dc021a0218
* commit 'c39059bea3adebcd888571d1181db215eee54495':
h264: Fix direct temporal mvs for bottom-field-first poc order
Conflicts:
libavcodec/h264_direct.c
See: ebd1c505d2
Merged-by: Michael Niedermayer <michaelni@gmx.at>
700 lines
28 KiB
C
700 lines
28 KiB
C
/*
|
|
* H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding
|
|
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/**
|
|
* @file
|
|
* H.264 / AVC / MPEG4 part10 direct mb/block decoding.
|
|
* @author Michael Niedermayer <michaelni@gmx.at>
|
|
*/
|
|
|
|
#include "internal.h"
|
|
#include "avcodec.h"
|
|
#include "h264.h"
|
|
#include "mpegutils.h"
|
|
#include "rectangle.h"
|
|
#include "thread.h"
|
|
|
|
#include <assert.h>
|
|
|
|
static int get_scale_factor(H264Context *const h, int poc, int poc1, int i)
|
|
{
|
|
int poc0 = h->ref_list[0][i].poc;
|
|
int td = av_clip(poc1 - poc0, -128, 127);
|
|
if (td == 0 || h->ref_list[0][i].long_ref) {
|
|
return 256;
|
|
} else {
|
|
int tb = av_clip(poc - poc0, -128, 127);
|
|
int tx = (16384 + (FFABS(td) >> 1)) / td;
|
|
return av_clip((tb * tx + 32) >> 6, -1024, 1023);
|
|
}
|
|
}
|
|
|
|
void ff_h264_direct_dist_scale_factor(H264Context *const h)
|
|
{
|
|
const int poc = FIELD_PICTURE(h) ? h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD]
|
|
: h->cur_pic_ptr->poc;
|
|
const int poc1 = h->ref_list[1][0].poc;
|
|
int i, field;
|
|
|
|
if (FRAME_MBAFF(h))
|
|
for (field = 0; field < 2; field++) {
|
|
const int poc = h->cur_pic_ptr->field_poc[field];
|
|
const int poc1 = h->ref_list[1][0].field_poc[field];
|
|
for (i = 0; i < 2 * h->ref_count[0]; i++)
|
|
h->dist_scale_factor_field[field][i ^ field] =
|
|
get_scale_factor(h, poc, poc1, i + 16);
|
|
}
|
|
|
|
for (i = 0; i < h->ref_count[0]; i++)
|
|
h->dist_scale_factor[i] = get_scale_factor(h, poc, poc1, i);
|
|
}
|
|
|
|
static void fill_colmap(H264Context *h, int map[2][16 + 32], int list,
|
|
int field, int colfield, int mbafi)
|
|
{
|
|
H264Picture *const ref1 = &h->ref_list[1][0];
|
|
int j, old_ref, rfield;
|
|
int start = mbafi ? 16 : 0;
|
|
int end = mbafi ? 16 + 2 * h->ref_count[0] : h->ref_count[0];
|
|
int interl = mbafi || h->picture_structure != PICT_FRAME;
|
|
|
|
/* bogus; fills in for missing frames */
|
|
memset(map[list], 0, sizeof(map[list]));
|
|
|
|
for (rfield = 0; rfield < 2; rfield++) {
|
|
for (old_ref = 0; old_ref < ref1->ref_count[colfield][list]; old_ref++) {
|
|
int poc = ref1->ref_poc[colfield][list][old_ref];
|
|
|
|
if (!interl)
|
|
poc |= 3;
|
|
// FIXME: store all MBAFF references so this is not needed
|
|
else if (interl && (poc & 3) == 3)
|
|
poc = (poc & ~3) + rfield + 1;
|
|
|
|
for (j = start; j < end; j++) {
|
|
if (4 * h->ref_list[0][j].frame_num +
|
|
(h->ref_list[0][j].reference & 3) == poc) {
|
|
int cur_ref = mbafi ? (j - 16) ^ field : j;
|
|
if (ref1->mbaff)
|
|
map[list][2 * old_ref + (rfield ^ field) + 16] = cur_ref;
|
|
if (rfield == field || !interl)
|
|
map[list][old_ref] = cur_ref;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ff_h264_direct_ref_list_init(H264Context *const h)
|
|
{
|
|
H264Picture *const ref1 = &h->ref_list[1][0];
