Kostya Shishkov b0c8e1b80a Replace usage of put_*_vc1_qpel_pixels_tab with put_*_h264_chroma_pixels_tab
Originally committed as revision 6151 to svn://svn.ffmpeg.org/ffmpeg/trunk
2006-09-02 04:53:49 +00:00

3361 lines
113 KiB
C

/*
* VC-1 and WMV3 decoder
* Copyright (c) 2006 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/**
* @file vc1.c
* VC-1 and WMV3 decoder
*
*/
#include "common.h"
#include "dsputil.h"
#include "avcodec.h"
#include "mpegvideo.h"
#include "vc1data.h"
#include "vc1acdata.h"
#undef NDEBUG
#include <assert.h>
extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
#define MB_INTRA_VLC_BITS 9
extern VLC ff_msmp4_mb_i_vlc;
extern const uint16_t ff_msmp4_mb_i_table[64][2];
#define DC_VLC_BITS 9
#define AC_VLC_BITS 9
static const uint16_t table_mb_intra[64][2];
/** Available Profiles */
//@{
enum Profile {
PROFILE_SIMPLE,
PROFILE_MAIN,
PROFILE_COMPLEX, ///< TODO: WMV9 specific
PROFILE_ADVANCED
};
//@}
/** Sequence quantizer mode */
//@{
enum QuantMode {
QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
QUANT_UNIFORM ///< Uniform quant used for all frames
};
//@}
/** Where quant can be changed */
//@{
enum DQProfile {
DQPROFILE_FOUR_EDGES,
DQPROFILE_DOUBLE_EDGES,
DQPROFILE_SINGLE_EDGE,
DQPROFILE_ALL_MBS
};
//@}
/** @name Where quant can be changed
*/
//@{
enum DQSingleEdge {
DQSINGLE_BEDGE_LEFT,
DQSINGLE_BEDGE_TOP,
DQSINGLE_BEDGE_RIGHT,
DQSINGLE_BEDGE_BOTTOM
};
//@}
/** Which pair of edges is quantized with ALTPQUANT */
//@{
enum DQDoubleEdge {
DQDOUBLE_BEDGE_TOPLEFT,
DQDOUBLE_BEDGE_TOPRIGHT,
DQDOUBLE_BEDGE_BOTTOMRIGHT,
DQDOUBLE_BEDGE_BOTTOMLEFT
};
//@}
/** MV modes for P frames */
//@{
enum MVModes {
MV_PMODE_1MV_HPEL_BILIN,
MV_PMODE_1MV,
MV_PMODE_1MV_HPEL,
MV_PMODE_MIXED_MV,
MV_PMODE_INTENSITY_COMP
};
//@}
/** @name MV types for B frames */
//@{
enum BMVTypes {
BMV_TYPE_BACKWARD,
BMV_TYPE_FORWARD,
BMV_TYPE_INTERPOLATED
};
//@}
/** @name Block types for P/B frames */
//@{
enum TransformTypes {
TT_8X8,
TT_8X4_BOTTOM,
TT_8X4_TOP,
TT_8X4, //Both halves
TT_4X8_RIGHT,
TT_4X8_LEFT,
TT_4X8, //Both halves
TT_4X4
};
//@}
/** Table for conversion between TTBLK and TTMB */
static const int ttblk_to_tt[3][8] = {
{ TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
{ TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
{ TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
};
static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
/** MV P mode - the 5th element is only used for mode 1 */
static const uint8_t mv_pmode_table[2][5] = {
{ MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
{ MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
};
static const uint8_t mv_pmode_table2[2][4] = {
{ MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
{ MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
};
/** One more frame type */
#define BI_TYPE 7
static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
fps_dr[2] = { 1000, 1001 };
static const uint8_t pquant_table[3][32] = {
{ /* Implicit quantizer */
0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
},
{ /* Explicit quantizer, pquantizer uniform */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
},
{ /* Explicit quantizer, pquantizer non-uniform */
0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
}
};
/** @name VC-1 VLC tables and defines
* @todo TODO move this into the context
*/
//@{
#define VC1_BFRACTION_VLC_BITS 7
static VLC vc1_bfraction_vlc;
#define VC1_IMODE_VLC_BITS 4
static VLC vc1_imode_vlc;
#define VC1_NORM2_VLC_BITS 3
static VLC vc1_norm2_vlc;
#define VC1_NORM6_VLC_BITS 9
static VLC vc1_norm6_vlc;
/* Could be optimized, one table only needs 8 bits */
#define VC1_TTMB_VLC_BITS 9 //12
static VLC vc1_ttmb_vlc[3];
#define VC1_MV_DIFF_VLC_BITS 9 //15
static VLC vc1_mv_diff_vlc[4];
#define VC1_CBPCY_P_VLC_BITS 9 //14
static VLC vc1_cbpcy_p_vlc[4];
#define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
static VLC vc1_4mv_block_pattern_vlc[4];
#define VC1_TTBLK_VLC_BITS 5
static VLC vc1_ttblk_vlc[3];
#define VC1_SUBBLKPAT_VLC_BITS 6
static VLC vc1_subblkpat_vlc[3];
static VLC vc1_ac_coeff_table[8];
//@}
enum CodingSet {
CS_HIGH_MOT_INTRA = 0,
CS_HIGH_MOT_INTER,
CS_LOW_MOT_INTRA,
CS_LOW_MOT_INTER,
CS_MID_RATE_INTRA,
CS_MID_RATE_INTER,
CS_HIGH_RATE_INTRA,
CS_HIGH_RATE_INTER
};
/** The VC1 Context
* @fixme Change size wherever another size is more efficient
* Many members are only used for Advanced Profile
*/
typedef struct VC1Context{
MpegEncContext s;
int bits;
/** Simple/Main Profile sequence header */
//@{
int res_sm; ///< reserved, 2b
int res_x8; ///< reserved
int multires; ///< frame-level RESPIC syntax element present
int res_fasttx; ///< reserved, always 1
int res_transtab; ///< reserved, always 0
int rangered; ///< RANGEREDFRM (range reduction) syntax element present
///< at frame level
int res_rtm_flag; ///< reserved, set to 1
int reserved; ///< reserved
//@}
/** Advanced Profile */
//@{
int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
int chromaformat; ///< 2bits, 2=4:2:0, only defined
int postprocflag; ///< Per-frame processing suggestion flag present
int broadcast; ///< TFF/RFF present
int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
int tfcntrflag; ///< TFCNTR present
int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
int extended_dmv; ///< Additional extended dmv range at P/B frame-level
int color_prim; ///< 8bits, chroma coordinates of the color primaries
int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
int hrd_param_flag; ///< Presence of Hypothetical Reference
///< Decoder parameters
//@}
/** Sequence header data for all Profiles
* TODO: choose between ints, uint8_ts and monobit flags
*/
//@{
int profile; ///< 2bits, Profile
int frmrtq_postproc; ///< 3bits,
int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
int extended_mv; ///< Ext MV in P/B (not in Simple)
int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
int vstransform; ///< variable-size [48]x[48] transform type + info
int overlap; ///< overlapped transforms in use
int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
int finterpflag; ///< INTERPFRM present
//@}
/** Frame decoding info for all profiles */
//@{
uint8_t mv_mode; ///< MV coding monde
uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
int k_x; ///< Number of bits for MVs (depends on MV range)
int k_y; ///< Number of bits for MVs (depends on MV range)
int range_x, range_y; ///< MV range
uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
/** pquant parameters */
//@{
uint8_t dquantfrm;
uint8_t dqprofile;
uint8_t dqsbedge;
uint8_t dqbilevel;
//@}
/** AC coding set indexes
* @see 8.1.1.10, p(1)10
*/
//@{
int c_ac_table_index; ///< Chroma index from ACFRM element
int y_ac_table_index; ///< Luma index from AC2FRM element
//@}
int ttfrm; ///< Transform type info present at frame level
uint8_t ttmbf; ///< Transform type flag
uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
int codingset; ///< index of current table set from 11.8 to use for luma block decoding
int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
int pqindex; ///< raw pqindex used in coding set selection
int a_avail, c_avail;
uint8_t *mb_type_base, *mb_type[3];
