373 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			373 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * audio resampling
 | 
						|
 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file
 | 
						|
 * audio resampling
 | 
						|
 * @author Michael Niedermayer <michaelni@gmx.at>
 | 
						|
 */
 | 
						|
 | 
						|
#include "libavutil/log.h"
 | 
						|
#include "libavutil/avassert.h"
 | 
						|
#include "swresample_internal.h"
 | 
						|
 | 
						|
 | 
						|
typedef struct ResampleContext {
 | 
						|
    const AVClass *av_class;
 | 
						|
    uint8_t *filter_bank;
 | 
						|
    int filter_length;
 | 
						|
    int filter_alloc;
 | 
						|
    int ideal_dst_incr;
 | 
						|
    int dst_incr;
 | 
						|
    int index;
 | 
						|
    int frac;
 | 
						|
    int src_incr;
 | 
						|
    int compensation_distance;
 | 
						|
    int phase_shift;
 | 
						|
    int phase_mask;
 | 
						|
    int linear;
 | 
						|
    enum SwrFilterType filter_type;
 | 
						|
    int kaiser_beta;
 | 
						|
    double factor;
 | 
						|
    enum AVSampleFormat format;
 | 
						|
    int felem_size;
 | 
						|
    int filter_shift;
 | 
						|
} ResampleContext;
 | 
						|
 | 
						|
/**
 | 
						|
 * 0th order modified bessel function of the first kind.
 | 
						|
 */
 | 
						|
static double bessel(double x){
 | 
						|
    double v=1;
 | 
						|
    double lastv=0;
 | 
						|
    double t=1;
 | 
						|
    int i;
 | 
						|
    static const double inv[100]={
 | 
						|
 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
 | 
						|
 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
 | 
						|
 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
 | 
						|
 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
 | 
						|
 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
 | 
						|
 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
 | 
						|
 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
 | 
						|
 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
 | 
						|
 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
 | 
						|
 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
 | 
						|
    };
 | 
						|
 | 
						|
    x= x*x/4;
 | 
						|
    for(i=0; v != lastv; i++){
 | 
						|
        lastv=v;
 | 
						|
        t *= x*inv[i];
 | 
						|
        v += t;
 | 
						|
        av_assert2(i<99);
 | 
						|
    }
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * builds a polyphase filterbank.
 | 
						|
 * @param factor resampling factor
 | 
						|
 * @param scale wanted sum of coefficients for each filter
 | 
						|
 * @param filter_type  filter type
 | 
						|
 * @param kaiser_beta  kaiser window beta
 | 
						|
 * @return 0 on success, negative on error
 | 
						|
 */
 | 
						|
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
 | 
						|
                        int filter_type, int kaiser_beta){
 | 
						|
    int ph, i;
 | 
						|
    double x, y, w;
 | 
						|
    double *tab = av_malloc(tap_count * sizeof(*tab));
 | 
						|
    const int center= (tap_count-1)/2;
 | 
						|
 | 
						|
    if (!tab)
 | 
						|
        return AVERROR(ENOMEM);
 | 
						|
 | 
						|
    /* if upsampling, only need to interpolate, no filter */
 | 
						|
    if (factor > 1.0)
 | 
						|
        factor = 1.0;
 | 
						|
 | 
						|
    for(ph=0;ph<phase_count;ph++) {
 | 
						|
        double norm = 0;
 | 
						|
        for(i=0;i<tap_count;i++) {
 | 
						|
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 | 
						|
            if (x == 0) y = 1.0;
 | 
						|
            else        y = sin(x) / x;
 | 
						|
            switch(filter_type){
 | 
						|
            case SWR_FILTER_TYPE_CUBIC:{
 | 
						|
                const float d= -0.5; //first order derivative = -0.5
 | 
						|
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 | 
						|
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 | 
						|
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 | 
						|
                break;}
 | 
						|
            case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
 | 
						|
                w = 2.0*x / (factor*tap_count) + M_PI;
 | 
						|
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
 | 
						|
                break;
 | 
						|
            case SWR_FILTER_TYPE_KAISER:
 | 
						|
                w = 2.0*x / (factor*tap_count*M_PI);
 | 
						|
                y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                av_assert0(0);
 | 
						|
            }
 | 
						|
 | 
						|
            tab[i] = y;
 | 
						|
            norm += y;
 | 
						|
        }
 | 
						|
 | 
						|