|
|
H264Picture *const cur = h->cur_pic_ptr;
|
|
int list, j, field;
|
|
int sidx = (h->picture_structure & 1) ^ 1;
|
|
int ref1sidx = (ref1->reference & 1) ^ 1;
|
|
|
|
for (list = 0; list < 2; list++) {
|
|
cur->ref_count[sidx][list] = h->ref_count[list];
|
|
for (j = 0; j < h->ref_count[list]; j++)
|
|
cur->ref_poc[sidx][list][j] = 4 * h->ref_list[list][j].frame_num +
|
|
(h->ref_list[list][j].reference & 3);
|
|
}
|
|
|
|
if (h->picture_structure == PICT_FRAME) {
|
|
memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
|
|
memcpy(cur->ref_poc[1], cur->ref_poc[0], sizeof(cur->ref_poc[0]));
|
|
}
|
|
|
|
cur->mbaff = FRAME_MBAFF(h);
|
|
|
|
h->col_fieldoff = 0;
|
|
if (h->picture_structure == PICT_FRAME) {
|
|
int cur_poc = h->cur_pic_ptr->poc;
|
|
int *col_poc = h->ref_list[1]->field_poc;
|
|
h->col_parity = (FFABS(col_poc[0] - cur_poc) >=
|
|
FFABS(col_poc[1] - cur_poc));
|
|
ref1sidx =
|
|
sidx = h->col_parity;
|
|
// FL -> FL & differ parity
|
|
} else if (!(h->picture_structure & h->ref_list[1][0].reference) &&
|
|
!h->ref_list[1][0].mbaff) {
|
|
h->col_fieldoff = 2 * h->ref_list[1][0].reference - 3;
|
|
}
|
|
|
|
if (h->slice_type_nos != AV_PICTURE_TYPE_B || h->direct_spatial_mv_pred)
|
|
return;
|
|
|
|
for (list = 0; list < 2; list++) {
|
|
fill_colmap(h, h->map_col_to_list0, list, sidx, ref1sidx, 0);
|
|
if (FRAME_MBAFF(h))
|
|
for (field = 0; field < 2; field++)
|
|
fill_colmap(h, h->map_col_to_list0_field[field], list, field,
|
|
field, 1);
|
|
}
|
|
}
|
|
|
|
static void await_reference_mb_row(H264Context *const h, H264Picture *ref,
|
|
int mb_y)
|
|
{
|
|
int ref_field = ref->reference - 1;
|
|
int ref_field_picture = ref->field_picture;
|
|
int ref_height = 16 * h->mb_height >> ref_field_picture;
|
|
|
|
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_FRAME))
|
|
return;
|
|
|
|
/* FIXME: It can be safe to access mb stuff
|
|
* even if pixels aren't deblocked yet. */
|
|
|
|
ff_thread_await_progress(&ref->tf,
|
|
FFMIN(16 * mb_y >> ref_field_picture,
|
|
ref_height - 1),
|
|
ref_field_picture && ref_field);
|
|
}
|
|
|
|
static void pred_spatial_direct_motion(H264Context *const h, int *mb_type)
|
|
{
|
|
int b8_stride = 2;
|
|
int b4_stride = h->b_stride;
|
|
int mb_xy = h->mb_xy, mb_y = h->mb_y;
|
|
int mb_type_col[2];
|
|
const int16_t (*l1mv0)[2], (*l1mv1)[2];
|
|
const int8_t *l1ref0, *l1ref1;
|
|
const int is_b8x8 = IS_8X8(*mb_type);
|
|
unsigned int sub_mb_type = MB_TYPE_L0L1;
|
|
int i8, i4;
|
|
int ref[2];
|
|
int mv[2];
|
|
int list;
|
|
|
|
assert(h->ref_list[1][0].reference & 3);
|
|
|
|
await_reference_mb_row(h, &h->ref_list[1][0],
|
|
h->mb_y + !!IS_INTERLACED(*mb_type));
|
|
|
|
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16 | MB_TYPE_INTRA4x4 | \
|
|
MB_TYPE_INTRA16x16 | MB_TYPE_INTRA_PCM)
|
|
|
|
/* ref = min(neighbors) */
|
|
for (list = 0; list < 2; list++) {
|
|
int left_ref = h->ref_cache[list][scan8[0] - 1];
|
|
int top_ref = h->ref_cache[list][scan8[0] - 8];
|
|
int refc = h->ref_cache[list][scan8[0] - 8 + 4];
|
|
const int16_t *C = h->mv_cache[list][scan8[0] - 8 + 4];
