519 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * ALAC audio encoder
 | 
						|
 * Copyright (c) 2008  Jaikrishnan Menon <realityman@gmx.net>
 | 
						|
 *
 | 
						|
 * This file is part of FFmpeg.
 | 
						|
 *
 | 
						|
 * FFmpeg is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * FFmpeg is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with FFmpeg; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 | 
						|
 */
 | 
						|
 | 
						|
#include "avcodec.h"
 | 
						|
#include "get_bits.h"
 | 
						|
#include "put_bits.h"
 | 
						|
#include "dsputil.h"
 | 
						|
#include "lpc.h"
 | 
						|
#include "mathops.h"
 | 
						|
 | 
						|
#define DEFAULT_FRAME_SIZE        4096
 | 
						|
#define DEFAULT_SAMPLE_SIZE       16
 | 
						|
#define MAX_CHANNELS              8
 | 
						|
#define ALAC_EXTRADATA_SIZE       36
 | 
						|
#define ALAC_FRAME_HEADER_SIZE    55
 | 
						|
#define ALAC_FRAME_FOOTER_SIZE    3
 | 
						|
 | 
						|
#define ALAC_ESCAPE_CODE          0x1FF
 | 
						|
#define ALAC_MAX_LPC_ORDER        30
 | 
						|
#define DEFAULT_MAX_PRED_ORDER    6
 | 
						|
#define DEFAULT_MIN_PRED_ORDER    4
 | 
						|
#define ALAC_MAX_LPC_PRECISION    9
 | 
						|
#define ALAC_MAX_LPC_SHIFT        9
 | 
						|
 | 
						|
#define ALAC_CHMODE_LEFT_RIGHT    0
 | 
						|
#define ALAC_CHMODE_LEFT_SIDE     1
 | 
						|
#define ALAC_CHMODE_RIGHT_SIDE    2
 | 
						|
#define ALAC_CHMODE_MID_SIDE      3
 | 
						|
 | 
						|
typedef struct RiceContext {
 | 
						|
    int history_mult;
 | 
						|
    int initial_history;
 | 
						|
    int k_modifier;
 | 
						|
    int rice_modifier;
 | 
						|
} RiceContext;
 | 
						|
 | 
						|
typedef struct LPCContext {
 | 
						|
    int lpc_order;
 | 
						|
    int lpc_coeff[ALAC_MAX_LPC_ORDER+1];
 | 
						|
    int lpc_quant;
 | 
						|
} LPCContext;
 | 
						|
 | 
						|
typedef struct AlacEncodeContext {
 | 
						|
    int compression_level;
 | 
						|
    int min_prediction_order;
 | 
						|
    int max_prediction_order;
 | 
						|
    int max_coded_frame_size;
 | 
						|
    int write_sample_size;
 | 
						|
    int32_t sample_buf[MAX_CHANNELS][DEFAULT_FRAME_SIZE];
 | 
						|
    int32_t predictor_buf[DEFAULT_FRAME_SIZE];
 | 
						|
    int interlacing_shift;
 | 
						|
    int interlacing_leftweight;
 | 
						|
    PutBitContext pbctx;
 | 
						|
    RiceContext rc;
 | 
						|
    LPCContext lpc[MAX_CHANNELS];
 | 
						|
    DSPContext dspctx;
 | 
						|
    AVCodecContext *avctx;
 | 
						|
} AlacEncodeContext;
 | 
						|
 | 
						|
 | 
						|
static void init_sample_buffers(AlacEncodeContext *s, int16_t *input_samples)
 | 
						|
{
 | 
						|
    int ch, i;
 | 
						|
 | 
						|
    for(ch=0;ch<s->avctx->channels;ch++) {
 | 
						|
        int16_t *sptr = input_samples + ch;
 | 
						|
        for(i=0;i<s->avctx->frame_size;i++) {
 | 
						|
            s->sample_buf[ch][i] = *sptr;
 | 
						|
            sptr += s->avctx->channels;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void encode_scalar(AlacEncodeContext *s, int x, int k, int write_sample_size)
 | 
						|
{
 | 
						|
    int divisor, q, r;
 | 
						|
 | 
						|
    k = FFMIN(k, s->rc.k_modifier);
 | 
						|
    divisor = (1<<k) - 1;
 | 
						|
    q = x / divisor;
 | 
						|