        /* normalize so that an uniform color remains the same */
 | 
						|
        switch(c->format){
 | 
						|
        case AV_SAMPLE_FMT_S16P:
 | 
						|
            for(i=0;i<tap_count;i++)
 | 
						|
                ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
 | 
						|
            break;
 | 
						|
        case AV_SAMPLE_FMT_S32P:
 | 
						|
            for(i=0;i<tap_count;i++)
 | 
						|
                ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
 | 
						|
            break;
 | 
						|
        case AV_SAMPLE_FMT_FLTP:
 | 
						|
            for(i=0;i<tap_count;i++)
 | 
						|
                ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 | 
						|
            break;
 | 
						|
        case AV_SAMPLE_FMT_DBLP:
 | 
						|
            for(i=0;i<tap_count;i++)
 | 
						|
                ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
#if 0
 | 
						|
    {
 | 
						|
#define LEN 1024
 | 
						|
        int j,k;
 | 
						|
        double sine[LEN + tap_count];
 | 
						|
        double filtered[LEN];
 | 
						|
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
 | 
						|
        for(i=0; i<LEN; i++){
 | 
						|
            double ss=0, sf=0, ff=0;
 | 
						|
            for(j=0; j<LEN+tap_count; j++)
 | 
						|
                sine[j]= cos(i*j*M_PI/LEN);
 | 
						|
            for(j=0; j<LEN; j++){
 | 
						|
                double sum=0;
 | 
						|
                ph=0;
 | 
						|
                for(k=0; k<tap_count; k++)
 | 
						|
                    sum += filter[ph * tap_count + k] * sine[k+j];
 | 
						|
                filtered[j]= sum / (1<<FILTER_SHIFT);
 | 
						|
                ss+= sine[j + center] * sine[j + center];
 | 
						|
                ff+= filtered[j] * filtered[j];
 | 
						|
                sf+= sine[j + center] * filtered[j];
 | 
						|
            }
 | 
						|
            ss= sqrt(2*ss/LEN);
 | 
						|
            ff= sqrt(2*ff/LEN);
 | 
						|
            sf= 2*sf/LEN;
 | 
						|
            maxff= FFMAX(maxff, ff);
 | 
						|
            minff= FFMIN(minff, ff);
 | 
						|
            maxsf= FFMAX(maxsf, sf);
 | 
						|
            minsf= FFMIN(minsf, sf);
 | 
						|
            if(i%11==0){
 | 
						|
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
 | 
						|
                minff=minsf= 2;
 | 
						|
                maxff=maxsf= -2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    av_free(tab);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
 | 
						|
                                    double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
 | 
						|
                                    double precision, int cheby){
 | 
						|
    double cutoff = cutoff0? cutoff0 : 0.97;
 | 
						|
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 | 
						|
    int phase_count= 1<<phase_shift;
 | 
						|
 | 
						|
    if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
 | 
						|
           || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
 | 
						|
           || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
 | 
						|
        c = av_mallocz(sizeof(*c));
 | 
						|
        if (!c)
 | 
						|
            return NULL;
 | 
						|
 | 
						|
        c->format= format;
 | 
						|
 | 
						|
        c->felem_size= av_get_bytes_per_sample(c->format);
 | 
						|
 | 
						|
        switch(c->format){
 | 
						|
        case AV_SAMPLE_FMT_S16P:
 | 
						|
            c->filter_shift = 15;
 | 
						|
            break;
 | 
						|
        case AV_SAMPLE_FMT_S32P:
 | 
						|
            c->filter_shift = 30;
 | 
						|
            break;
 | 
						|
        case AV_SAMPLE_FMT_FLTP:
 | 
						|
        case AV_SAMPLE_FMT_DBLP:
 | 
						|
            c->filter_shift = 0;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
 | 
						|
            av_assert0(0);
 | 
						|
        }
 | 
						|
 | 
						|
        c->phase_shift   = phase_shift;
 | 
						|
        c->phase_mask    = phase_count - 1;
 | 
						|
        c->linear        = linear;
 | 
						|
        c->factor        = factor;
 | 
						|
        c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
 | 
						|
        c->filter_alloc  = FFALIGN(c->filter_length, 8);
 | 
						|
        c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
 | 
						|
        c->filter_type   = filter_type;
 | 
						|
        c->kaiser_beta   = kaiser_beta;
 | 
						|
        if (!c->filter_bank)
 | 
						|
            goto error;
 | 
						|
        if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
 | 
						|
            goto error;
 | 
						|
        memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
 | 
						|
        memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 | 
						|
    }
 | 
						|
 | 
						|
    c->compensation_distance= 0;
 | 
						|
    if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
 | 
						|
        goto error;
 | 
						|
    c->ideal_dst_incr= c->dst_incr;
 | 
						|
 | 
						|
    c->index= -phase_count*((c->filter_length-1)/2);
 | 
						|
    c->frac= 0;
 | 
						|
 | 
						|
    return c;
 | 
						|
error:
 | 
						|
    av_free(c->filter_bank);
 | 
						|
    av_free(c);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void resample_free(ResampleContext **c){
 | 
						|
    if(!*c)
 | 
						|
        return;
 | 
						|
    av_freep(&(*c)->filter_bank);
 | 
						|
    av_freep(c);
 | 
						|
}
 | 
						|
 | 
						|
static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
 | 
						|
    c->compensation_distance= compensation_distance;
 | 
						|
    if (compensation_distance)
 | 
						|
        c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 | 
						|
    else
 | 
						|
        c->dst_incr = c->ideal_dst_incr;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define TEMPLATE_RESAMPLE_S16
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_S16
 | 
						|
 | 
						|
#define TEMPLATE_RESAMPLE_S32
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_S32
 | 
						|
 | 
						|
#define TEMPLATE_RESAMPLE_FLT
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_FLT
 | 
						|
 | 
						|
#define TEMPLATE_RESAMPLE_DBL
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_DBL
 | 
						|
 | 
						|
// XXX FIXME the whole C loop should be written in asm so this x86 specific code here isnt needed
 | 
						|
#if HAVE_MMXEXT_INLINE
 | 
						|
 | 
						|
#include "x86/resample_mmx.h"
 | 
						|
 | 
						|
#define TEMPLATE_RESAMPLE_S16_MMX2
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_S16_MMX2
 | 
						|
 | 
						|
#if HAVE_SSSE3_INLINE
 | 
						|
#define TEMPLATE_RESAMPLE_S16_SSSE3
 | 
						|
#include "resample_template.c"
 | 
						|
#undef TEMPLATE_RESAMPLE_S16_SSSE3
 | 
						|
#endif
 | 
						|
 | 
						|
#endif // HAVE_MMXEXT_INLINE
 | 
						|
 | 
						|
static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
 | 
						|
    int i, ret= -1;
 | 
						|
    int av_unused mm_flags = av_get_cpu_flags();
 | 
						|
    int need_emms= 0;
 | 
						|
 | 
						|
    for(i=0; i<dst->ch_count; i++){
 | 
						|
#if HAVE_MMXEXT_INLINE
 | 
						|
#if HAVE_SSSE3_INLINE
 | 
						|
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_SSSE3)) ret= swri_resample_int16_ssse3(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
        else
 | 
						|
#endif
 | 
						|
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_MMX2 )){
 | 
						|
                 ret= swri_resample_int16_mmx2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
                 need_emms= 1;
 | 
						|
             } else
 | 
						|
#endif
 | 
						|
             if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
        else if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
        else if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float  *)dst->ch[i], (const float  *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
        else if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
 | 
						|
    }
 | 
						|
    if(need_emms)
 | 
						|
        emms_c();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int64_t get_delay(struct SwrContext *s, int64_t base){
 | 
						|
    ResampleContext *c = s->resample;
 | 
						|
    int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
 | 
						|
    num <<= c->phase_shift;
 | 
						|
    num -= c->index;
 | 
						|
    num *= c->src_incr;
 | 
						|
    num -= c->frac;
 | 
						|
    return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
 | 
						|
}
 | 
						|
 | 
						|
static int resample_flush(struct SwrContext *s) {
 | 
						|
    AudioData *a= &s->in_buffer;
 | 
						|
    int i, j, ret;
 | 
						|
    if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
 | 
						|
        return ret;
 | 
						|
    av_assert0(a->planar);
 | 
						|
    for(i=0; i<a->ch_count; i++){
 | 
						|
        for(j=0; j<s->in_buffer_count; j++){
 | 
						|
            memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
 | 
						|
                a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    s->in_buffer_count += (s->in_buffer_count+1)/2;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
struct Resampler const swri_resampler={
 | 
						|
  resample_init,
 | 
						|
  resample_free,
 | 
						|
  multiple_resample,
 | 
						|
  resample_flush,
 | 
						|
  set_compensation,
 | 
						|
  get_delay,
 | 
						|
};
 |