ffmpeg/libavcodec/h264_direct.c
Anton Khirnov 3176217c60 h264: decouple h264_ps from the h264 decoder
Make the SPS/PPS parsing independent of the H264Context, to allow
decoupling the parser from the decoder. The change is modelled after the
one done earlier for HEVC.

Move the dequant buffers to the PPS to avoid complex checks whether they
changed and an expensive copy for frame threads.
2016-04-24 10:06:23 +02:00

709 lines
29 KiB
C

/*
* H.26L/H.264/AVC/JVT/14496-10/... direct mb/block decoding
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of Libav.
*
* Libav is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* Libav is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Libav; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG4 part10 direct mb/block decoding.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#include "internal.h"
#include "avcodec.h"
#include "h264.h"
#include "mpegutils.h"
#include "rectangle.h"
#include "thread.h"
#include <assert.h>
static int get_scale_factor(H264SliceContext *sl,
int poc, int poc1, int i)
{
int poc0 = sl->ref_list[0][i].poc;
int td = av_clip_int8(poc1 - poc0);
if (td == 0 || sl->ref_list[0][i].parent->long_ref) {
return 256;
} else {
int tb = av_clip_int8(poc - poc0);
int tx = (16384 + (FFABS(td) >> 1)) / td;
return av_clip_intp2((tb * tx + 32) >> 6, 10);
}
}
void ff_h264_direct_dist_scale_factor(const H264Context *const h,
H264SliceContext *sl)
{
const int poc = FIELD_PICTURE(h) ? h->cur_pic_ptr->field_poc[h->picture_structure == PICT_BOTTOM_FIELD]
: h->cur_pic_ptr->poc;
const int poc1 = sl->ref_list[1][0].poc;
int i, field;
if (FRAME_MBAFF(h))
for (field = 0; field < 2; field++) {
const int poc = h->cur_pic_ptr->field_poc[field];
const int poc1 = sl->ref_list[1][0].parent->field_poc[field];
for (i = 0; i < 2 * sl->ref_count[0]; i++)
sl->dist_scale_factor_field[field][i ^ field] =
get_scale_factor(sl, poc, poc1, i + 16);
}
for (i = 0; i < sl->ref_count[0]; i++)
sl->dist_scale_factor[i] = get_scale_factor(sl, poc, poc1, i);
}
static void fill_colmap(const H264Context *h, H264SliceContext *sl,
int map[2][16 + 32], int list,
int field, int colfield, int mbafi)
{
H264Picture *const ref1 = sl->ref_list[1][0].parent;
int j, old_ref, rfield;
int start = mbafi ? 16 : 0;
int end = mbafi ? 16 + 2 * sl->ref_count[0] : sl->ref_count[0];
int interl = mbafi || h->picture_structure != PICT_FRAME;
/* bogus; fills in for missing frames */
memset(map[list], 0, sizeof(map[list]));
for (rfield = 0; rfield < 2; rfield++) {
for (old_ref = 0; old_ref < ref1->ref_count[colfield][list]; old_ref++) {
int poc = ref1->ref_poc[colfield][list][old_ref];
if (!interl)
poc |= 3;
// FIXME: store all MBAFF references so this is not needed
else if (interl && (poc & 3) == 3)
poc = (poc & ~3) + rfield + 1;
for (j = start; j < end; j++) {
if (4 * sl->ref_list[0][j].parent->frame_num +
(sl->ref_list[0][j].reference & 3) == poc) {
int cur_ref = mbafi ? (j - 16) ^ field : j;
if (ref1->mbaff)
map[list][2 * old_ref + (rfield ^ field) + 16] = cur_ref;
if (rfield == field || !interl)
map[list][old_ref] = cur_ref;
break;
}
}
}
}
}
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
{
H264Ref *const ref1 = &sl->ref_list[1][0];
H264Picture *const cur = h->cur_pic_ptr;
int list, j, field;
int sidx = (h->picture_structure & 1) ^ 1;
int ref1sidx = (ref1->reference & 1) ^ 1;