    r = x % divisor;
 | 
						|
 | 
						|
    if(q > 8) {
 | 
						|
        // write escape code and sample value directly
 | 
						|
        put_bits(&s->pbctx, 9, ALAC_ESCAPE_CODE);
 | 
						|
        put_bits(&s->pbctx, write_sample_size, x);
 | 
						|
    } else {
 | 
						|
        if(q)
 | 
						|
            put_bits(&s->pbctx, q, (1<<q) - 1);
 | 
						|
        put_bits(&s->pbctx, 1, 0);
 | 
						|
 | 
						|
        if(k != 1) {
 | 
						|
            if(r > 0)
 | 
						|
                put_bits(&s->pbctx, k, r+1);
 | 
						|
            else
 | 
						|
                put_bits(&s->pbctx, k-1, 0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_frame_header(AlacEncodeContext *s, int is_verbatim)
 | 
						|
{
 | 
						|
    put_bits(&s->pbctx, 3,  s->avctx->channels-1);          // No. of channels -1
 | 
						|
    put_bits(&s->pbctx, 16, 0);                             // Seems to be zero
 | 
						|
    put_bits(&s->pbctx, 1,  1);                             // Sample count is in the header
 | 
						|
    put_bits(&s->pbctx, 2,  0);                             // FIXME: Wasted bytes field
 | 
						|
    put_bits(&s->pbctx, 1,  is_verbatim);                   // Audio block is verbatim
 | 
						|
    put_bits(&s->pbctx, 32, s->avctx->frame_size);          // No. of samples in the frame
 | 
						|
}
 | 
						|
 | 
						|
static void calc_predictor_params(AlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
 | 
						|
    int shift[MAX_LPC_ORDER];
 | 
						|
    int opt_order;
 | 
						|
 | 
						|
    opt_order = ff_lpc_calc_coefs(&s->dspctx, s->sample_buf[ch], s->avctx->frame_size, s->min_prediction_order, s->max_prediction_order,
 | 
						|
                                   ALAC_MAX_LPC_PRECISION, coefs, shift, 1, ORDER_METHOD_EST, ALAC_MAX_LPC_SHIFT, 1);
 | 
						|
 | 
						|
    s->lpc[ch].lpc_order = opt_order;
 | 
						|
    s->lpc[ch].lpc_quant = shift[opt_order-1];
 | 
						|
    memcpy(s->lpc[ch].lpc_coeff, coefs[opt_order-1], opt_order*sizeof(int));
 | 
						|
}
 | 
						|
 | 
						|
static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
 | 
						|
{
 | 
						|
    int i, best;
 | 
						|
    int32_t lt, rt;
 | 
						|
    uint64_t sum[4];
 | 
						|
    uint64_t score[4];
 | 
						|
 | 
						|
    /* calculate sum of 2nd order residual for each channel */
 | 
						|
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
 | 
						|
    for(i=2; i<n; i++) {
 | 
						|
        lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
 | 
						|
        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
 | 
						|
        sum[2] += FFABS((lt + rt) >> 1);
 | 
						|
        sum[3] += FFABS(lt - rt);
 | 
						|
        sum[0] += FFABS(lt);
 | 
						|
        sum[1] += FFABS(rt);
 | 
						|
    }
 | 
						|
 | 
						|
    /* calculate score for each mode */
 | 
						|
    score[0] = sum[0] + sum[1];
 | 
						|
    score[1] = sum[0] + sum[3];
 | 
						|
    score[2] = sum[1] + sum[3];
 | 
						|
    score[3] = sum[2] + sum[3];
 | 
						|
 | 
						|
    /* return mode with lowest score */
 | 
						|
    best = 0;
 | 
						|
    for(i=1; i<4; i++) {
 | 
						|
        if(score[i] < score[best]) {
 | 
						|
            best = i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return best;