/** Luma compensation parameters */
//@{
uint8_t lumscale;
uint8_t lumshift;
//@}
int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
uint8_t halfpq; ///< Uniform quant over image and qp+.5
uint8_t respic; ///< Frame-level flag for resized images
int buffer_fullness; ///< HRD info
/** Ranges:
* -# 0 -> [-64n 63.f] x [-32, 31.f]
* -# 1 -> [-128, 127.f] x [-64, 63.f]
* -# 2 -> [-512, 511.f] x [-128, 127.f]
* -# 3 -> [-1024, 1023.f] x [-256, 255.f]
*/
uint8_t mvrange;
uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
VLC *cbpcy_vlc; ///< CBPCY VLC table
int tt_index; ///< Index for Transform Type tables
uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
int mv_type_is_raw; ///< mv type mb plane is not coded
int dmb_is_raw; ///< direct mb plane is raw
int skip_is_raw; ///< skip mb plane is not coded
uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
int rnd; ///< rounding control
/** Frame decoding info for S/M profiles only */
//@{
uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
uint8_t interpfrm;
//@}
/** Frame decoding info for Advanced profile */
//@{
uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
uint8_t numpanscanwin;
uint8_t tfcntr;
uint8_t rptfrm, tff, rff;
uint16_t topleftx;
uint16_t toplefty;
uint16_t bottomrightx;
uint16_t bottomrighty;
uint8_t uvsamp;
uint8_t postproc;
int hrd_num_leaky_buckets;
uint8_t bit_rate_exponent;
uint8_t buffer_size_exponent;
// BitPlane ac_pred_plane; ///< AC prediction flags bitplane
// BitPlane over_flags_plane; ///< Overflags bitplane
uint8_t condover;
uint16_t *hrd_rate, *hrd_buffer;
uint8_t *hrd_fullness;
uint8_t range_mapy_flag;
uint8_t range_mapuv_flag;
uint8_t range_mapy;
uint8_t range_mapuv;
//@}
} VC1Context;
/**
* Get unary code of limited length
* @fixme FIXME Slow and ugly
* @param gb GetBitContext
* @param[in] stop The bitstop value (unary code of 1's or 0's)
* @param[in] len Maximum length
* @return Unary length/index
*/
static int get_prefix(GetBitContext *gb, int stop, int len)
{
#if 1
int i;
for(i = 0; i < len && get_bits1(gb) != stop; i++);
return i;
/* int i = 0, tmp = !stop;
while (i != len && tmp != stop)
{
tmp = get_bits(gb, 1);
i++;
}
if (i == len && tmp != stop) return len+1;
return i;*/
#else
unsigned int buf;
int log;
OPEN_READER(re, gb);
UPDATE_CACHE(re, gb);
buf=GET_CACHE(re, gb); //Still not sure
if (stop) buf = ~buf;
log= av_log2(-buf); //FIXME: -?
if (log < limit){
LAST_SKIP_BITS(re, gb, log+1);
CLOSE_READER(re, gb);
return log;
}
LAST_SKIP_BITS(re, gb, limit);
CLOSE_READER(re, gb);
return limit;
#endif
}
static inline int decode210(GetBitContext *gb){
int n;
n = get_bits1(gb);
if (n == 1)
return 0;
else
return 2 - get_bits1(gb);
}
/**
* Init VC-1 specific tables and VC1Context members
* @param v The VC1Context to initialize
* @return Status
*/
static int vc1_init_common(VC1Context *v)
{
static int done = 0;
int i = 0;
v->hrd_rate = v->hrd_buffer = NULL;
/* VLC tables */
if(!done)
{
done = 1;
init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
vc1_bfraction_bits, 1, 1,
vc1_bfraction_codes, 1, 1, 1);
init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
vc1_norm2_bits, 1, 1,
vc1_norm2_codes, 1, 1, 1);
init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
vc1_norm6_bits, 1, 1,
vc1_norm6_codes, 2, 2, 1);
init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
vc1_imode_bits, 1, 1,
vc1_imode_codes, 1, 1, 1);
for (i=0; i<3; i++)
{
init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
vc1_ttmb_bits[i], 1, 1,
vc1_ttmb_codes[i], 2, 2, 1);
init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
vc1_ttblk_bits[i], 1, 1,
vc1_ttblk_codes[i], 1, 1, 1);
init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
vc1_subblkpat_bits[i], 1, 1,
vc1_subblkpat_codes[i], 1, 1, 1);
}
for(i=0; i<4; i++)
{
init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
vc1_4mv_block_pattern_bits[i], 1, 1,
vc1_4mv_block_pattern_codes[i], 1, 1, 1);
init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
vc1_cbpcy_p_bits[i], 1, 1,
vc1_cbpcy_p_codes[i], 2, 2, 1);
init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
vc1_mv_diff_bits[i], 1, 1,
vc1_mv_diff_codes[i], 2, 2, 1);
}
for(i=0; i<8; i++)
init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
&vc1_ac_tables[i][0][1], 8, 4,
&vc1_ac_tables[i][0][0], 8, 4, 1);
init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
&ff_msmp4_mb_i_table[0][1], 4, 2,
&ff_msmp4_mb_i_table[0][0], 4, 2, 1);
}
/* Other defaults */
v->pq = -1;
v->mvrange = 0; /* 7.1.1.18, p80 */
return 0;
}
/***********************************************************************/
/**
* @defgroup bitplane VC9 Bitplane decoding
* @see 8.7, p56
* @{
*/
/** @addtogroup bitplane
* Imode types
* @{
*/
enum Imode {
IMODE_RAW,
IMODE_NORM2,
IMODE_DIFF2,
IMODE_NORM6,
IMODE_DIFF6,
IMODE_ROWSKIP,
IMODE_COLSKIP
};
/** @} */ //imode defines
/** Decode rows by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
*/
static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (y=0; y<height; y++){
if (!get_bits(gb, 1)) //rowskip
memset(plane, 0, width);
else
for (x=0; x<width; x++)
plane[x] = get_bits(gb, 1);
plane += stride;
}
}
/** Decode columns by checking if they are skipped
* @param plane Buffer to store decoded bits
* @param[in] width Width of this buffer
* @param[in] height Height of this buffer
* @param[in] stride of this buffer
* @fixme FIXME: Optimize
*/
static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
int x, y;
for (x=0; x<width; x++){
if (!get_bits(gb, 1)) //colskip
for (y=0; y<height; y++)
plane[y*stride] = 0;
else
for (y=0; y<height; y++)
plane[y*stride] = get_bits(gb, 1);
plane ++;
}
}
/** Decode a bitplane's bits
* @param bp Bitplane where to store the decode bits
* @param v VC-1 context for bit reading and logging
* @return Status
* @fixme FIXME: Optimize
* @todo TODO: Decide if a struct is needed
*/
static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int imode, x, y, code, offset;
uint8_t invert, *planep = data;
int width, height, stride;
width = v->s.mb_width;
height = v->s.mb_height;
stride = v->s.mb_stride;
invert = get_bits(gb, 1);
imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
*raw_flag = 0;
switch (imode)
{
case IMODE_RAW:
//Data is actually read in the MB layer (same for all tests == "raw")
*raw_flag = 1; //invert ignored
return invert;
case IMODE_DIFF2:
case IMODE_NORM2:
if ((height * width) & 1)
{
*planep++ = get_bits(gb, 1);
offset = 1;
}
else offset = 0;
// decode bitplane as one long line
for (y = offset; y < height * width; y += 2) {
code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
*planep++ = code & 1;
offset++;
if(offset == width) {
offset = 0;
planep += stride - width;
}
*planep++ = code >> 1;
offset++;
if(offset == width) {
offset = 0;
planep += stride - width;
}
}
break;
case IMODE_DIFF6:
case IMODE_NORM6:
if(!(height % 3) && (width % 3)) { // use 2x3 decoding
for(y = 0; y < height; y+= 3) {
for(x = width & 1; x < width; x += 2) {
code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if(code < 0){
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 0 + stride] = (code >> 2) & 1;
planep[x + 1 + stride] = (code >> 3) & 1;
planep[x + 0 + stride * 2] = (code >> 4) & 1;