|
|
if (refc == PART_NOT_AVAILABLE) {
|
|
refc = h->ref_cache[list][scan8[0] - 8 - 1];
|
|
C = h->mv_cache[list][scan8[0] - 8 - 1];
|
|
}
|
|
ref[list] = FFMIN3((unsigned)left_ref,
|
|
(unsigned)top_ref,
|
|
(unsigned)refc);
|
|
if (ref[list] >= 0) {
|
|
/* This is just pred_motion() but with the cases removed that
|
|
* cannot happen for direct blocks. */
|
|
const int16_t *const A = h->mv_cache[list][scan8[0] - 1];
|
|
const int16_t *const B = h->mv_cache[list][scan8[0] - 8];
|
|
|
|
int match_count = (left_ref == ref[list]) +
|
|
(top_ref == ref[list]) +
|
|
(refc == ref[list]);
|
|
|
|
if (match_count > 1) { // most common
|
|
mv[list] = pack16to32(mid_pred(A[0], B[0], C[0]),
|
|
mid_pred(A[1], B[1], C[1]));
|
|
} else {
|
|
assert(match_count == 1);
|
|
if (left_ref == ref[list])
|
|
mv[list] = AV_RN32A(A);
|
|
else if (top_ref == ref[list])
|
|
mv[list] = AV_RN32A(B);
|
|
else
|
|
mv[list] = AV_RN32A(C);
|
|
}
|
|
av_assert2(ref[list] < (h->ref_count[list] << !!FRAME_MBAFF(h)));
|
|
} else {
|
|
int mask = ~(MB_TYPE_L0 << (2 * list));
|
|
mv[list] = 0;
|
|
ref[list] = -1;
|
|
if (!is_b8x8)
|
|
*mb_type &= mask;
|
|
sub_mb_type &= mask;
|
|
}
|
|
}
|
|
if (ref[0] < 0 && ref[1] < 0) {
|
|
ref[0] = ref[1] = 0;
|
|
if (!is_b8x8)
|
|
*mb_type |= MB_TYPE_L0L1;
|
|
sub_mb_type |= MB_TYPE_L0L1;
|
|
}
|
|
|
|
if (!(is_b8x8 | mv[0] | mv[1])) {
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
|
|
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
|
|
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
|
|
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
|
|
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
|
|
return;
|
|
}
|
|
|
|
if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
|
|
if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
|
|
mb_y = (h->mb_y & ~1) + h->col_parity;
|
|
mb_xy = h->mb_x +
|
|
((h->mb_y & ~1) + h->col_parity) * h->mb_stride;
|
|
b8_stride = 0;
|
|
} else {
|
|
mb_y += h->col_fieldoff;
|
|
mb_xy += h->mb_stride * h->col_fieldoff; // non-zero for FL -> FL & differ parity
|
|
}
|
|
goto single_col;
|
|
} else { // AFL/AFR/FR/FL -> AFR/FR
|
|
if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR
|
|
mb_y = h->mb_y & ~1;
|
|
mb_xy = (h->mb_y & ~1) * h->mb_stride + h->mb_x;
|
|
mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
|
|
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride];
|
|
b8_stride = 2 + 4 * h->mb_stride;
|
|
b4_stride *= 6;
|
|
if (IS_INTERLACED(mb_type_col[0]) !=
|
|
IS_INTERLACED(mb_type_col[1])) {
|
|
mb_type_col[0] &= ~MB_TYPE_INTERLACED;
|
|
mb_type_col[1] &= ~MB_TYPE_INTERLACED;
|
|
}
|
|
|
|
sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) &&
|
|
(mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) &&
|
|
!is_b8x8) {
|
|
*mb_type |= MB_TYPE_16x8 | MB_TYPE_DIRECT2; /* B_16x8 */
|
|
} else {
|
|
*mb_type |= MB_TYPE_8x8;
|
|
}
|
|
} else { // AFR/FR -> AFR/FR
|
|
single_col:
|
|
mb_type_col[0] =
|
|
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
|
|
|
|
sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) {
|
|
*mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_16x16 */
|
|
} else if (!is_b8x8 &&
|
|
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) {
|
|
*mb_type |= MB_TYPE_DIRECT2 |
|
|
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16));
|
|
} else {
|
|
if (!h->sps.direct_8x8_inference_flag) {
|
|
/* FIXME: Save sub mb types from previous frames (or derive
|
|
* from MVs) so we know exactly what block size to use. */
|
|
sub_mb_type += (MB_TYPE_8x8 - MB_TYPE_16x16); /* B_SUB_4x4 */
|
|
}
|
|
*mb_type |= MB_TYPE_8x8;
|
|
}
|
|
}
|
|
}
|
|
|
|
await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
|
|
|
|
l1mv0 = (void*)&h->ref_list[1][0].motion_val[0][h->mb2b_xy[mb_xy]];
|
|
l1mv1 = (void*)&h->ref_list[1][0].motion_val[1][h->mb2b_xy[mb_xy]];
|
|
l1ref0 = &h->ref_list[1][0].ref_index[0][4 * mb_xy];
|
|
l1ref1 = &h->ref_list[1][0].ref_index[1][4 * mb_xy];
|
|
if (!b8_stride) {
|
|
if (h->mb_y & 1) {
|
|
l1ref0 += 2;
|
|
l1ref1 += 2;
|
|
l1mv0 += 2 * b4_stride;
|
|
l1mv1 += 2 * b4_stride;
|
|
}
|
|
}
|
|
|
|
if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) {
|
|
int n = 0;
|
|
for (i8 = 0; i8 < 4; i8++) {
|
|
int x8 = i8 & 1;
|
|
int y8 = i8 >> 1;
|
|
int xy8 = x8 + y8 * b8_stride;
|
|
int xy4 = x8 * 3 + y8 * b4_stride;
|
|
int a, b;
|
|
|
|
if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
(uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8,
|
|
(uint8_t)ref[1], 1);
|
|
if (!IS_INTRA(mb_type_col[y8]) && !h->ref_list[1][0].long_ref &&
|
|
((l1ref0[xy8] == 0 &&
|
|
FFABS(l1mv0[xy4][0]) <= 1 &&
|
|
FFABS(l1mv0[xy4][1]) <= 1) ||
|
|
(l1ref0[xy8] < 0 &&
|
|
l1ref1[xy8] == 0 &&
|
|
FFABS(l1mv1[xy4][0]) <= 1 &&
|
|
FFABS(l1mv1[xy4][1]) <= 1))) {
|
|
a =
|
|
b = 0;
|
|
if (ref[0] > 0)
|
|
a = mv[0];
|
|
if (ref[1] > 0)
|
|
b = mv[1];
|
|
n++;
|
|
} else {
|
|
a = mv[0];
|
|
b = mv[1];
|
|
}
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, a, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, b, 4);
|
|
}
|
|
if (!is_b8x8 && !(n & 3))
|
|
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
|
|
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
|
|
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
|
|
} else if (IS_16X16(*mb_type)) {
|
|
int a, b;
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
|
|
if (!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref &&
|
|
((l1ref0[0] == 0 &&
|
|
FFABS(l1mv0[0][0]) <= 1 &&
|
|
FFABS(l1mv0[0][1]) <= 1) ||
|
|
(l1ref0[0] < 0 && !l1ref1[0] &&
|
|
FFABS(l1mv1[0][0]) <= 1 &&
|
|
FFABS(l1mv1[0][1]) <= 1 &&
|
|
h->x264_build > 33U))) {
|
|
a = b = 0;
|
|
if (ref[0] > 0)
|
|
a = mv[0];
|
|
if (ref[1] > 0)
|
|
b = mv[1];
|
|
} else {
|
|
a = mv[0];
|
|
b = mv[1];
|
|
}
|
|
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
|
|
} else {
|
|
int n = 0;
|
|
for (i8 = 0; i8 < 4; i8++) {
|
|
const int x8 = i8 & 1;
|
|
const int y8 = i8 >> 1;
|
|
|
|
if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, mv[0], 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, mv[1], 4);
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
(uint8_t)ref[0], 1);
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8,