 | 
						|
}
 | 
						|
 | 
						|
static void alac_stereo_decorrelation(AlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int32_t *left = s->sample_buf[0], *right = s->sample_buf[1];
 | 
						|
    int i, mode, n = s->avctx->frame_size;
 | 
						|
    int32_t tmp;
 | 
						|
 | 
						|
    mode = estimate_stereo_mode(left, right, n);
 | 
						|
 | 
						|
    switch(mode)
 | 
						|
    {
 | 
						|
        case ALAC_CHMODE_LEFT_RIGHT:
 | 
						|
            s->interlacing_leftweight = 0;
 | 
						|
            s->interlacing_shift = 0;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ALAC_CHMODE_LEFT_SIDE:
 | 
						|
            for(i=0; i<n; i++) {
 | 
						|
                right[i] = left[i] - right[i];
 | 
						|
            }
 | 
						|
            s->interlacing_leftweight = 1;
 | 
						|
            s->interlacing_shift = 0;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ALAC_CHMODE_RIGHT_SIDE:
 | 
						|
            for(i=0; i<n; i++) {
 | 
						|
                tmp = right[i];
 | 
						|
                right[i] = left[i] - right[i];
 | 
						|
                left[i] = tmp + (right[i] >> 31);
 | 
						|
            }
 | 
						|
            s->interlacing_leftweight = 1;
 | 
						|
            s->interlacing_shift = 31;
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            for(i=0; i<n; i++) {
 | 
						|
                tmp = left[i];
 | 
						|
                left[i] = (tmp + right[i]) >> 1;
 | 
						|
                right[i] = tmp - right[i];
 | 
						|
            }
 | 
						|
            s->interlacing_leftweight = 1;
 | 
						|
            s->interlacing_shift = 1;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void alac_linear_predictor(AlacEncodeContext *s, int ch)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    LPCContext lpc = s->lpc[ch];
 | 
						|
 | 
						|
    if(lpc.lpc_order == 31) {
 | 
						|
        s->predictor_buf[0] = s->sample_buf[ch][0];
 | 
						|
 | 
						|
        for(i=1; i<s->avctx->frame_size; i++)
 | 
						|
            s->predictor_buf[i] = s->sample_buf[ch][i] - s->sample_buf[ch][i-1];
 | 
						|
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    // generalised linear predictor
 | 
						|
 | 
						|
    if(lpc.lpc_order > 0) {
 | 
						|
        int32_t *samples  = s->sample_buf[ch];
 | 
						|
        int32_t *residual = s->predictor_buf;
 | 
						|
 | 
						|
        // generate warm-up samples
 | 
						|
        residual[0] = samples[0];
 | 
						|
        for(i=1;i<=lpc.lpc_order;i++)
 | 
						|
            residual[i] = samples[i] - samples[i-1];
 | 
						|
 | 
						|
        // perform lpc on remaining samples
 | 
						|
        for(i = lpc.lpc_order + 1; i < s->avctx->frame_size; i++) {
 | 
						|
            int sum = 1 << (lpc.lpc_quant - 1), res_val, j;
 | 
						|
 | 
						|
            for (j = 0; j < lpc.lpc_order; j++) {
 | 
						|
                sum += (samples[lpc.lpc_order-j] - samples[0]) *
 | 
						|
                        lpc.lpc_coeff[j];
 | 
						|
            }
 | 
						|
 | 
						|
            sum >>= lpc.lpc_quant;
 | 
						|
            sum += samples[0];
 | 
						|
            residual[i] = sign_extend(samples[lpc.lpc_order+1] - sum,
 | 
						|
                                      s->write_sample_size);
 | 
