ffmpeg/libavcodec/exr.c
Paul B Mahol 8c7bc7d3e5 avcodec/exr: use avpriv_report_missing_feature()
Signed-off-by: Paul B Mahol <onemda@gmail.com>
2013-10-09 13:46:44 +00:00

815 lines
26 KiB
C

/*
* OpenEXR (.exr) image decoder
* Copyright (c) 2009 Jimmy Christensen
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* OpenEXR decoder
* @author Jimmy Christensen
*
* For more information on the OpenEXR format, visit:
* http://openexr.com/
*
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger
*/
#include <zlib.h>
#include "avcodec.h"
#include "bytestream.h"
#include "mathops.h"
#include "thread.h"
#include "libavutil/imgutils.h"
#include "libavutil/avassert.h"
enum ExrCompr {
EXR_RAW = 0,
EXR_RLE = 1,
EXR_ZIP1 = 2,
EXR_ZIP16 = 3,
EXR_PIZ = 4,
EXR_PXR24 = 5,
EXR_B44 = 6,
EXR_B44A = 7,
};
enum ExrPixelType {
EXR_UINT,
EXR_HALF,
EXR_FLOAT
};
typedef struct EXRChannel {
int xsub, ysub;
enum ExrPixelType pixel_type;
} EXRChannel;
typedef struct EXRThreadData {
uint8_t *uncompressed_data;
int uncompressed_size;
uint8_t *tmp;
int tmp_size;
} EXRThreadData;
typedef struct EXRContext {
AVFrame *picture;
int compr;
enum ExrPixelType pixel_type;
int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
const AVPixFmtDescriptor *desc;
uint32_t xmax, xmin;
uint32_t ymax, ymin;
uint32_t xdelta, ydelta;
int ysize;
uint64_t scan_line_size;
int scan_lines_per_block;
const uint8_t *buf, *table;
int buf_size;
EXRChannel *channels;
int nb_channels;
EXRThreadData *thread_data;
int thread_data_size;
} EXRContext;
/**
* Converts from 32-bit float as uint32_t to uint16_t
*
* @param v 32-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_flt2uint(uint32_t v)
{
unsigned int exp = v >> 23;
// "HACK": negative values result in exp< 0, so clipping them to 0
// is also handled by this condition, avoids explicit check for sign bit.
if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
return 0;
if (exp >= 127)
return 0xffff;
v &= 0x007fffff;
return (v + (1 << 23)) >> (127 + 7 - exp);
}
/**
* Converts from 16-bit float as uint16_t to uint16_t
*
* @param v 16-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_halflt2uint(uint16_t v)
{
unsigned exp = 14 - (v >> 10);
if (exp >= 14) {
if (exp == 14) return (v >> 9) & 1;
else return (v & 0x8000) ? 0 : 0xffff;
}
v <<= 6;
return (v + (1 << 16)) >> (exp + 1);
}
/**
* Gets the size of the header variable
*
* @param **buf the current pointer location in the header where
* the variable data starts
* @param *buf_end pointer location of the end of the buffer
* @return size of variable data
*/
static unsigned int get_header_variable_length(const uint8_t **buf,
const uint8_t *buf_end)
{
unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
if (variable_buffer_data_size >= buf_end - *buf)
return 0;
return variable_buffer_data_size;
}
/**
* Checks if the variable name corresponds with it's data type
*
* @param *avctx the AVCodecContext
* @param **buf the current pointer location in the header where
* the variable name starts
* @param *buf_end pointer location of the end of the buffer
* @param *value_name name of the varible to check
* @param *value_type type of the varible to check
* @param minimum_length minimum length of the variable data
* @param variable_buffer_data_size variable length read from the header
* after it's checked
* @return negative if variable is invalid
*/
static int check_header_variable(AVCodecContext *avctx,
const uint8_t **buf,
const uint8_t *buf_end,
const char *value_name,
const char *value_type,
unsigned int minimum_length,
unsigned int *variable_buffer_data_size)
{
if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
*buf += strlen(value_name)+1;
if (!strcmp(*buf, value_type)) {
*buf += strlen(value_type)+1;
*variable_buffer_data_size = get_header_variable_length(buf, buf_end);
if (!*variable_buffer_data_size)
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return 1;
}
*buf -= strlen(value_name)+1;
av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
}
return -1;
}
static void predictor(uint8_t *src, int size)
{
uint8_t *t = src + 1;
uint8_t *stop = src + size;
while (t < stop) {
int d = (int)t[-1] + (int)t[0] - 128;
t[0] = d;
++t;
}
}
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
{
const int8_t *t1 = src;
const int8_t *t2 = src + (size + 1) / 2;
int8_t *s = dst;
int8_t *stop = s + size;
while (1) {
if (s < stop)