for (list = 0; list < sl->list_count; list++) {
cur->ref_count[sidx][list] = sl->ref_count[list];
for (j = 0; j < sl->ref_count[list]; j++)
cur->ref_poc[sidx][list][j] = 4 * sl->ref_list[list][j].parent->frame_num +
(sl->ref_list[list][j].reference & 3);
}
if (h->picture_structure == PICT_FRAME) {
memcpy(cur->ref_count[1], cur->ref_count[0], sizeof(cur->ref_count[0]));
memcpy(cur->ref_poc[1], cur->ref_poc[0], sizeof(cur->ref_poc[0]));
}
cur->mbaff = FRAME_MBAFF(h);
sl->col_fieldoff = 0;
if (sl->list_count != 2 || !sl->ref_count[1])
return;
if (h->picture_structure == PICT_FRAME) {
int cur_poc = h->cur_pic_ptr->poc;
int *col_poc = sl->ref_list[1][0].parent->field_poc;
sl->col_parity = (FFABS(col_poc[0] - cur_poc) >=
FFABS(col_poc[1] - cur_poc));
ref1sidx =
sidx = sl->col_parity;
// FL -> FL & differ parity
} else if (!(h->picture_structure & sl->ref_list[1][0].reference) &&
!sl->ref_list[1][0].parent->mbaff) {
sl->col_fieldoff = 2 * sl->ref_list[1][0].reference - 3;
}
if (sl->slice_type_nos != AV_PICTURE_TYPE_B || sl->direct_spatial_mv_pred)
return;
for (list = 0; list < 2; list++) {
fill_colmap(h, sl, sl->map_col_to_list0, list, sidx, ref1sidx, 0);
if (FRAME_MBAFF(h))
for (field = 0; field < 2; field++)
fill_colmap(h, sl, sl->map_col_to_list0_field[field], list, field,
field, 1);
}
}
static void await_reference_mb_row(const H264Context *const h, H264Picture *ref,
int mb_y)
{
int ref_field = ref->reference - 1;
int ref_field_picture = ref->field_picture;
int ref_height = 16 * h->mb_height >> ref_field_picture;
if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_FRAME))
return;
/* FIXME: It can be safe to access mb stuff
* even if pixels aren't deblocked yet. */
ff_thread_await_progress(&ref->tf,
FFMIN(16 * mb_y >> ref_field_picture,
ref_height - 1),
ref_field_picture && ref_field);
}
static void pred_spatial_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type)
{
int b8_stride = 2;
int b4_stride = h->b_stride;
int mb_xy = sl->mb_xy, mb_y = sl->mb_y;
int mb_type_col[2];
const int16_t (*l1mv0)[2], (*l1mv1)[2];
const int8_t *l1ref0, *l1ref1;
const int is_b8x8 = IS_8X8(*mb_type);
unsigned int sub_mb_type = MB_TYPE_L0L1;
int i8, i4;
int ref[2];
int mv[2];
int list;
assert(sl->ref_list[1][0].reference & 3);
await_reference_mb_row(h, sl->ref_list[1][0].parent,
sl->mb_y + !!IS_INTERLACED(*mb_type));
#define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16 | MB_TYPE_INTRA4x4 | \
MB_TYPE_INTRA16x16 | MB_TYPE_INTRA_PCM)
/* ref = min(neighbors) */
for (list = 0; list < 2; list++) {
int left_ref = sl->ref_cache[list][scan8[0] - 1];
int top_ref = sl->ref_cache[list][scan8[0] - 8];
int refc = sl->ref_cache[list][scan8[0] - 8 + 4];
const int16_t *C = sl->mv_cache[list][scan8[0] - 8 + 4];
if (refc == PART_NOT_AVAILABLE) {
refc = sl->ref_cache[list][scan8[0] - 8 - 1];
C = sl->mv_cache[list][scan8[0] - 8 - 1];
}
ref[list] = FFMIN3((unsigned)left_ref,
(unsigned)top_ref,
(unsigned)refc);
if (ref[list] >= 0) {
/* This is just pred_motion() but with the cases removed that
* cannot happen for direct blocks. */
const int16_t *const A = sl->mv_cache[list][scan8[0] - 1];
const int16_t *const B = sl->mv_cache[list][scan8[0] - 8];
int match_count = (left_ref == ref[list]) +
(top_ref == ref[list]) +
(refc == ref[list]);
if (match_count > 1) { // most common
mv[list] = pack16to32(mid_pred(A[0], B[0], C[0]),