						|
            res_val = residual[i];
 | 
						|
 | 
						|
            if(res_val) {
 | 
						|
                int index = lpc.lpc_order - 1;
 | 
						|
                int neg = (res_val < 0);
 | 
						|
 | 
						|
                while(index >= 0 && (neg ? (res_val < 0):(res_val > 0))) {
 | 
						|
                    int val = samples[0] - samples[lpc.lpc_order - index];
 | 
						|
                    int sign = (val ? FFSIGN(val) : 0);
 | 
						|
 | 
						|
                    if(neg)
 | 
						|
                        sign*=-1;
 | 
						|
 | 
						|
                    lpc.lpc_coeff[index] -= sign;
 | 
						|
                    val *= sign;
 | 
						|
                    res_val -= ((val >> lpc.lpc_quant) *
 | 
						|
                            (lpc.lpc_order - index));
 | 
						|
                    index--;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            samples++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void alac_entropy_coder(AlacEncodeContext *s)
 | 
						|
{
 | 
						|
    unsigned int history = s->rc.initial_history;
 | 
						|
    int sign_modifier = 0, i, k;
 | 
						|
    int32_t *samples = s->predictor_buf;
 | 
						|
 | 
						|
    for(i=0;i < s->avctx->frame_size;) {
 | 
						|
        int x;
 | 
						|
 | 
						|
        k = av_log2((history >> 9) + 3);
 | 
						|
 | 
						|
        x = -2*(*samples)-1;
 | 
						|
        x ^= (x>>31);
 | 
						|
 | 
						|
        samples++;
 | 
						|
        i++;
 | 
						|
 | 
						|
        encode_scalar(s, x - sign_modifier, k, s->write_sample_size);
 | 
						|
 | 
						|
        history += x * s->rc.history_mult
 | 
						|
                   - ((history * s->rc.history_mult) >> 9);
 | 
						|
 | 
						|
        sign_modifier = 0;
 | 
						|
        if(x > 0xFFFF)
 | 
						|
            history = 0xFFFF;
 | 
						|
 | 
						|
        if((history < 128) && (i < s->avctx->frame_size)) {
 | 
						|
            unsigned int block_size = 0;
 | 
						|
 | 
						|
            k = 7 - av_log2(history) + ((history + 16) >> 6);
 | 
						|
 | 
						|
            while((*samples == 0) && (i < s->avctx->frame_size)) {
 | 
						|
                samples++;
 | 
						|
                i++;
 | 
						|
                block_size++;
 | 
						|
            }
 | 
						|
            encode_scalar(s, block_size, k, 16);
 | 
						|
 | 
						|
            sign_modifier = (block_size <= 0xFFFF);
 | 
						|
 | 
						|
            history = 0;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_compressed_frame(AlacEncodeContext *s)
 | 
						|
{
 | 
						|
    int i, j;
 | 
						|
 | 
						|
    if(s->avctx->channels == 2)
 | 
						|
        alac_stereo_decorrelation(s);
 | 
						|
    put_bits(&s->pbctx, 8, s->interlacing_shift);
 | 
						|
    put_bits(&s->pbctx, 8, s->interlacing_leftweight);
 | 
						|
 | 
						|
    for(i=0;i<s->avctx->channels;i++) {
 | 
						|
 | 
						|
        calc_predictor_params(s, i);
 | 
						|
 | 
						|
        put_bits(&s->pbctx, 4, 0);  // prediction type : currently only type 0 has been RE'd
 | 
						|
        put_bits(&s->pbctx, 4, s->lpc[i].lpc_quant);
 | 
						|
 | 
						|
        put_bits(&s->pbctx, 3, s->rc.rice_modifier);
 | 
						|
        put_bits(&s->pbctx, 5, s->lpc[i].lpc_order);
 | 
						|