planep[x + 1 + stride * 2] = (code >> 5) & 1;
}
planep += stride * 3;
}
if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
} else { // 3x2
planep += (height & 1) * stride;
for(y = height & 1; y < height; y += 2) {
for(x = width % 3; x < width; x += 3) {
code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
if(code < 0){
av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
return -1;
}
planep[x + 0] = (code >> 0) & 1;
planep[x + 1] = (code >> 1) & 1;
planep[x + 2] = (code >> 2) & 1;
planep[x + 0 + stride] = (code >> 3) & 1;
planep[x + 1 + stride] = (code >> 4) & 1;
planep[x + 2 + stride] = (code >> 5) & 1;
}
planep += stride * 2;
}
x = width % 3;
if(x) decode_colskip(data , x, height , stride, &v->s.gb);
if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
}
break;
case IMODE_ROWSKIP:
decode_rowskip(data, width, height, stride, &v->s.gb);
break;
case IMODE_COLSKIP:
decode_colskip(data, width, height, stride, &v->s.gb);
break;
default: break;
}
/* Applying diff operator */
if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
{
planep = data;
planep[0] ^= invert;
for (x=1; x<width; x++)
planep[x] ^= planep[x-1];
for (y=1; y<height; y++)
{
planep += stride;
planep[0] ^= planep[-stride];
for (x=1; x<width; x++)
{
if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
else planep[x] ^= planep[x-1];
}
}
}
else if (invert)
{
planep = data;
for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
}
return (imode<<1) + invert;
}
/** @} */ //Bitplane group
/***********************************************************************/
/** VOP Dquant decoding
* @param v VC-1 Context
*/
static int vop_dquant_decoding(VC1Context *v)
{
GetBitContext *gb = &v->s.gb;
int pqdiff;
//variable size
if (v->dquant == 2)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
else
{
v->dquantfrm = get_bits(gb, 1);
if ( v->dquantfrm )
{
v->dqprofile = get_bits(gb, 2);
switch (v->dqprofile)
{
case DQPROFILE_SINGLE_EDGE:
case DQPROFILE_DOUBLE_EDGES:
v->dqsbedge = get_bits(gb, 2);
break;
case DQPROFILE_ALL_MBS:
v->dqbilevel = get_bits(gb, 1);
default: break; //Forbidden ?
}
if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
{
pqdiff = get_bits(gb, 3);
if (pqdiff == 7) v->altpq = get_bits(gb, 5);
else v->altpq = v->pq + pqdiff + 1;
}
}
}
return 0;
}
/** Put block onto picture
* @todo move to DSPContext
*/
static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
{
uint8_t *Y;
int ys, us, vs;
DSPContext *dsp = &v->s.dsp;
if(v->rangeredfrm) {
int i, j, k;
for(k = 0; k < 6; k++)
for(j = 0; j < 8; j++)
for(i = 0; i < 8; i++)
block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
}
ys = v->s.current_picture.linesize[0];
us = v->s.current_picture.linesize[1];
vs = v->s.current_picture.linesize[2];
Y = v->s.dest[0];
dsp->put_pixels_clamped(block[0], Y, ys);
dsp->put_pixels_clamped(block[1], Y + 8, ys);
Y += ys * 8;
dsp->put_pixels_clamped(block[2], Y, ys);
dsp->put_pixels_clamped(block[3], Y + 8, ys);
if(!(v->s.flags & CODEC_FLAG_GRAY)) {
dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
}
}
/** Do motion compensation over 1 macroblock
* Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
*/
static void vc1_mc_1mv(VC1Context *v, int dir)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.last_picture.data[0])return;
mx = s->mv[0][0][0];
my = s->mv[0][0][1];
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
if(!dir) {
srcY = s->last_picture.data[0];
srcU = s->last_picture.data[1];
srcV = s->last_picture.data[2];
} else {
srcY = s->next_picture.data[0];
srcU = s->next_picture.data[1];
srcV = s->next_picture.data[2];
}
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
src_x = clip( src_x, -16, s->mb_width * 16);
src_y = clip( src_y, -16, s->mb_height * 16);
uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
srcY -= s->mspel * (1 + s->linesize);
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17 + s->mspel*2; j++) {
for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
srcY += s->linesize * 8;
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
else
dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
}
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel bilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
/** Do motion compensation for 4-MV macroblock - luminance block
*/
static void vc1_mc_4mv_luma(VC1Context *v, int n)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY;
int dxy, mx, my, src_x, src_y;
int off;
if(!v->s.last_picture.data[0])return;
mx = s->mv[0][n][0];
my = s->mv[0][n][1];
srcY = s->last_picture.data[0];
off = s->linesize * 4 * (n&2) + (n&1) * 8;
src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
src_x = clip( src_x, -16, s->mb_width * 16);
src_y = clip( src_y, -16, s->mb_height * 16);
srcY += src_y * s->linesize + src_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
|| (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
srcY -= s->mspel * (1 + s->linesize);
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src;
src = srcY;
for(j = 0; j < 9 + s->mspel*2; j++) {
for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
src += s->linesize;
}
}
srcY += s->mspel * (1 + s->linesize);
}
if(s->mspel) {
dxy = ((my & 3) << 2) | (mx & 3);
dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
} else { // hpel mc - always used for luma
dxy = (my & 2) | ((mx & 2) >> 1);
if(!v->rnd)
dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
else
dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
}
}
static inline int median4(int a, int b, int c, int d)
{
if(a < b) {
if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
} else {
if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
}
}
/** Do motion compensation for 4-MV macroblock - both chroma blocks
*/
static void vc1_mc_4mv_chroma(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcU, *srcV;
int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
int i, idx, tx = 0, ty = 0;
int mvx[4], mvy[4], intra[4];
static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
if(!v->s.last_picture.data[0])return;
if(s->flags & CODEC_FLAG_GRAY) return;
for(i = 0; i < 4; i++) {
mvx[i] = s->mv[0][i][0];
mvy[i] = s->mv[0][i][1];
intra[i] = v->mb_type[0][s->block_index[i]];
}
/* calculate chroma MV vector from four luma MVs */
idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
if(!idx) { // all blocks are inter
tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
} else if(count[idx] == 1) { // 3 inter blocks
switch(idx) {
case 0x1:
tx = mid_pred(mvx[1], mvx[2], mvx[3]);
ty = mid_pred(mvy[1], mvy[2], mvy[3]);
break;
case 0x2:
tx = mid_pred(mvx[0], mvx[2], mvx[3]);
ty = mid_pred(mvy[0], mvy[2], mvy[3]);
break;
case 0x4:
tx = mid_pred(mvx[0], mvx[1], mvx[3]);
ty = mid_pred(mvy[0], mvy[1], mvy[3]);
break;
case 0x8:
tx = mid_pred(mvx[0], mvx[1], mvx[2]);
ty = mid_pred(mvy[0], mvy[1], mvy[2]);
break;
}
} else if(count[idx] == 2) {
int t1 = 0, t2 = 0;
for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
tx = (mvx[t1] + mvx[t2]) / 2;
ty = (mvy[t1] + mvy[t2]) / 2;
} else
return; //no need to do MC for inter blocks
uvmx = (tx + ((tx&3) == 3)) >> 1;
uvmy = (ty + ((ty&3) == 3)) >> 1;
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
