 0;
error = 0;
if (q < MAX_STORED_Q) {
qmat = ctx->quants[q];
} else {
qmat = ctx->custom_q;
for (i = 0; i < 64; i++)
qmat[i] = ctx->profile_info->quant[i] * q;
}
for (i = 0; i < ctx->num_planes; i++) {
bits += estimate_slice_plane(ctx, &error, i,
src, pic->linesize[i],
mbs_per_slice,
num_cblocks[i], plane_factor[i],
qmat);
}
if (bits <= ctx->bits_per_mb * mbs_per_slice)
break;
}
slice_bits[max_quant + 1] = bits;
slice_score[max_quant + 1] = error;
overquant = q;
}
ctx->nodes[trellis_node + max_quant + 1].quant = overquant;
bits_limit = mbs * ctx->bits_per_mb;
for (pq = min_quant; pq < max_quant + 2; pq++) {
prev = trellis_node - TRELLIS_WIDTH + pq;
for (q = min_quant; q < max_quant + 2; q++) {
cur = trellis_node + q;
bits = ctx->nodes[prev].bits + slice_bits[q];
error = slice_score[q];
if (bits > bits_limit)
error = SCORE_LIMIT;
if (ctx->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT)
new_score = ctx->nodes[prev].score + error;
else
new_score = SCORE_LIMIT;
if (ctx->nodes[cur].prev_node == -1 ||
ctx->nodes[cur].score >= new_score) {
ctx->nodes[cur].bits = bits;
ctx->nodes[cur].score = new_score;
ctx->nodes[cur].prev_node = prev;
}
}
}
error = ctx->nodes[trellis_node + min_quant].score;
pq = trellis_node + min_quant;
for (q = min_quant + 1; q < max_quant + 2; q++) {
if (ctx->nodes[trellis_node + q].score <= error) {
error = ctx->nodes[trellis_node + q].score;
pq = trellis_node + q;
}
}
return pq;
}
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
const AVFrame *pic, int *got_packet)
{
ProresContext *ctx = avctx->priv_data;
uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp;
uint8_t *picture_size_pos;
PutBitContext pb;
int x, y, i, mb, q = 0;
int sizes[4] = { 0 };
int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1);
int frame_size, picture_size, slice_size;
int mbs_per_slice = ctx->mbs_per_slice;
int pkt_size, ret;
*avctx->coded_frame = *pic;
avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
avctx->coded_frame->key_frame = 1;
pkt_size = ctx->frame_size + FF_MIN_BUFFER_SIZE;
if ((ret = ff_alloc_packet(pkt, pkt_size)) < 0) {
av_log(avctx, AV_LOG_ERROR, "Error getting output packet.\n");
return ret;
}
orig_buf = pkt->data;
// frame atom
orig_buf += 4; // frame size
bytestream_put_be32 (&orig_buf, FRAME_ID); // frame container ID
buf = orig_buf;
// frame header
tmp = buf;
buf += 2; // frame header size will be stored here
bytestream_put_be16 (&buf, 0); // version 1
bytestream_put_buffer(&buf, "Lavc", 4); // creator
bytestream_put_be16 (&buf, avctx->width);
bytestream_put_be16 (&buf, avctx->height);
bytestream_put_byte (&buf, ctx->chroma_factor << 6); // frame flags
bytestream_put_byte (&buf, 0); // reserved
bytestream_put_byte (&buf, 0); // primaries
bytestream_put_byte (&buf, 0); // transfer function
bytestream_put_byte (&buf, 6); // colour matrix - ITU-R BT.601-4
bytestream_put_byte (&buf, 0x40); // source format and alpha information
bytestream_put_byte (&buf, 0); // reserved
bytestream_put_byte (&buf, 0x03); // matrix flags - both matrices are present
// luma quantisation matrix
for (i = 0; i < 64; i++)
bytestream_put_byte(&buf, ctx->profile_info->quant[i]);
// chroma quantisation matrix
for (i = 0; i < 64; i++)
bytestream_put_byte(&buf, ctx->profile_info->quant[i]);
bytestream_put_be16 (&tmp, buf - orig_buf); // write back frame header size
// picture header
picture_size_pos = buf + 1;
bytestream_put_byte (&buf, 0x40); // picture header size (in bits)
buf += 4; // picture data size will be stored here
bytestream_put_be16 (&buf, ctx->num_slices); // total number of slices
bytestream_put_byte (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs
// seek table - will be filled during slice encoding
slice_sizes = buf;
buf += ctx->num_slices * 2;
// slices
for (y = 0; y < ctx->mb_height; y++) {
mbs_per_slice = ctx->mbs_per_slice;
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
while (ctx->mb_width - x < mbs_per_slice)
mbs_per_slice >>= 1;
q = find_slice_quant(avctx, pic, (mb + 1) * TRELLIS_WIDTH, x, y,
mbs_per_slice);
}
for (x = ctx->slices_width - 1; x >= 0; x--) {
ctx->slice_q[x] = ctx->nodes[q].quant;
q = ctx->nodes[q].prev_node;
}
mbs_per_slice = ctx->mbs_per_slice;
for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
q = ctx->slice_q[mb];
while (ctx->mb_width - x < mbs_per_slice)
mbs_per_slice >>= 1;
bytestream_put_byte(&buf, slice_hdr_size << 3);
slice_hdr = buf;