mid_pred(A[1], B[1], C[1]));
} else {
assert(match_count == 1);
if (left_ref == ref[list])
mv[list] = AV_RN32A(A);
else if (top_ref == ref[list])
mv[list] = AV_RN32A(B);
else
mv[list] = AV_RN32A(C);
}
} else {
int mask = ~(MB_TYPE_L0 << (2 * list));
mv[list] = 0;
ref[list] = -1;
if (!is_b8x8)
*mb_type &= mask;
sub_mb_type &= mask;
}
}
if (ref[0] < 0 && ref[1] < 0) {
ref[0] = ref[1] = 0;
if (!is_b8x8)
*mb_type |= MB_TYPE_L0L1;
sub_mb_type |= MB_TYPE_L0L1;
}
if (!(is_b8x8 | mv[0] | mv[1])) {
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
fill_rectangle(&sl->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
fill_rectangle(&sl->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
fill_rectangle(&sl->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
return;
}
if (IS_INTERLACED(sl->ref_list[1][0].parent->mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
mb_y = (sl->mb_y & ~1) + sl->col_parity;
mb_xy = sl->mb_x +
((sl->mb_y & ~1) + sl->col_parity) * h->mb_stride;
b8_stride = 0;
} else {
mb_y += sl->col_fieldoff;
mb_xy += h->mb_stride * sl->col_fieldoff; // non-zero for FL -> FL & differ parity
}
goto single_col;
} else { // AFL/AFR/FR/FL -> AFR/FR
if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR
mb_y = sl->mb_y & ~1;
mb_xy = (sl->mb_y & ~1) * h->mb_stride + sl->mb_x;
mb_type_col[0] = sl->ref_list[1][0].parent->mb_type[mb_xy];
mb_type_col[1] = sl->ref_list[1][0].parent->mb_type[mb_xy + h->mb_stride];
b8_stride = 2 + 4 * h->mb_stride;
b4_stride *= 6;
if (IS_INTERLACED(mb_type_col[0]) !=
IS_INTERLACED(mb_type_col[1])) {
mb_type_col[0] &= ~MB_TYPE_INTERLACED;
mb_type_col[1] &= ~MB_TYPE_INTERLACED;
}
sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) &&
(mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) &&
!is_b8x8) {
*mb_type |= MB_TYPE_16x8 | MB_TYPE_DIRECT2; /* B_16x8 */
} else {
*mb_type |= MB_TYPE_8x8;
}
} else { // AFR/FR -> AFR/FR
single_col:
mb_type_col[0] =
mb_type_col[1] = sl->ref_list[1][0].parent->mb_type[mb_xy];
sub_mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) {
*mb_type |= MB_TYPE_16x16 | MB_TYPE_DIRECT2; /* B_16x16 */
} else if (!is_b8x8 &&
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) {
*mb_type |= MB_TYPE_DIRECT2 |
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16));
} else {
if (!h->ps.sps->direct_8x8_inference_flag) {
/* FIXME: Save sub mb types from previous frames (or derive
* from MVs) so we know exactly what block size to use. */
sub_mb_type += (MB_TYPE_8x8 - MB_TYPE_16x16); /* B_SUB_4x4 */
}
*mb_type |= MB_TYPE_8x8;
}
}
}
await_reference_mb_row(h, sl->ref_list[1][0].parent, mb_y);
l1mv0 = &sl->ref_list[1][0].parent->motion_val[0][h->mb2b_xy[mb_xy]];
l1mv1 = &sl->ref_list[1][0].parent->motion_val[1][h->mb2b_xy[mb_xy]];
l1ref0 = &sl->ref_list[1][0].parent->ref_index[0][4 * mb_xy];
l1ref1 = &sl->ref_list[1][0].parent->ref_index[1][4 * mb_xy];
if (!b8_stride) {
if (sl->mb_y & 1) {
l1ref0 += 2;
l1ref1 += 2;
l1mv0 += 2 * b4_stride;
l1mv1 += 2 * b4_stride;
}
}
if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) {
int n = 0;
for (i8 = 0; i8 < 4; i8++) {
int x8 = i8 & 1;
int y8 = i8 >> 1;
int xy8 = x8 + y8 * b8_stride;
int xy4 = x8 * 3 + y8 * b4_stride;
int a, b;
if (is_b8x8 && !IS_DIRECT(sl->sub_mb_type[i8]))
continue;
sl->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
(uint8_t)ref[0], 1);
fill_rectangle(&sl->ref_cache[1][scan8[i8 * 4]], 2, 2, 8,