*(s++) = *(t1++);
else
break;
if (s < stop)
*(s++) = *(t2++);
else
break;
}
}
static int zip_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
unsigned long dest_len = uncompressed_size;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
dest_len != uncompressed_size)
return AVERROR(EINVAL);
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
static int rle_uncompress(const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
int8_t *d = (int8_t *)td->tmp;
const int8_t *s = (const int8_t *)src;
int ssize = compressed_size;
int dsize = uncompressed_size;
int8_t *dend = d + dsize;
int count;
while (ssize > 0) {
count = *s++;
if (count < 0) {
count = -count;
if ((dsize -= count ) < 0 ||
(ssize -= count + 1) < 0)
return -1;
while (count--)
*d++ = *s++;
} else {
count++;
if ((dsize -= count) < 0 ||
(ssize -= 2 ) < 0)
return -1;
while (count--)
*d++ = *s;
s++;
}
}
if (dend != d)
return AVERROR_INVALIDDATA;
predictor(td->tmp, uncompressed_size);
reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
return 0;
}
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
int compressed_size, int uncompressed_size,
EXRThreadData *td)
{
unsigned long dest_len = uncompressed_size;
const uint8_t *in = td->tmp;
uint8_t *out;
int c, i, j;
if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
dest_len != uncompressed_size)
return AVERROR(EINVAL);
out = td->uncompressed_data;
for (i = 0; i < s->ysize; i++) {
for (c = 0; c < s->nb_channels; c++) {
EXRChannel *channel = &s->channels[c];
const uint8_t *ptr[4];
uint32_t pixel = 0;
switch (channel->pixel_type) {
case EXR_FLOAT:
ptr[0] = in;
ptr[1] = ptr[0] + s->xdelta;
ptr[2] = ptr[1] + s->xdelta;
in = ptr[2] + s->xdelta;
for (j = 0; j < s->xdelta; ++j) {
uint32_t diff = (*(ptr[0]++) << 24) |
(*(ptr[1]++) << 16) |
(*(ptr[2]++) << 8);
pixel += diff;
bytestream_put_le32(&out, pixel);
}
break;
case EXR_HALF:
ptr[0] = in;
ptr[1] = ptr[0] + s->xdelta;
in = ptr[1] + s->xdelta;
for (j = 0; j < s->xdelta; j++) {
uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
pixel += diff;
bytestream_put_le16(&out, pixel);
}
break;
default:
av_assert1(0);
}
}
}
return 0;
}
static int decode_block(AVCodecContext *avctx, void *tdata,
int jobnr, int threadnr)
{
EXRContext *s = avctx->priv_data;
AVFrame *const p = s->picture;
EXRThreadData *td = &s->thread_data[threadnr];
const uint8_t *channel_buffer[4] = { 0 };
const uint8_t *buf = s->buf;
uint64_t line_offset, uncompressed_size;
uint32_t xdelta = s->xdelta;
uint16_t *ptr_x;
uint8_t *ptr;
int32_t data_size, line;
const uint8_t *src;
int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
int bxmin = s->xmin * 2 * s->desc->nb_components;
int i, x, buf_size = s->buf_size;
int av_unused ret;
line_offset = AV_RL64(s->table + jobnr * 8);
// Check if the buffer has the required bytes needed from the offset
if (line_offset > buf_size - 8)
return AVERROR_INVALIDDATA;
src = buf + line_offset + 8;
line = AV_RL32(src - 8);
if (line < s->ymin || line > s->ymax)
return AVERROR_INVALIDDATA;
data_size = AV_RL32(src - 4);
if (data_size <= 0 || data_size > buf_size)
return AVERROR_INVALIDDATA;
s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
uncompressed_size = s->scan_line_size * s->ysize;
if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
line_offset > buf_size - uncompressed_size)) ||
(s->compr != EXR_RAW && (data_size > uncompressed_size ||
line_offset > buf_size - data_size))) {
return AVERROR_INVALIDDATA;
}
if (data_size < uncompressed_size) {
av_fast_padded_malloc(&td->uncompressed_data, &td->uncompressed_size, uncompressed_size);
av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
if (!td->uncompressed_data || !td->tmp)
return AVERROR(ENOMEM);
switch (s->compr) {
case EXR_ZIP1:
case EXR_ZIP16:
ret = zip_uncompress(src, data_size, uncompressed_size, td);
break;
case EXR_PXR24:
ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
break;
case EXR_RLE:
ret = rle_uncompress(src, data_size, uncompressed_size, td);
}
src = td->uncompressed_data;
}
channel_buffer[0] = src + xdelta * s->channel_offsets[0];
channel_buffer[1] = src + xdelta * s->channel_offsets[1];
channel_buffer[2] = src + xdelta * s->channel_offsets[2];
if (s->channel_offsets[3] >= 0)
channel_buffer[3] = src + xdelta * s->channel_offsets[3];
ptr = p->data[0] + line * p->linesize[0];
for (i = 0; i < s->scan_lines_per_block && line + i <= s->ymax; i++, ptr += p->linesize[0]) {