|
|
(uint8_t)ref[1], 1);
|
|
|
|
assert(b8_stride == 2);
|
|
/* col_zero_flag */
|
|
if (!IS_INTRA(mb_type_col[0]) && !h->ref_list[1][0].long_ref &&
|
|
(l1ref0[i8] == 0 ||
|
|
(l1ref0[i8] < 0 &&
|
|
l1ref1[i8] == 0 &&
|
|
h->x264_build > 33U))) {
|
|
const int16_t (*l1mv)[2] = l1ref0[i8] == 0 ? l1mv0 : l1mv1;
|
|
if (IS_SUB_8X8(sub_mb_type)) {
|
|
const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
|
|
if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) {
|
|
if (ref[0] == 0)
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2,
|
|
8, 0, 4);
|
|
if (ref[1] == 0)
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2,
|
|
8, 0, 4);
|
|
n += 4;
|
|
}
|
|
} else {
|
|
int m = 0;
|
|
for (i4 = 0; i4 < 4; i4++) {
|
|
const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
|
|
(y8 * 2 + (i4 >> 1)) * b4_stride];
|
|
if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) {
|
|
if (ref[0] == 0)
|
|
AV_ZERO32(h->mv_cache[0][scan8[i8 * 4 + i4]]);
|
|
if (ref[1] == 0)
|
|
AV_ZERO32(h->mv_cache[1][scan8[i8 * 4 + i4]]);
|
|
m++;
|
|
}
|
|
}
|
|
if (!(m & 3))
|
|
h->sub_mb_type[i8] += MB_TYPE_16x16 - MB_TYPE_8x8;
|
|
n += m;
|
|
}
|
|
}
|
|
}
|
|
if (!is_b8x8 && !(n & 15))
|
|
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
|
|
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
|
|
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
|
|
}
|
|
}
|
|
|
|
static void pred_temp_direct_motion(H264Context *const h, int *mb_type)
|
|
{
|
|
int b8_stride = 2;
|
|
int b4_stride = h->b_stride;
|
|
int mb_xy = h->mb_xy, mb_y = h->mb_y;
|
|
int mb_type_col[2];
|
|
const int16_t (*l1mv0)[2], (*l1mv1)[2];
|
|
const int8_t *l1ref0, *l1ref1;
|
|
const int is_b8x8 = IS_8X8(*mb_type);
|
|
unsigned int sub_mb_type;
|
|
int i8, i4;
|
|
|
|
assert(h->ref_list[1][0].reference & 3);
|
|
|
|
await_reference_mb_row(h, &h->ref_list[1][0],
|
|
h->mb_y + !!IS_INTERLACED(*mb_type));
|
|
|
|
if (IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
|
|
if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
|
|
mb_y = (h->mb_y & ~1) + h->col_parity;
|
|
mb_xy = h->mb_x +
|
|
((h->mb_y & ~1) + h->col_parity) * h->mb_stride;
|
|
b8_stride = 0;
|
|
} else {
|
|
mb_y += h->col_fieldoff;
|
|
mb_xy += h->mb_stride * h->col_fieldoff; // non-zero for FL -> FL & differ parity
|
|
}
|
|
goto single_col;
|
|
} else { // AFL/AFR/FR/FL -> AFR/FR
|
|
if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR
|
|
mb_y = h->mb_y & ~1;
|
|
mb_xy = h->mb_x + (h->mb_y & ~1) * h->mb_stride;
|
|
mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
|
|
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + h->mb_stride];
|
|
b8_stride = 2 + 4 * h->mb_stride;
|
|
b4_stride *= 6;
|
|
if (IS_INTERLACED(mb_type_col[0]) !=
|
|
IS_INTERLACED(mb_type_col[1])) {
|
|
mb_type_col[0] &= ~MB_TYPE_INTERLACED;
|
|
mb_type_col[1] &= ~MB_TYPE_INTERLACED;
|
|
}
|
|
|
|
sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
|
|
MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
|
|
if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) &&
|
|
(mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) &&