(uint8_t)ref[1], 1);
if (!IS_INTRA(mb_type_col[y8]) && !sl->ref_list[1][0].parent->long_ref &&
((l1ref0[xy8] == 0 &&
FFABS(l1mv0[xy4][0]) <= 1 &&
FFABS(l1mv0[xy4][1]) <= 1) ||
(l1ref0[xy8] < 0 &&
l1ref1[xy8] == 0 &&
FFABS(l1mv1[xy4][0]) <= 1 &&
FFABS(l1mv1[xy4][1]) <= 1))) {
a =
b = 0;
if (ref[0] > 0)
a = mv[0];
if (ref[1] > 0)
b = mv[1];
n++;
} else {
a = mv[0];
b = mv[1];
}
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, a, 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, b, 4);
}
if (!is_b8x8 && !(n & 3))
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
} else if (IS_16X16(*mb_type)) {
int a, b;
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
fill_rectangle(&sl->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
if (!IS_INTRA(mb_type_col[0]) && !sl->ref_list[1][0].parent->long_ref &&
((l1ref0[0] == 0 &&
FFABS(l1mv0[0][0]) <= 1 &&
FFABS(l1mv0[0][1]) <= 1) ||
(l1ref0[0] < 0 && !l1ref1[0] &&
FFABS(l1mv1[0][0]) <= 1 &&
FFABS(l1mv1[0][1]) <= 1 &&
h->x264_build > 33U))) {
a = b = 0;
if (ref[0] > 0)
a = mv[0];
if (ref[1] > 0)
b = mv[1];
} else {
a = mv[0];
b = mv[1];
}
fill_rectangle(&sl->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
fill_rectangle(&sl->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
} else {
int n = 0;
for (i8 = 0; i8 < 4; i8++) {
const int x8 = i8 & 1;
const int y8 = i8 >> 1;
if (is_b8x8 && !IS_DIRECT(sl->sub_mb_type[i8]))
continue;
sl->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, mv[0], 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, mv[1], 4);
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
(uint8_t)ref[0], 1);
fill_rectangle(&sl->ref_cache[1][scan8[i8 * 4]], 2, 2, 8,
(uint8_t)ref[1], 1);
assert(b8_stride == 2);
/* col_zero_flag */
if (!IS_INTRA(mb_type_col[0]) && !sl->ref_list[1][0].parent->long_ref &&
(l1ref0[i8] == 0 ||
(l1ref0[i8] < 0 &&
l1ref1[i8] == 0 &&
h->x264_build > 33U))) {
const int16_t (*l1mv)[2] = l1ref0[i8] == 0 ? l1mv0 : l1mv1;
if (IS_SUB_8X8(sub_mb_type)) {
const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) {
if (ref[0] == 0)
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2,
8, 0, 4);
if (ref[1] == 0)
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2,
8, 0, 4);
n += 4;
}
} else {
int m = 0;
for (i4 = 0; i4 < 4; i4++) {
const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
(y8 * 2 + (i4 >> 1)) * b4_stride];
if (FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1) {
if (ref[0] == 0)
AV_ZERO32(sl->mv_cache[0][scan8[i8 * 4 + i4]]);
if (ref[1] == 0)
AV_ZERO32(sl->mv_cache[1][scan8[i8 * 4 + i4]]);
m++;
}
}
if (!(m & 3))
sl->sub_mb_type[i8] += MB_TYPE_16x16 - MB_TYPE_8x8;
n += m;
}
}
}
if (!is_b8x8 && !(n & 15))
*mb_type = (*mb_type & ~(MB_TYPE_8x8 | MB_TYPE_16x8 | MB_TYPE_8x16 |
MB_TYPE_P1L0 | MB_TYPE_P1L1)) |
MB_TYPE_16x16 | MB_TYPE_DIRECT2;
}
}
static void pred_temp_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type)
{
int b8_stride = 2;
int b4_stride = h->b_stride;
int mb_xy = sl->mb_xy, mb_y = sl->mb_y;
int mb_type_col[2];
const int16_t (*l1mv0)[2], (*l1mv1)[2];
const int8_t *l1ref0, *l1ref1;
const int is_b8x8 = IS_8X8(*mb_type);
unsigned int sub_mb_type;
int i8, i4;
assert(sl->ref_list[1][0].reference & 3);
await_reference_mb_row(h, sl->ref_list[1][0].parent,
sl->mb_y + !!IS_INTERLACED(*mb_type));