buf += slice_hdr_size - 1;
init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)) * 8);
encode_slice(avctx, pic, &pb, sizes, x, y, q, mbs_per_slice);
bytestream_put_byte(&slice_hdr, q);
slice_size = slice_hdr_size + sizes[ctx->num_planes - 1];
for (i = 0; i < ctx->num_planes - 1; i++) {
bytestream_put_be16(&slice_hdr, sizes[i]);
slice_size += sizes[i];
}
bytestream_put_be16(&slice_sizes, slice_size);
buf += slice_size - slice_hdr_size;
}
}
orig_buf -= 8;
frame_size = buf - orig_buf;
picture_size = buf - picture_size_pos - 6;
bytestream_put_be32(&orig_buf, frame_size);
bytestream_put_be32(&picture_size_pos, picture_size);
pkt->size = frame_size;
pkt->flags |= AV_PKT_FLAG_KEY;
*got_packet = 1;
return 0;
}
static av_cold int encode_close(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
if (avctx->coded_frame->data[0])
avctx->release_buffer(avctx, avctx->coded_frame);
av_freep(&avctx->coded_frame);
av_freep(&ctx->nodes);
av_freep(&ctx->slice_q);
return 0;
}
static av_cold int encode_init(AVCodecContext *avctx)
{
ProresContext *ctx = avctx->priv_data;
int mps;
int i, j;
int min_quant, max_quant;
avctx->bits_per_raw_sample = 10;
avctx->coded_frame = avcodec_alloc_frame();
if (!avctx->coded_frame)
return AVERROR(ENOMEM);
ff_proresdsp_init(&ctx->dsp);
ff_init_scantable(ctx->dsp.dct_permutation, &ctx->scantable,
ff_prores_progressive_scan);
mps = ctx->mbs_per_slice;
if (mps & (mps - 1)) {
av_log(avctx, AV_LOG_ERROR,
"there should be an integer power of two MBs per slice\n");
return AVERROR(EINVAL);
}
ctx->chroma_factor = avctx->pix_fmt == PIX_FMT_YUV422P10
? CFACTOR_Y422
: CFACTOR_Y444;
ctx->profile_info = prores_profile_info + ctx->profile;
ctx->num_planes = 3;
ctx->mb_width = FFALIGN(avctx->width, 16) >> 4;
ctx->mb_height = FFALIGN(avctx->height, 16) >> 4;
ctx->slices_width = ctx->mb_width / mps;
ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps);
ctx->num_slices = ctx->mb_height * ctx->slices_width;
for (i = 0; i < NUM_MB_LIMITS - 1; i++)
if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height)
break;
ctx->bits_per_mb = ctx->profile_info->br_tab[i];
ctx->frame_size = ctx->num_slices * (2 + 2 * ctx->num_planes
+ (2 * mps * ctx->bits_per_mb) / 8)
+ 200;
min_quant = ctx->profile_info->min_quant;
max_quant = ctx->profile_info->max_quant;
for (i = min_quant; i < MAX_STORED_Q; i++) {
for (j = 0; j < 64; j++)
ctx->quants[i][j] = ctx->profile_info->quant[j] * i;
}
avctx->codec_tag = ctx->profile_info->tag;
av_log(avctx, AV_LOG_DEBUG, "profile %d, %d slices, %d bits per MB\n",
ctx->profile, ctx->num_slices, ctx->bits_per_mb);
av_log(avctx, AV_LOG_DEBUG, "estimated frame size %d\n",
ctx->frame_size);
ctx->nodes = av_malloc((ctx->slices_width + 1) * TRELLIS_WIDTH
* sizeof(*ctx->nodes));
if (!ctx->nodes) {
encode_close(avctx);
return AVERROR(ENOMEM);
}
for (i = min_quant; i < max_quant + 2; i++) {
ctx->nodes[i].prev_node = -1;
ctx->nodes[i].bits = 0;
ctx->nodes[i].score = 0;
}
ctx->slice_q = av_malloc(ctx->slices_width * sizeof(*ctx->slice_q));
if (!ctx->slice_q) {
encode_close(avctx);
return AVERROR(ENOMEM);
}
return 0;
}
#define OFFSET(x) offsetof(ProresContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
{ "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice),
AV_OPT_TYPE_INT, { 8 }, 1, MAX_MBS_PER_SLICE, VE },
{ "profile", NULL, OFFSET(profile), AV_OPT_TYPE_INT,
{ PRORES_PROFILE_STANDARD },
PRORES_PROFILE_PROXY, PRORES_PROFILE_HQ, VE, "profile" },
{ "proxy", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_PROXY },
0, 0, VE, "profile" },
{ "lt", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_LT },
0, 0, VE, "profile" },
{ "standard", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_STANDARD },
0, 0, VE, "profile" },
{ "hq", NULL, 0, AV_OPT_TYPE_CONST, { PRORES_PROFILE_HQ },
0, 0, VE, "profile" },
{ NULL }
};
static const AVClass proresenc_class = {
.class_name = "ProRes encoder",
.item_name = av_default_item_name,
.option = options,
.version = LIBAVUTIL_VERSION_INT,
};
AVCodec ff_prores_encoder = {
.name = "prores",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_PRORES,
.priv_data_size = sizeof(ProresContext),
.init = encode_init,
.close = encode_close,
.encode2 = encode_frame,
.long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
.pix_fmts = (const enum PixelFormat[]) {
PIX_FMT_YUV422P10, PIX_FMT_YUV444P10, PIX_FMT_NONE
},
.priv_class = &proresenc_class,
};