|| (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
|| (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = s->edge_emu_buffer;
srcV = s->edge_emu_buffer + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
/* if we deal with intensity compensation we need to scale source blocks */
if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
int i, j;
uint8_t *src, *src2;
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = v->lutuv[src[i]];
src2[i] = v->lutuv[src2[i]];
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
}
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
/* Chroma MC always uses qpel bilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
uvmx = (uvmx&3)<<1;
uvmy = (uvmy&3)<<1;
if(!v->rnd){
dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}else{
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
}
}
/**
* Decode Simple/Main Profiles sequence header
* @see Figure 7-8, p16-17
* @param avctx Codec context
* @param gb GetBit context initialized from Codec context extra_data
* @return Status
*/
static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
{
VC1Context *v = avctx->priv_data;
av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
v->profile = get_bits(gb, 2);
if (v->profile == 2)
{
av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
return -1;
}
if (v->profile == PROFILE_ADVANCED)
{
v->level = get_bits(gb, 3);
if(v->level >= 5)
{
av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
}
v->chromaformat = get_bits(gb, 2);
if (v->chromaformat != 1)
{
av_log(avctx, AV_LOG_ERROR,
"Only 4:2:0 chroma format supported\n");
return -1;
}
}
else
{
v->res_sm = get_bits(gb, 2); //reserved
if (v->res_sm)
{
av_log(avctx, AV_LOG_ERROR,
"Reserved RES_SM=%i is forbidden\n", v->res_sm);
return -1;
}
}
// (fps-2)/4 (->30)
v->frmrtq_postproc = get_bits(gb, 3); //common
// (bitrate-32kbps)/64kbps
v->bitrtq_postproc = get_bits(gb, 5); //common
v->s.loop_filter = get_bits(gb, 1); //common
if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_ERROR,
"LOOPFILTER shell not be enabled in simple profile\n");
}
if (v->profile < PROFILE_ADVANCED)
{
v->res_x8 = get_bits(gb, 1); //reserved
if (v->res_x8)
{
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_X8 is forbidden\n");
//return -1;
}
v->multires = get_bits(gb, 1);
v->res_fasttx = get_bits(gb, 1);
if (!v->res_fasttx)
{
av_log(avctx, AV_LOG_ERROR,
"0 for reserved RES_FASTTX is forbidden\n");
//return -1;
}
}
v->fastuvmc = get_bits(gb, 1); //common
if (!v->profile && !v->fastuvmc)
{
av_log(avctx, AV_LOG_ERROR,
"FASTUVMC unavailable in Simple Profile\n");
return -1;
}
v->extended_mv = get_bits(gb, 1); //common
if (!v->profile && v->extended_mv)
{
av_log(avctx, AV_LOG_ERROR,
"Extended MVs unavailable in Simple Profile\n");
return -1;
}
v->dquant = get_bits(gb, 2); //common
v->vstransform = get_bits(gb, 1); //common
if (v->profile < PROFILE_ADVANCED)
{
v->res_transtab = get_bits(gb, 1);
if (v->res_transtab)
{
av_log(avctx, AV_LOG_ERROR,
"1 for reserved RES_TRANSTAB is forbidden\n");
return -1;
}
}
v->overlap = get_bits(gb, 1); //common
if (v->profile < PROFILE_ADVANCED)
{
v->s.resync_marker = get_bits(gb, 1);
v->rangered = get_bits(gb, 1);
if (v->rangered && v->profile == PROFILE_SIMPLE)
{
av_log(avctx, AV_LOG_INFO,
"RANGERED should be set to 0 in simple profile\n");
}
}
v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
v->quantizer_mode = get_bits(gb, 2); //common
if (v->profile < PROFILE_ADVANCED)
{
v->finterpflag = get_bits(gb, 1); //common
v->res_rtm_flag = get_bits(gb, 1); //reserved
if (!v->res_rtm_flag)
{
// av_log(avctx, AV_LOG_ERROR,
// "0 for reserved RES_RTM_FLAG is forbidden\n");
av_log(avctx, AV_LOG_ERROR,
"Old WMV3 version detected, only I-frames will be decoded\n");
//return -1;
}
av_log(avctx, AV_LOG_DEBUG,
"Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
"LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
"Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
"DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
v->dquant, v->quantizer_mode, avctx->max_b_frames
);
return 0;
}
return -1;
}
static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
{
int pqindex, lowquant, status;
if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
skip_bits(gb, 2); //framecnt unused
v->rangeredfrm = 0;
if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
v->s.pict_type = get_bits(gb, 1);
if (v->s.avctx->max_b_frames) {
if (!v->s.pict_type) {
if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
else v->s.pict_type = B_TYPE;
} else v->s.pict_type = P_TYPE;
} else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
if(v->s.pict_type == I_TYPE)
get_bits(gb, 7); // skip buffer fullness
if(v->s.pict_type == B_TYPE) {
v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
v->bfraction = vc1_bfraction_lut[v->bfraction];
if(v->bfraction == -1) {
v->s.pict_type = BI_TYPE;
}
}
/* calculate RND */
if(v->s.pict_type == I_TYPE)
v->rnd = 1;
if(v->s.pict_type == P_TYPE)
v->rnd ^= 1;
/* Quantizer stuff */
pqindex = get_bits(gb, 5);
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pq = pquant_table[0][pqindex];
else
v->pq = pquant_table[1][pqindex];
v->pquantizer = 1;
if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
v->pquantizer = pqindex < 9;
if (v->quantizer_mode == QUANT_NON_UNIFORM)
v->pquantizer = 0;
v->pqindex = pqindex;
if (pqindex < 9) v->halfpq = get_bits(gb, 1);
else v->halfpq = 0;
if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
v->pquantizer = get_bits(gb, 1);
v->dquantfrm = 0;
if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
v->range_x = 1 << (v->k_x - 1);
v->range_y = 1 << (v->k_y - 1);
if (v->profile == PROFILE_ADVANCED)
{
if (v->postprocflag) v->postproc = get_bits(gb, 1);
}
else
if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
//av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
// (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
//TODO: complete parsing for P/B/BI frames
switch(v->s.pict_type) {
case P_TYPE:
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
{
int scale, shift, i;
v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
v->lumscale = get_bits(gb, 6);
v->lumshift = get_bits(gb, 6);
/* fill lookup tables for intensity compensation */
if(!v->lumscale) {
scale = -64;
shift = (255 - v->lumshift * 2) << 6;
if(v->lumshift > 31)
shift += 128 << 6;
} else {
scale = v->lumscale + 32;
if(v->lumshift > 31)
shift = (v->lumshift - 64) << 6;
else
shift = v->lumshift << 6;
}
for(i = 0; i < 256; i++) {
v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
}
}
if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
v->s.quarter_sample = 0;
else
v->s.quarter_sample = 1;
} else
v->s.quarter_sample = 1;
v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
v->mv_mode2 == MV_PMODE_MIXED_MV)
|| v->mv_mode == MV_PMODE_MIXED_MV)
{
status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
} else {
v->mv_type_is_raw = 0;
memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
}
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
/* Hopefully this is correct for P frames */
v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0; //FIXME Is that so ?