if (IS_INTERLACED(sl->ref_list[1][0].parent->mb_type[mb_xy])) { // AFL/AFR/FR/FL -> AFL/FL
if (!IS_INTERLACED(*mb_type)) { // AFR/FR -> AFL/FL
mb_y = (sl->mb_y & ~1) + sl->col_parity;
mb_xy = sl->mb_x +
((sl->mb_y & ~1) + sl->col_parity) * h->mb_stride;
b8_stride = 0;
} else {
mb_y += sl->col_fieldoff;
mb_xy += h->mb_stride * sl->col_fieldoff; // non-zero for FL -> FL & differ parity
}
goto single_col;
} else { // AFL/AFR/FR/FL -> AFR/FR
if (IS_INTERLACED(*mb_type)) { // AFL /FL -> AFR/FR
mb_y = sl->mb_y & ~1;
mb_xy = sl->mb_x + (sl->mb_y & ~1) * h->mb_stride;
mb_type_col[0] = sl->ref_list[1][0].parent->mb_type[mb_xy];
mb_type_col[1] = sl->ref_list[1][0].parent->mb_type[mb_xy + h->mb_stride];
b8_stride = 2 + 4 * h->mb_stride;
b4_stride *= 6;
if (IS_INTERLACED(mb_type_col[0]) !=
IS_INTERLACED(mb_type_col[1])) {
mb_type_col[0] &= ~MB_TYPE_INTERLACED;
mb_type_col[1] &= ~MB_TYPE_INTERLACED;
}
sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if ((mb_type_col[0] & MB_TYPE_16x16_OR_INTRA) &&
(mb_type_col[1] & MB_TYPE_16x16_OR_INTRA) &&
!is_b8x8) {
*mb_type |= MB_TYPE_16x8 | MB_TYPE_L0L1 |
MB_TYPE_DIRECT2; /* B_16x8 */
} else {
*mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1;
}
} else { // AFR/FR -> AFR/FR
single_col:
mb_type_col[0] =
mb_type_col[1] = sl->ref_list[1][0].parent->mb_type[mb_xy];
sub_mb_type = MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
MB_TYPE_DIRECT2; /* B_SUB_8x8 */
if (!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)) {
*mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
MB_TYPE_DIRECT2; /* B_16x16 */
} else if (!is_b8x8 &&
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16))) {
*mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 |
(mb_type_col[0] & (MB_TYPE_16x8 | MB_TYPE_8x16));
} else {
if (!h->ps.sps->direct_8x8_inference_flag) {
/* FIXME: save sub mb types from previous frames (or derive
* from MVs) so we know exactly what block size to use */
sub_mb_type = MB_TYPE_8x8 | MB_TYPE_P0L0 | MB_TYPE_P0L1 |
MB_TYPE_DIRECT2; /* B_SUB_4x4 */
}
*mb_type |= MB_TYPE_8x8 | MB_TYPE_L0L1;
}
}
}
await_reference_mb_row(h, sl->ref_list[1][0].parent, mb_y);
l1mv0 = &sl->ref_list[1][0].parent->motion_val[0][h->mb2b_xy[mb_xy]];
l1mv1 = &sl->ref_list[1][0].parent->motion_val[1][h->mb2b_xy[mb_xy]];
l1ref0 = &sl->ref_list[1][0].parent->ref_index[0][4 * mb_xy];
l1ref1 = &sl->ref_list[1][0].parent->ref_index[1][4 * mb_xy];
if (!b8_stride) {
if (sl->mb_y & 1) {
l1ref0 += 2;
l1ref1 += 2;
l1mv0 += 2 * b4_stride;
l1mv1 += 2 * b4_stride;
}
}
{
const int *map_col_to_list0[2] = { sl->map_col_to_list0[0],
sl->map_col_to_list0[1] };
const int *dist_scale_factor = sl->dist_scale_factor;
int ref_offset;
if (FRAME_MBAFF(h) && IS_INTERLACED(*mb_type)) {
map_col_to_list0[0] = sl->map_col_to_list0_field[sl->mb_y & 1][0];
map_col_to_list0[1] = sl->map_col_to_list0_field[sl->mb_y & 1][1];
dist_scale_factor = sl->dist_scale_factor_field[sl->mb_y & 1];
}
ref_offset = (sl->ref_list[1][0].parent->mbaff << 4) & (mb_type_col[0] >> 3);
if (IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])) {
int y_shift = 2 * !IS_INTERLACED(*mb_type);
assert(h->ps.sps->direct_8x8_inference_flag);
for (i8 = 0; i8 < 4; i8++) {
const int x8 = i8 & 1;
const int y8 = i8 >> 1;
int ref0, scale;
const int16_t (*l1mv)[2] = l1mv0;
if (is_b8x8 && !IS_DIRECT(sl->sub_mb_type[i8]))
continue;