const uint8_t *r, *g, *b, *a;
r = channel_buffer[0];
g = channel_buffer[1];
b = channel_buffer[2];
if (channel_buffer[3])
a = channel_buffer[3];
ptr_x = (uint16_t *)ptr;
// Zero out the start if xmin is not 0
memset(ptr_x, 0, bxmin);
ptr_x += s->xmin * s->desc->nb_components;
if (s->pixel_type == EXR_FLOAT) {
// 32-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
if (channel_buffer[3])
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
}
} else {
// 16-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
if (channel_buffer[3])
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
}
}
// Zero out the end if xmax+1 is not w
memset(ptr_x, 0, axmax);
channel_buffer[0] += s->scan_line_size;
channel_buffer[1] += s->scan_line_size;
channel_buffer[2] += s->scan_line_size;
if (channel_buffer[3])
channel_buffer[3] += s->scan_line_size;
}
return 0;
}
static int decode_frame(AVCodecContext *avctx,
void *data,
int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
unsigned int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
EXRContext *const s = avctx->priv_data;
ThreadFrame frame = { .f = data };
AVFrame *picture = data;
uint8_t *ptr;
int i, y, magic_number, version, flags, ret;
int w = 0;
int h = 0;
int out_line_size;
int scan_line_blocks;
unsigned int current_channel_offset = 0;
s->xmin = ~0;
s->xmax = ~0;
s->ymin = ~0;
s->ymax = ~0;
s->xdelta = ~0;
s->ydelta = ~0;
s->channel_offsets[0] = -1;
s->channel_offsets[1] = -1;
s->channel_offsets[2] = -1;
s->channel_offsets[3] = -1;
s->pixel_type = -1;
s->nb_channels = 0;
s->compr = -1;
s->buf = buf;
s->buf_size = buf_size;
if (buf_size < 10) {
av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
return AVERROR_INVALIDDATA;
}
magic_number = bytestream_get_le32(&buf);
if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
return AVERROR_INVALIDDATA;
}
version = bytestream_get_byte(&buf);
if (version != 2) {
avpriv_report_missing_feature(avctx, "Version %d", version);
return AVERROR_PATCHWELCOME;
}
flags = bytestream_get_le24(&buf);
if (flags & 0x2) {
avpriv_report_missing_feature(avctx, "Tile support");
return AVERROR_PATCHWELCOME;
}
// Parse the header
while (buf < buf_end && buf[0]) {
unsigned int variable_buffer_data_size;
// Process the channel list
if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
const uint8_t *channel_list_end;
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
channel_list_end = buf + variable_buffer_data_size;
while (channel_list_end - buf >= 19) {
EXRChannel *channel;
int current_pixel_type = -1;
int channel_index = -1;
int xsub, ysub;
if (!strcmp(buf, "R"))
channel_index = 0;
else if (!strcmp(buf, "G"))
channel_index = 1;
else if (!strcmp(buf, "B"))
channel_index = 2;
else if (!strcmp(buf, "A"))
channel_index = 3;
else
av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
while (bytestream_get_byte(&buf) && buf < channel_list_end)
continue; /* skip */
if (channel_list_end - * &buf < 4) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
current_pixel_type = bytestream_get_le32(&buf);
if (current_pixel_type > 2) {
av_log(avctx, AV_LOG_ERROR, "Unknown pixel type\n");
return AVERROR_INVALIDDATA;
}
buf += 4;
xsub = bytestream_get_le32(&buf);
ysub = bytestream_get_le32(&buf);
if (xsub != 1 || ysub != 1) {
avpriv_report_missing_feature(avctx, "Subsampling %dx%d", xsub, ysub);
return AVERROR_PATCHWELCOME;
}
if (channel_index >= 0) {
if (s->pixel_type != -1 && s->pixel_type != current_pixel_type) {
av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
return AVERROR_INVALIDDATA;
}
s->pixel_type = current_pixel_type;
s->channel_offsets[channel_index] = current_channel_offset;
}
s->channels = av_realloc_f(s->channels, ++s->nb_channels, sizeof(EXRChannel));
if (!s->channels)
return AVERROR(ENOMEM);
channel = &s->channels[s->nb_channels - 1];
channel->pixel_type = current_pixel_type;
channel->xsub = xsub;
channel->ysub = ysub;
current_channel_offset += 1 << current_pixel_type;
}
/* Check if all channels are set with an offset or if the channels
* are causing an overflow */
if (FFMIN3(s->channel_offsets[0],
s->channel_offsets[1],
s->channel_offsets[2]) < 0) {
if (s->channel_offsets[0] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
if (s->channel_offsets[1] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
if (s->channel_offsets[2] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