|
|
!is_b8x8) {
|
|
*mb_type |= MB_TYPE_16x8 | MB_TYPE_L0L1 |
|
|
MB_TYPE_DIRECT2; /* B_16x8 */
|
|
} else {
|
|
*mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1;
|
|
}
|
|
} else { // AFR/FR -> AFR/FR
|
|
single_col:
|
|
mb_type_col[0] =
|
|
mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
|
|
|
|
sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
|
|
MB_TYPE_DIRECT2; /* B_SUB_8x8 */
|
|
if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) {
|
|
*mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
|
|
MB_TYPE_DIRECT2; /* B_16x16 */
|
|
} else if (!is_b8x8 &&
|
|
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) {
|
|
*mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 |
|
|
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16));
|
|
} else {
|
|
if (!h->sps.direct_8x8_inference_flag) {
|
|
/* FIXME: save sub mb types from previous frames (or derive
|
|
* from MVs) so we know exactly what block size to use */
|
|
sub_mb_type = MB_TYPE_8x8 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
|
|
MB_TYPE_DIRECT2; /* B_SUB_4x4 */
|
|
}
|
|
*mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1;
|
|
}
|
|
}
|
|
}
|
|
|
|
await_reference_mb_row(h, &h->ref_list[1][0], mb_y);
|
|
|
|
l1mv0 = (void*)&h->ref_list[1][0].motion_val[0][h->mb2b_xy[mb_xy]];
|
|
l1mv1 = (void*)&h->ref_list[1][0].motion_val[1][h->mb2b_xy[mb_xy]];
|
|
l1ref0 = &h->ref_list[1][0].ref_index[0][4 * mb_xy];
|
|
l1ref1 = &h->ref_list[1][0].ref_index[1][4 * mb_xy];
|
|
if (!b8_stride) {
|
|
if (h->mb_y & 1) {
|
|
l1ref0 += 2;
|
|
l1ref1 += 2;
|
|
l1mv0 += 2 * b4_stride;
|
|
l1mv1 += 2 * b4_stride;
|
|
}
|
|
}
|
|
|
|
{
|
|
const int *map_col_to_list0[2] = { h->map_col_to_list0[0],
|
|
h->map_col_to_list0[1] };
|
|
const int *dist_scale_factor = h->dist_scale_factor;
|
|
int ref_offset;
|
|
|
|
if (FRAME_MBAFF(h) && IS_INTERLACED(*mb_type)) {
|
|
map_col_to_list0[0] = h->map_col_to_list0_field[h->mb_y & 1][0];
|
|
map_col_to_list0[1] = h->map_col_to_list0_field[h->mb_y & 1][1];
|
|
dist_scale_factor = h->dist_scale_factor_field[h->mb_y & 1];
|
|
}
|
|
ref_offset = (h->ref_list[1][0].mbaff << 4) & (mb_type_col[0] >> 3);
|
|
|
|
if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) {
|
|
int y_shift = 2 * !IS_INTERLACED(*mb_type);
|
|
assert(h->sps.direct_8x8_inference_flag);
|
|
|
|
for (i8 = 0; i8 < 4; i8++) {
|
|
const int x8 = i8 & 1;
|
|
const int y8 = i8 >> 1;
|
|
int ref0, scale;
|
|
const int16_t (*l1mv)[2] = l1mv0;
|
|
|
|
if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1);
|
|
if (IS_INTRA(mb_type_col[y8])) {
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1);
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4);
|
|
continue;
|
|
}
|
|
|
|
ref0 = l1ref0[x8 + y8 * b8_stride];
|
|
if (ref0 >= 0)
|
|
ref0 = map_col_to_list0[0][ref0 + ref_offset];
|
|
else {
|
|
ref0 = map_col_to_list0[1][l1ref1[x8 + y8 * b8_stride] +
|
|
ref_offset];
|
|
l1mv = l1mv1;
|
|
}
|
|
scale = dist_scale_factor[ref0];
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
ref0, 1);
|
|
|
|
{
|
|
const int16_t *mv_col = l1mv[x8 * 3 + y8 * b4_stride];