if (v->vstransform)
{
v->ttmbf = get_bits(gb, 1);
if (v->ttmbf)
{
v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
case B_TYPE:
if (v->pq < 5) v->tt_index = 0;
else if(v->pq < 13) v->tt_index = 1;
else v->tt_index = 2;
lowquant = (v->pq > 12) ? 0 : 1;
v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
v->s.mspel = v->s.quarter_sample;
status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
if (status < 0) return -1;
av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
"Imode: %i, Invert: %i\n", status>>1, status&1);
v->s.mv_table_index = get_bits(gb, 2);
v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
if (v->dquant)
{
av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
vop_dquant_decoding(v);
}
v->ttfrm = 0;
if (v->vstransform)
{
v->ttmbf = get_bits(gb, 1);
if (v->ttmbf)
{
v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
}
} else {
v->ttmbf = 1;
v->ttfrm = TT_8X8;
}
break;
}
/* AC Syntax */
v->c_ac_table_index = decode012(gb);
if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
{
v->y_ac_table_index = decode012(gb);
}
/* DC Syntax */
v->s.dc_table_index = get_bits(gb, 1);
return 0;
}
/***********************************************************************/
/**
* @defgroup block VC-1 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @todo TODO: Integrate to MpegEncContext facilities
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
* @warning XXX: qdiff to the frame quant, not previous quant ?
* @fixme XXX: Don't know how to initialize mquant otherwise in last case
*/
#define GET_MQUANT() \
if (v->dquantfrm) \
{ \
int edges = 0; \
if (v->dqprofile == DQPROFILE_ALL_MBS) \
{ \
if (v->dqbilevel) \
{ \
mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
} \
else \
{ \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) mquant = v->pq + mqdiff; \
else mquant = get_bits(gb, 5); \
} \
} \
if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
edges = 1 << v->dqsbedge; \
else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
edges = (3 << v->dqsbedge) % 15; \
else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
edges = 15; \
if((edges&1) && !s->mb_x) \
mquant = v->altpq; \
if((edges&2) && s->first_slice_line) \
mquant = v->altpq; \
if((edges&4) && s->mb_x == (s->mb_width - 1)) \
mquant = v->altpq; \
if((edges&8) && s->mb_y == (s->mb_height - 1)) \
mquant = v->altpq; \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
* @todo TODO: Use MpegEncContext arrays to store them
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
VC1_MV_DIFF_VLC_BITS, 2); \
if (index > 36) \
{ \
mb_has_coeffs = 1; \
index -= 37; \
} \
else mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { _dmv_x = _dmv_y = 0; } \
else if (index == 35) \
{ \
_dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
_dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
} \
else if (index == 36) \
{ \
_dmv_x = 0; \
_dmv_y = 0; \
s->mb_intra = 1; \
} \
else \
{ \
index1 = index%6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
\
index1 = index/6; \
if (!s->quarter_sample && index1 == 5) val = 1; \
else val = 0; \
if(size_table[index1] - val > 0) \
val = get_bits(gb, size_table[index1] - val); \
else val = 0; \
sign = 0 - (val&1); \
_dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
}
/** Predict and set motion vector
*/
static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
{
int xy, wrap, off = 0;
int16_t *A, *B, *C;
int px, py;
int sum;
/* scale MV difference to be quad-pel */
dmv_x <<= 1 - s->quarter_sample;
dmv_y <<= 1 - s->quarter_sample;
wrap = s->b8_stride;
xy = s->block_index[n];
if(s->mb_intra){
s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1][0] = 0;
s->current_picture.motion_val[0][xy + 1][1] = 0;
s->current_picture.motion_val[0][xy + wrap][0] = 0;
s->current_picture.motion_val[0][xy + wrap][1] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
}
return;
}
C = s->current_picture.motion_val[0][xy - 1];
A = s->current_picture.motion_val[0][xy - wrap];
if(mv1)
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
else {
//in 4-MV mode different blocks have different B predictor position
switch(n){
case 0:
off = (s->mb_x > 0) ? -1 : 1;
break;
case 1:
off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
break;
case 2:
off = 1;
break;
case 3:
off = -1;
}
}
B = s->current_picture.motion_val[0][xy - wrap + off];
if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
if(s->mb_width == 1) {
px = A[0];
py = A[1];
} else {
px = mid_pred(A[0], B[0], C[0]);
py = mid_pred(A[1], B[1], C[1]);
}
} else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
px = C[0];
py = C[1];
} else {
px = py = 0;
}
/* Pullback MV as specified in 8.3.5.3.4 */
{
int qx, qy, X, Y;
qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
X = (s->mb_width << 6) - 4;
Y = (s->mb_height << 6) - 4;
if(mv1) {
if(qx + px < -60) px = -60 - qx;
if(qy + py < -60) py = -60 - qy;
} else {
if(qx + px < -28) px = -28 - qx;
if(qy + py < -28) py = -28 - qy;
}
if(qx + px > X) px = X - qx;
if(qy + py > Y) py = Y - qy;
}
/* Calculate hybrid prediction as specified in 8.3.5.3.5 */
if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
if(is_intra[xy - wrap])
sum = ABS(px) + ABS(py);
else
sum = ABS(px - A[0]) + ABS(py - A[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
} else {
if(is_intra[xy - 1])
sum = ABS(px) + ABS(py);
else
sum = ABS(px - C[0]) + ABS(py - C[1]);
if(sum > 32) {
if(get_bits1(&s->gb)) {
px = A[0];
py = A[1];
} else {
px = C[0];
py = C[1];
}
}
}
}
/* store MV using signed modulus of MV range defined in 4.11 */
s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
if(mv1) { /* duplicate motion data for 1-MV block */
s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
}
}
/** Motion compensation for direct or interpolated blocks in B-frames
*/
static void vc1_interp_mc(VC1Context *v)
{
MpegEncContext *s = &v->s;
DSPContext *dsp = &v->s.dsp;
uint8_t *srcY, *srcU, *srcV;
int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
if(!v->s.next_picture.data[0])return;
mx = s->mv[1][0][0];
my = s->mv[1][0][1];
uvmx = (mx + ((mx & 3) == 3)) >> 1;
uvmy = (my + ((my & 3) == 3)) >> 1;
srcY = s->next_picture.data[0];
srcU = s->next_picture.data[1];
srcV = s->next_picture.data[2];
src_x = s->mb_x * 16 + (mx >> 2);
src_y = s->mb_y * 16 + (my >> 2);
uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
src_x = clip( src_x, -16, s->mb_width * 16);
src_y = clip( src_y, -16, s->mb_height * 16);
uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
srcY += src_y * s->linesize + src_x;
srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
/* for grayscale we should not try to read from unknown area */
if(s->flags & CODEC_FLAG_GRAY) {
srcU = s->edge_emu_buffer + 18 * s->linesize;
srcV = s->edge_emu_buffer + 18 * s->linesize;
}
if(v->rangeredfrm
|| (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
|| (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17, 17,
src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
srcY = s->edge_emu_buffer;
ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
srcU = uvbuf;
srcV = uvbuf + 16;
/* if we deal with range reduction we need to scale source blocks */
if(v->rangeredfrm) {
int i, j;
uint8_t *src, *src2;
src = srcY;
for(j = 0; j < 17; j++) {
for(i = 0; i < 17; i++) src[i] = ((src[i] - 128) >> 1) + 128;
src += s->linesize;
}
src = srcU; src2 = srcV;
for(j = 0; j < 9; j++) {
for(i = 0; i < 9; i++) {
src[i] = ((src[i] - 128) >> 1) + 128;
src2[i] = ((src2[i] - 128) >> 1) + 128;
}
src += s->uvlinesize;
src2 += s->uvlinesize;
}
}
}
if(v->fastuvmc) {
uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
}
mx >>= 1;
my >>= 1;
dxy = ((my & 1) << 1) | (mx & 1);
dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
if(s->flags & CODEC_FLAG_GRAY) return;
/* Chroma MC always uses qpel blilinear */
uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
dsp->avg_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
dsp->avg_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
}
/** Reconstruct motion vector for B-frame and do motion compensation
*/
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
{
MpegEncContext *s = &v->s;
int mx[4], my[4], mv_x, mv_y;
int i;
/* scale MV difference to be quad-pel */
dmv_x[0] <<= 1 - s->quarter_sample;
dmv_y[0] <<= 1 - s->quarter_sample;
dmv_x[1] <<= 1 - s->quarter_sample;
dmv_y[1] <<= 1 - s->quarter_sample;
if(direct) {
for(i = 0; i < 4; i++) {
mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
}
mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
mv_y = median4(my[0], my[1], my[2], my[3]);
s->mv[0][0][0] = (mv_x * v->bfraction + B_FRACTION_DEN/2) / B_FRACTION_DEN;
s->mv[0][0][1] = (mv_y * v->bfraction + B_FRACTION_DEN/2) / B_FRACTION_DEN;
vc1_mc_1mv(v, 0);
for(i = 0; i < 4; i++) {
mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
}
mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
mv_y = median4(my[0], my[1], my[2], my[3]);
s->mv[1][0][0] = (mv_x * (B_FRACTION_DEN - v->bfraction) + B_FRACTION_DEN/2) / B_FRACTION_DEN;
s->mv[1][0][1] = (mv_y * (B_FRACTION_DEN - v->bfraction) + B_FRACTION_DEN/2) / B_FRACTION_DEN;