sl->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&sl->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1);
if (IS_INTRA(mb_type_col[y8])) {
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1);
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4);
continue;
}
ref0 = l1ref0[x8 + y8 * b8_stride];
if (ref0 >= 0)
ref0 = map_col_to_list0[0][ref0 + ref_offset];
else {
ref0 = map_col_to_list0[1][l1ref1[x8 + y8 * b8_stride] +
ref_offset];
l1mv = l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
ref0, 1);
{
const int16_t *mv_col = l1mv[x8 * 3 + y8 * b4_stride];
int my_col = (mv_col[1] << y_shift) / 2;
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * my_col + 128) >> 8;
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8,
pack16to32(mx, my), 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8,
pack16to32(mx - mv_col[0], my - my_col), 4);
}
}
return;
}
/* one-to-one mv scaling */
if (IS_16X16(*mb_type)) {
int ref, mv0, mv1;
fill_rectangle(&sl->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
if (IS_INTRA(mb_type_col[0])) {
ref = mv0 = mv1 = 0;
} else {
const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0] + ref_offset]
: map_col_to_list0[1][l1ref1[0] + ref_offset];
const int scale = dist_scale_factor[ref0];
const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
int mv_l0[2];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
ref = ref0;
mv0 = pack16to32(mv_l0[0], mv_l0[1]);
mv1 = pack16to32(mv_l0[0] - mv_col[0], mv_l0[1] - mv_col[1]);
}
fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
fill_rectangle(&sl->mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
fill_rectangle(&sl->mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
} else {
for (i8 = 0; i8 < 4; i8++) {
const int x8 = i8 & 1;
const int y8 = i8 >> 1;
int ref0, scale;
const int16_t (*l1mv)[2] = l1mv0;
if (is_b8x8 && !IS_DIRECT(sl->sub_mb_type[i8]))
continue;
sl->sub_mb_type[i8] = sub_mb_type;
fill_rectangle(&sl->ref_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 1);
if (IS_INTRA(mb_type_col[0])) {
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 1);
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8, 0, 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8, 0, 4);
continue;
}
assert(b8_stride == 2);
ref0 = l1ref0[i8];
if (ref0 >= 0)
ref0 = map_col_to_list0[0][ref0 + ref_offset];
else {
ref0 = map_col_to_list0[1][l1ref1[i8] + ref_offset];
l1mv = l1mv1;
}
scale = dist_scale_factor[ref0];
fill_rectangle(&sl->ref_cache[0][scan8[i8 * 4]], 2, 2, 8,
ref0, 1);
if (IS_SUB_8X8(sub_mb_type)) {
const int16_t *mv_col = l1mv[x8 * 3 + y8 * 3 * b4_stride];
int mx = (scale * mv_col[0] + 128) >> 8;
int my = (scale * mv_col[1] + 128) >> 8;
fill_rectangle(&sl->mv_cache[0][scan8[i8 * 4]], 2, 2, 8,
pack16to32(mx, my), 4);
fill_rectangle(&sl->mv_cache[1][scan8[i8 * 4]], 2, 2, 8,
pack16to32(mx - mv_col[0], my - mv_col[1]), 4);
} else {
for (i4 = 0; i4 < 4; i4++) {
const int16_t *mv_col = l1mv[x8 * 2 + (i4 & 1) +
(y8 * 2 + (i4 >> 1)) * b4_stride];
int16_t *mv_l0 = sl->mv_cache[0][scan8[i8 * 4 + i4]];
mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
AV_WN32A(sl->mv_cache[1][scan8[i8 * 4 + i4]],
pack16to32(mv_l0[0] - mv_col[0],
mv_l0[1] - mv_col[1]));
}
}
}
}
}
}
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type)
{
if (sl->direct_spatial_mv_pred)
pred_spatial_direct_motion(h, sl, mb_type);
else
pred_temp_direct_motion(h, sl, mb_type);
}