|
|
int my_col = (mv_col[1] << y_shift) / 2;
|
|
int mx = (scale * mv_col[0] + 128) >> 8;
|
|
int my = (scale * my_col + 128) >> 8;
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
pack16to32(mx, my), 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8,
|
|
pack16to32(mx - mv_col[0], my - my_col), 4);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* one-to-one mv scaling */
|
|
|
|
if (IS_16X16(*mb_type)) {
|
|
int ref, mv0, mv1;
|
|
|
|
fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
|
|
if (IS_INTRA(mb_type_col[0])) {
|
|
ref = mv0 = mv1 = 0;
|
|
} else {
|
|
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
|
|
: map_col_to_list0[1][l1ref1[0] + ref_offset];
|
|
const int scale = dist_scale_factor[ref0];
|
|
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
|
|
int mv_l0[2];
|
|
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
|
|
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
|
|
ref = ref0;
|
|
mv0 = pack16to32(mv_l0[0], mv_l0[1]);
|
|
mv1 = pack16to32(mv_l0[0] - mv_col[0], mv_l0[1] - mv_col[1]);
|
|
}
|
|
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
|
|
fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
|
|
} else {
|
|
for (i8 = 0; i8 < 4; i8++) {
|
|
const int x8 = i8 & 1;
|
|
const int y8 = i8 >> 1;
|
|
int ref0, scale;
|
|
const int16_t (*l1mv)[2] = l1mv0;
|
|
|
|
if (is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
|
|
continue;
|
|
h->sub_mb_type[i8] = sub_mb_type;
|
|
fill_rectangle(&h->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1);
|
|
if (IS_INTRA(mb_type_col[0])) {
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1);
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4);
|
|
continue;
|
|
}
|
|
|
|
assert(b8_stride == 2);
|
|
ref0 = l1ref0[i8];
|
|
if (ref0 >= 0)
|
|
ref0 = map_col_to_list0[0][ref0 + ref_offset];
|
|
else {
|
|
ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
|
|
l1mv = l1mv1;
|
|
}
|
|
scale = dist_scale_factor[ref0];
|
|
|
|
fill_rectangle(&h->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
ref0, 1);
|
|
if (IS_SUB_8X8(sub_mb_type)) {
|
|
const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
|
|
int mx = (scale * mv_col[0] + 128) >> 8;
|
|
int my = (scale * mv_col[1] + 128) >> 8;
|
|
fill_rectangle(&h->mv_cache[0][scan8[i8 * 4]], 2, 2, 8,
|
|
pack16to32(mx, my), 4);
|
|
fill_rectangle(&h->mv_cache[1][scan8[i8 * 4]], 2, 2, 8,
|
|
pack16to32(mx - mv_col[0], my - mv_col[1]), 4);
|
|
} else {
|
|
for (i4 = 0; i4 < 4; i4++) {
|
|
const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
|
|
(y8 * 2 + (i4 >> 1)) * b4_stride];
|
|
int16_t *mv_l0 = h->mv_cache[0][scan8[i8 * 4 + i4]];
|
|
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
|
|
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
|
|
AV_WN32A(h->mv_cache[1][scan8[i8 * 4 + i4]],
|
|
pack16to32(mv_l0[0] - mv_col[0],
|
|
mv_l0[1] - mv_col[1]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type)
|
|
{
|
|
if (h->direct_spatial_mv_pred)
|
|
pred_spatial_direct_motion(h, mb_type);
|
|
else
|
|
pred_temp_direct_motion(h, mb_type);
|
|
}
|