vc1_interp_mc(v);
return;
}
if(mode == BMV_TYPE_INTERPOLATED) {
s->mv[0][0][0] = dmv_x[0];
s->mv[0][0][1] = dmv_y[0];
vc1_mc_1mv(v, 0);
s->mv[1][0][0] = dmv_x[1];
s->mv[1][0][1] = dmv_y[1];
vc1_interp_mc(v);
return;
}
if(mode == BMV_TYPE_BACKWARD) {
for(i = 0; i < 4; i++) {
mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
}
} else {
for(i = 0; i < 4; i++) {
mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
}
}
/* XXX: not right but how to determine 4-MV intra/inter in another frame? */
mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
mv_y = median4(my[0], my[1], my[2], my[3]);
s->mv[0][0][0] = mv_x;
s->mv[0][0][1] = mv_y;
vc1_mc_1mv(v, (mode == BMV_TYPE_FORWARD));
}
/** Get predicted DC value for I-frames only
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[32] = {
-1, 1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (pq < 9 || !overlap)
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
}
else
{
/* Set outer values */
if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int a_avail, int c_avail,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int q1, q2 = 0;
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val= s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
/* scale predictors if needed */
q1 = s->current_picture.qscale_table[mb_pos];
if(c_avail && (n!= 1 && n!=3)) {
q2 = s->current_picture.qscale_table[mb_pos - 1];
if(q2 && q2 != q1)
c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && (n!= 2 && n!=3)) {
q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(q2 && q2 != q1)
a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail && (n!=3)) {
int off = mb_pos;
if(n != 1) off--;
if(n != 2) off -= s->mb_stride;
q2 = s->current_picture.qscale_table[off];
if(q2 && q2 != q1)
b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
}
if(a_avail && c_avail) {
if(abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = a;
*dir_ptr = 0;//top
}
} else if(a_avail) {
pred = a;
*dir_ptr = 0;//top
} else if(c_avail) {
pred = c;
*dir_ptr = 1;//left
} else {
pred = 0;
*dir_ptr = 1;//left
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/**
* @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @todo TODO: Integrate to MpegEncContext facilities
* @{
*/
static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/**
* Decode one AC coefficient
* @param v The VC1 context
* @param last Last coefficient
* @param skip How much zero coefficients to skip
* @param value Decoded AC coefficient value
* @see 8.1.3.4
*/
static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
{
GetBitContext *gb = &v->s.gb;
int index, escape, run = 0, level = 0, lst = 0;
index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
if (index != vc1_ac_sizes[codingset] - 1) {
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if(get_bits(gb, 1))
level = -level;
} else {
escape = decode210(gb);
if (escape != 2) {
index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if(escape == 0) {
if(lst)
level += vc1_last_delta_level_table[codingset][run];
else
level += vc1_delta_level_table[codingset][run];
} else {
if(lst)
run += vc1_last_delta_run_table[codingset][level] + 1;
else
run += vc1_delta_run_table[codingset][level] + 1;
}
if(get_bits(gb, 1))
level = -level;
} else {
int sign;
lst = get_bits(gb, 1);
if(v->s.esc3_level_length == 0) {
if(v->pq < 8 || v->dquantfrm) { // table 59
v->s.esc3_level_length = get_bits(gb, 3);
if(!v->s.esc3_level_length)
v->s.esc3_level_length = get_bits(gb, 2) + 8;
} else { //table 60
v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
}
v->s.esc3_run_length = 3 + get_bits(gb, 2);
}
run = get_bits(gb, v->s.esc3_run_length);
sign = get_bits(gb, 1);
level = get_bits(gb, v->s.esc3_level_length);
if(sign)
level = -level;
}
}
*last = lst;
*skip = run;
*value = level;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (v->pq == 1) dcdiff = get_bits(gb, 10);
else if (v->pq == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (v->pq == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (v->pq == 2)
dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
}
if (get_bits(gb, 1))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
if (!coded) {
goto not_coded;
}
//AC Decoding
i = 1;
{
int last = 0, skip, value;
const int8_t *zz_table;
int scale;
int k;
scale = v->pq * 2 + v->halfpq;
if(v->s.ac_pred) {
if(!dc_pred_dir)
zz_table = vc1_horizontal_zz;
else
zz_table = vc1_vertical_zz;
} else
zz_table = vc1_normal_zz;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
if(s->ac_pred) i = 63;
}
not_coded:
if(!coded) {
int k, scale;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = v->pq * 2 + v->halfpq;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
ac_val -= 16;
if(s->ac_pred)
memcpy(ac_val2, ac_val, 8 * 2);
} else {//top
ac_val -= 16 * s->block_wrap[n];
if(s->ac_pred)
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
}
/* apply AC prediction if needed */
if(s->ac_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
* @param coded are AC coeffs present or not
* @param mquant block quantizer
* @param codingset set of VLC to decode data
*/
static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int run_diff, i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
/* XXX: Guard against dumb values of mquant */
mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[mquant];
s->c_dc_scale = s->c_dc_scale_table[mquant];
/* Get DC differential */
if (n < 4) {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
} else {
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
}
if (dcdiff < 0){
av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
return -1;
}
if (dcdiff)
{
if (dcdiff == 119 /* ESC index value */)
{
/* TODO: Optimize */
if (mquant == 1) dcdiff = get_bits(gb, 10);
else if (mquant == 2) dcdiff = get_bits(gb, 9);
else dcdiff = get_bits(gb, 8);
}
else
{
if (mquant == 1)
dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
else if (mquant == 2)
dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
}
if (get_bits(gb, 1))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
/* Skip ? */
run_diff = 0;
i = 0;
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if(!a_avail) dc_pred_dir = 1;
if(!c_avail) dc_pred_dir = 0;
if(!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
ac_val2 = ac_val;
scale = mquant * 2 + v->halfpq;
if(dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->current_picture.qscale_table[mb_pos];
if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
if(n && n<4) q2 = q1;
if(coded) {
int last = 0, skip, value;
const int8_t *zz_table;
int k;
zz_table = vc1_simple_progressive_8x8_zz;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
i += skip;
if(i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if(use_pred) {
/* scale predictors if needed*/
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for(k = 1; k < 8; k++)
block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++)
block[k << 3] += ac_val[k];
} else { //top
for(k = 1; k < 8; k++)
block[k] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for(k = 1; k < 8; k++) {
ac_val2[k] = block[k << 3];
ac_val2[k + 8] = block[k];
}
/* scale AC coeffs */
for(k = 1; k < 64; k++)
if(block[k]) {
block[k] *= scale;
if(!v->pquantizer)
block[k] += (block[k] < 0) ? -mquant : mquant;
}
if(use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if(dc_pred_dir) {//left
if(use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
for(k = 1; k < 8; k++)
ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else {//top
if(use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
if(q2 && q1!=q2) {
q1 = q1 * 2 - 1;
q2 = q2 * 2 - 1;
for(k = 1; k < 8; k++)
ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if(use_pred) {
if(dc_pred_dir) { //left
for(k = 1; k < 8; k++) {
block[k << 3] = ac_val2[k] * scale;
if(!v->pquantizer && block[k << 3])
block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
}
} else { //top
for(k = 1; k < 8; k++) {
block[k] = ac_val2[k + 8] * scale;
if(!v->pquantizer && block[k])
block[k] += (block[k] < 0) ? -mquant : mquant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode P block
*/
static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int subblkpat = 0;
int scale, off, idx, last, skip, value;
int ttblk = ttmb & 7;
if(ttmb == -1) {
ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
}
if(ttblk == TT_4X4) {
subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
}
if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
subblkpat = decode012(gb);
if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
}
scale = 2 * mquant + v->halfpq;
// convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
subblkpat = 2 - (ttblk == TT_8X4_TOP);
ttblk = TT_8X4;
}
if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
subblkpat = 2 - (ttblk == TT_4X8_LEFT);
ttblk = TT_4X8;
}
switch(ttblk) {
case TT_8X8:
i = 0;
last = 0;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 63)
break;
idx = vc1_simple_progressive_8x8_zz[i++];
block[idx] = value * scale;
if(!v->pquantizer)
block[idx] += (block[idx] < 0) ? -mquant : mquant;
}
s->dsp.vc1_inv_trans_8x8(block);
break;
case TT_4X4:
for(j = 0; j < 4; j++) {
last = subblkpat & (1 << (3 - j));
i = 0;
off = (j & 1) * 4 + (j & 2) * 16;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 15)
break;
idx = vc1_simple_progressive_4x4_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (3 - j))))
s->dsp.vc1_inv_trans_4x4(block, j);
}
break;
case TT_8X4:
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 32;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = vc1_simple_progressive_8x4_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))))
s->dsp.vc1_inv_trans_8x4(block, j);
}
break;
case TT_4X8:
for(j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 4;
while (!last) {
vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
i += skip;
if(i > 31)
break;
idx = vc1_simple_progressive_4x8_zz[i++];
block[idx + off] = value * scale;
if(!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
}
if(!(subblkpat & (1 << (1 - j))))
s->dsp.vc1_inv_trans_4x8(block, j);
}
break;
}
return 0;
}
/** Decode one P-frame MB (in Simple/Main profile)
* @todo TODO: Extend to AP
* @fixme FIXME: DC value for inter blocks not set
*/
static int vc1_decode_p_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int status;
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
mquant = v->pq; /* Loosy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
s->dsp.clear_blocks(s->block[0]);
if (!fourmv) /* 1MV mode */
{
if (!skipped)
{
GET_MVDATA(dmv_x, dmv_y);
s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs)
{
GET_MQUANT();
s->ac_pred = get_bits(gb, 1);
cbp = 0;
}
else if (mb_has_coeffs)
{
if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
}
else
{
mquant = v->pq;
cbp = 0;
}
s->current_picture.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
VC1_TTMB_VLC_BITS, 2);
if(!s->mb_intra) vc1_mc_1mv(v, 0);
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
for(j = 0; j < 64; j++) s->block[i][j] += 128;
s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
/* TODO: proper loop filtering */
if(v->pq >= 9 && v->overlap) {
if(v->a_avail)
s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
if(v->c_avail)
s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
}
} else if(val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
}
}
}
else //Skipped
{
s->mb_intra = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
s->current_picture.qscale_table[mb_pos] = 0;
vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_1mv(v, 0);
return 0;
}
} //1MV mode
else //4MV mode
{
if (!skipped /* unskipped MB */)
{
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
for (i=0; i<6; i++)
{
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if(i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if(val) {
GET_MVDATA(dmv_x, dmv_y);
}
vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if(i&4){
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if(i == 4) vc1_mc_4mv_chroma(v);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
}
// if there are no coded blocks then don't do anything more
if(!intra_count && !coded_inter) return 0;
dst_idx = 0;
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for(i=0; i<6; i++)
if(is_intra[i]) {
if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if(intrapred)s->ac_pred = get_bits(gb, 1);
else s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
for (i=0; i<6; i++)
{
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
for(j = 0; j < 64; j++) s->block[i][j] += 128;
s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
/* TODO: proper loop filtering */
if(v->pq >= 9 && v->overlap) {
if(v->a_avail)
s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
if(v->c_avail)
s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
}
} else if(is_coded[i]) {
status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
}
}
return status;
}
else //Skipped MB
{
s->mb_intra = 0;
s->current_picture.qscale_table[mb_pos] = 0;
for (i=0; i<6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
for (i=0; i<4; i++)
{
vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
vc1_mc_4mv_luma(v, i);
}
vc1_mc_4mv_chroma(v);
s->current_picture.qscale_table[mb_pos] = 0;
return 0;
}
}
/* Should never happen */
return -1;
}
/** Decode one B-frame MB (in Main profile)
*/
static void vc1_decode_b_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
offset_table[6] = { 0, 1, 3, 7, 15, 31 };
int mb_has_coeffs = 0; /* last_flag */
int index, index1; /* LUT indices */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, direct;
int dmv_x[2], dmv_y[2];
int bmvtype = BMV_TYPE_BACKWARD; /* XXX: is it so? */
mquant = v->pq; /* Loosy initialization */
s->mb_intra = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
s->dsp.clear_blocks(s->block[0]);
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
for(i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->current_picture.qscale_table[mb_pos] = 0;
if (!direct) {
if (!skipped) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
dmv_x[1] = dmv_x[0];
dmv_y[1] = dmv_y[0];
}
if(skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch(bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
}
}
}
if (skipped) {
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if (direct) {
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->mb_intra = 0;
mb_has_coeffs = 0;
s->current_picture.qscale_table[mb_pos] = mquant;
if(!v->ttmbf)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if(!mb_has_coeffs && !s->mb_intra) {
/* no coded blocks - effectively skipped */
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
if(s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
s->ac_pred = get_bits1(gb);
cbp = 0;
} else {
if(bmvtype == BMV_TYPE_INTERPOLATED) {
GET_MVDATA(dmv_x[1], dmv_y[1]);
if(!mb_has_coeffs) {
/* interpolated skipped block */
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return;
}
}
if(!s->mb_intra)
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
if(s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->current_picture.qscale_table[mb_pos] = mquant;
if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
}
}
dst_idx = 0;
for (i=0; i<6; i++)
{
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if(s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if(i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if(i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
s->dsp.vc1_inv_trans_8x8(s->block[i]);
if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
for(j = 0; j < 64; j++) s->block[i][j] += 128;
s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
} else if(val) {
vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
if(!v->ttmbf && ttmb < 8) ttmb = -1;
first_block = 0;
if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
}
}
}
/** Decode blocks of I-frame
*/
static void vc1_decode_i_blocks(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
/* select codingmode used for VLC tables selection */
switch(v->y_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[v->pq];
s->c_dc_scale = s->c_dc_scale_table[v->pq];
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
mb_pos = s->mb_x + s->mb_y * s->mb_width;
s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
s->current_picture.qscale_table[mb_pos] = v->pq;
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
v->s.ac_pred = get_bits(&v->s.gb, 1);
for(k = 0; k < 6; k++) {
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
s->dsp.vc1_inv_trans_8x8(s->block[k]);
if(v->pq >= 9 && v->overlap) {
for(j = 0; j < 64; j++) s->block[k][j] += 128;
}
}
vc1_put_block(v, s->block);
if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
if(!s->first_slice_line) {
s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
}
}
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
if(s->mb_x) {
s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
if(!(s->flags & CODEC_FLAG_GRAY)) {
s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
}
}
s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
}
if(get_bits_count(&s->gb) > v->bits) {
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
}
static void vc1_decode_p_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
vc1_decode_p_mb(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
}
static void vc1_decode_b_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select codingmode used for VLC tables selection */
switch(v->c_ac_table_index){
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch(v->c_ac_table_index){
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
s->first_slice_line = 1;
for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
ff_init_block_index(s);
ff_update_block_index(s);
s->dsp.clear_blocks(s->block[0]);
vc1_decode_b_mb(v);
if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
return;
}
}
ff_draw_horiz_band(s, s->mb_y * 16, 16);
s->first_slice_line = 0;
}
}
static void vc1_decode_blocks(VC1Context *v)
{
v->s.esc3_level_length = 0;
switch(v->s.pict_type) {
case I_TYPE:
vc1_decode_i_blocks(v);
break;
case P_TYPE:
vc1_decode_p_blocks(v);
break;
case B_TYPE:
vc1_decode_b_blocks(v);
break;
}
}
/** Initialize a VC1/WMV3 decoder
* @todo TODO: Handle VC-1 IDUs (Transport level?)