return AVERROR_INVALIDDATA;
}
buf = channel_list_end;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
s->xmin = AV_RL32(buf);
s->ymin = AV_RL32(buf + 4);
s->xmax = AV_RL32(buf + 8);
s->ymax = AV_RL32(buf + 12);
s->xdelta = (s->xmax - s->xmin) + 1;
s->ydelta = (s->ymax - s->ymin) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
w = AV_RL32(buf + 8) + 1;
h = AV_RL32(buf + 12) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
av_log(avctx, AV_LOG_DEBUG, "line order : %d\n", *buf);
if (*buf > 2) {
av_log(avctx, AV_LOG_ERROR, "Unknown line order\n");
return AVERROR_INVALIDDATA;
}
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
if (s->compr == -1)
s->compr = *buf;
else
av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
buf += variable_buffer_data_size;
continue;
}
// Check if there is enough bytes for a header
if (buf_end - buf <= 9) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
// Process unknown variables
for (i = 0; i < 2; i++) {
// Skip variable name/type
while (++buf < buf_end)
if (buf[0] == 0x0)
break;
}
buf++;
// Skip variable length
if (buf_end - buf >= 5) {
variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
if (!variable_buffer_data_size) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
buf += variable_buffer_data_size;
}
}
if (s->compr == -1) {
av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
return AVERROR_INVALIDDATA;
}
if (buf >= buf_end) {
av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
return AVERROR_INVALIDDATA;
}
buf++;
switch (s->pixel_type) {
case EXR_FLOAT:
case EXR_HALF:
if (s->channel_offsets[3] >= 0)
avctx->pix_fmt = AV_PIX_FMT_RGBA64;
else
avctx->pix_fmt = AV_PIX_FMT_RGB48;
break;
case EXR_UINT:
avpriv_request_sample(avctx, "32-bit unsigned int");
return AVERROR_PATCHWELCOME;
default:
av_log(avctx, AV_LOG_ERROR, "Missing channel list\n");
return AVERROR_INVALIDDATA;
}
switch (s->compr) {
case EXR_RAW:
case EXR_RLE:
case EXR_ZIP1:
s->scan_lines_per_block = 1;
break;
case EXR_PXR24:
case EXR_ZIP16:
s->scan_lines_per_block = 16;
break;
default:
avpriv_report_missing_feature(avctx, "Compression %d", s->compr);
return AVERROR_PATCHWELCOME;
}
if (av_image_check_size(w, h, 0, avctx))
return AVERROR_INVALIDDATA;
// Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
if (s->xmin > s->xmax ||
s->ymin > s->ymax ||
s->xdelta != s->xmax - s->xmin + 1 ||
s->xmax >= w || s->ymax >= h) {
av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
return AVERROR_INVALIDDATA;
}
if (w != avctx->width || h != avctx->height) {
avcodec_set_dimensions(avctx, w, h);
}
s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
out_line_size = avctx->width * 2 * s->desc->nb_components;
s->scan_line_size = s->xdelta * current_channel_offset;
scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) / s->scan_lines_per_block;
if (s->compr != EXR_RAW) {
size_t thread_data_size, prev_size;
EXRThreadData *m;
prev_size = s->thread_data_size;
if (av_size_mult(avctx->thread_count, sizeof(EXRThreadData), &thread_data_size))
return AVERROR(EINVAL);
m = av_fast_realloc(s->thread_data, &s->thread_data_size, thread_data_size);
if (!m)
return AVERROR(ENOMEM);
s->thread_data = m;
memset(s->thread_data + prev_size, 0, s->thread_data_size - prev_size);
}
if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
return ret;
if (buf_end - buf < scan_line_blocks * 8)
return AVERROR_INVALIDDATA;
s->table = buf;
ptr = picture->data[0];
// Zero out the start if ymin is not 0
for (y = 0; y < s->ymin; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
s->picture = picture;
avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
// Zero out the end if ymax+1 is not h
for (y = s->ymax + 1; y < avctx->height; y++) {
memset(ptr, 0, out_line_size);
ptr += picture->linesize[0];
}
picture->pict_type = AV_PICTURE_TYPE_I;
*got_frame = 1;
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
int i;
for (i = 0; i < s->thread_data_size / sizeof(EXRThreadData); i++) {
EXRThreadData *td = &s->thread_data[i];
av_free(td->uncompressed_data);
av_free(td->tmp);
}
av_freep(&s->thread_data);
s->thread_data_size = 0;
av_freep(&s->channels);
return 0;
}
AVCodec ff_exr_decoder = {
.name = "exr",
.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_EXR,
.priv_data_size = sizeof(EXRContext),
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS | CODEC_CAP_SLICE_THREADS,
};