* @todo TODO: Decypher remaining bits in extra_data
*/
static int vc1_decode_init(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
GetBitContext gb;
if (!avctx->extradata_size || !avctx->extradata) return -1;
if (!(avctx->flags & CODEC_FLAG_GRAY))
avctx->pix_fmt = PIX_FMT_YUV420P;
else
avctx->pix_fmt = PIX_FMT_GRAY8;
v->s.avctx = avctx;
avctx->flags |= CODEC_FLAG_EMU_EDGE;
v->s.flags |= CODEC_FLAG_EMU_EDGE;
if(ff_h263_decode_init(avctx) < 0)
return -1;
if (vc1_init_common(v) < 0) return -1;
avctx->coded_width = avctx->width;
avctx->coded_height = avctx->height;
if (avctx->codec_id == CODEC_ID_WMV3)
{
int count = 0;
// looks like WMV3 has a sequence header stored in the extradata
// advanced sequence header may be before the first frame
// the last byte of the extradata is a version number, 1 for the
// samples we can decode
init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
if (decode_sequence_header(avctx, &gb) < 0)
return -1;
count = avctx->extradata_size*8 - get_bits_count(&gb);
if (count>0)
{
av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
count, get_bits(&gb, count));
}
else if (count < 0)
{
av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
}
}
avctx->has_b_frames= !!(avctx->max_b_frames);
s->mb_width = (avctx->coded_width+15)>>4;
s->mb_height = (avctx->coded_height+15)>>4;
/* Allocate mb bitplanes */
v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
/* allocate block type info in that way so it could be used with s->block_index[] */
v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
/* Init coded blocks info */
if (v->profile == PROFILE_ADVANCED)
{
// if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
// return -1;
// if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
// return -1;
}
return 0;
}
/** Decode a VC1/WMV3 frame
* @todo TODO: Handle VC-1 IDUs (Transport level?)
* @warning Initial try at using MpegEncContext stuff
*/
static int vc1_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
VC1Context *v = avctx->priv_data;
MpegEncContext *s = &v->s;
AVFrame *pict = data;
/* no supplementary picture */
if (buf_size == 0) {
/* special case for last picture */
if (s->low_delay==0 && s->next_picture_ptr) {
*pict= *(AVFrame*)s->next_picture_ptr;
s->next_picture_ptr= NULL;
*data_size = sizeof(AVFrame);
}
return 0;
}
//we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
int i= ff_find_unused_picture(s, 0);
s->current_picture_ptr= &s->picture[i];
}
avctx->has_b_frames= !s->low_delay;
init_get_bits(&s->gb, buf, buf_size*8);
// do parse frame header
if(vc1_parse_frame_header(v, &s->gb) == -1)
return -1;
if(s->pict_type != I_TYPE && !v->res_rtm_flag)return -1;
if(s->pict_type == B_TYPE)return -1;
// for hurry_up==5
s->current_picture.pict_type= s->pict_type;
s->current_picture.key_frame= s->pict_type == I_TYPE;
/* skip B-frames if we don't have reference frames */
if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
/* skip b frames if we are in a hurry */
if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
|| (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
|| avctx->skip_frame >= AVDISCARD_ALL)
return buf_size;
/* skip everything if we are in a hurry>=5 */
if(avctx->hurry_up>=5) return -1;//buf_size;
if(s->next_p_frame_damaged){
if(s->pict_type==B_TYPE)
return buf_size;
else
s->next_p_frame_damaged=0;
}
if(MPV_frame_start(s, avctx) < 0)
return -1;
ff_er_frame_start(s);
v->bits = buf_size * 8;
vc1_decode_blocks(v);
//av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
// if(get_bits_count(&s->gb) > buf_size * 8)
// return -1;
ff_er_frame_end(s);
MPV_frame_end(s);
assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
assert(s->current_picture.pict_type == s->pict_type);
if (s->pict_type == B_TYPE || s->low_delay) {
*pict= *(AVFrame*)s->current_picture_ptr;
} else if (s->last_picture_ptr != NULL) {
*pict= *(AVFrame*)s->last_picture_ptr;
}
if(s->last_picture_ptr || s->low_delay){
*data_size = sizeof(AVFrame);
ff_print_debug_info(s, pict);
}
/* Return the Picture timestamp as the frame number */
/* we substract 1 because it is added on utils.c */
avctx->frame_number = s->picture_number - 1;
return buf_size;
}
/** Close a VC1/WMV3 decoder
* @warning Initial try at using MpegEncContext stuff
*/
static int vc1_decode_end(AVCodecContext *avctx)
{
VC1Context *v = avctx->priv_data;
av_freep(&v->hrd_rate);
av_freep(&v->hrd_buffer);
MPV_common_end(&v->s);
av_freep(&v->mv_type_mb_plane);
av_freep(&v->direct_mb_plane);
av_freep(&v->mb_type_base);
return 0;
}
AVCodec vc1_decoder = {
"vc1",
CODEC_TYPE_VIDEO,
CODEC_ID_VC1,
sizeof(VC1Context),
vc1_decode_init,
NULL,
vc1_decode_end,
vc1_decode_frame,
CODEC_CAP_DELAY,
NULL
};
AVCodec wmv3_decoder = {
"wmv3",
CODEC_TYPE_VIDEO,
CODEC_ID_WMV3,
sizeof(VC1Context),
vc1_decode_init,
NULL,
vc1_decode_end,
vc1_decode_frame,
CODEC_CAP_DELAY,
NULL
};