        // predictor coeff. table
 | 
						|
        for(j=0;j<s->lpc[i].lpc_order;j++) {
 | 
						|
            put_sbits(&s->pbctx, 16, s->lpc[i].lpc_coeff[j]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // apply lpc and entropy coding to audio samples
 | 
						|
 | 
						|
    for(i=0;i<s->avctx->channels;i++) {
 | 
						|
        alac_linear_predictor(s, i);
 | 
						|
        alac_entropy_coder(s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int alac_encode_init(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    AlacEncodeContext *s    = avctx->priv_data;
 | 
						|
    uint8_t *alac_extradata = av_mallocz(ALAC_EXTRADATA_SIZE+1);
 | 
						|
 | 
						|
    avctx->frame_size      = DEFAULT_FRAME_SIZE;
 | 
						|
    avctx->bits_per_coded_sample = DEFAULT_SAMPLE_SIZE;
 | 
						|
 | 
						|
    if(avctx->sample_fmt != SAMPLE_FMT_S16) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "only pcm_s16 input samples are supported\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Set default compression level
 | 
						|
    if(avctx->compression_level == FF_COMPRESSION_DEFAULT)
 | 
						|
        s->compression_level = 1;
 | 
						|
    else
 | 
						|
        s->compression_level = av_clip(avctx->compression_level, 0, 1);
 | 
						|
 | 
						|
    // Initialize default Rice parameters
 | 
						|
    s->rc.history_mult    = 40;
 | 
						|
    s->rc.initial_history = 10;
 | 
						|
    s->rc.k_modifier      = 14;
 | 
						|
    s->rc.rice_modifier   = 4;
 | 
						|
 | 
						|
    s->max_coded_frame_size = (ALAC_FRAME_HEADER_SIZE + ALAC_FRAME_FOOTER_SIZE +
 | 
						|
                               avctx->frame_size*avctx->channels*avctx->bits_per_coded_sample)>>3;
 | 
						|
 | 
						|
    s->write_sample_size  = avctx->bits_per_coded_sample + avctx->channels - 1; // FIXME: consider wasted_bytes
 | 
						|
 | 
						|
    AV_WB32(alac_extradata,    ALAC_EXTRADATA_SIZE);
 | 
						|
    AV_WB32(alac_extradata+4,  MKBETAG('a','l','a','c'));
 | 
						|
    AV_WB32(alac_extradata+12, avctx->frame_size);
 | 
						|
    AV_WB8 (alac_extradata+17, avctx->bits_per_coded_sample);
 | 
						|
    AV_WB8 (alac_extradata+21, avctx->channels);
 | 
						|
    AV_WB32(alac_extradata+24, s->max_coded_frame_size);
 | 
						|
    AV_WB32(alac_extradata+28, avctx->sample_rate*avctx->channels*avctx->bits_per_coded_sample); // average bitrate
 | 
						|
    AV_WB32(alac_extradata+32, avctx->sample_rate);
 | 
						|
 | 
						|
    // Set relevant extradata fields
 | 
						|
    if(s->compression_level > 0) {
 | 
						|
        AV_WB8(alac_extradata+18, s->rc.history_mult);
 | 
						|
        AV_WB8(alac_extradata+19, s->rc.initial_history);
 | 
						|
        AV_WB8(alac_extradata+20, s->rc.k_modifier);
 | 
						|
    }
 | 
						|
 | 
						|
    s->min_prediction_order = DEFAULT_MIN_PRED_ORDER;
 | 
						|
    if(avctx->min_prediction_order >= 0) {
 | 
						|
        if(avctx->min_prediction_order < MIN_LPC_ORDER ||
 | 
						|
           avctx->min_prediction_order > ALAC_MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", avctx->min_prediction_order);
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        s->min_prediction_order = avctx->min_prediction_order;
 | 
						|
    }
 | 
						|
 | 
						|
    s->max_prediction_order = DEFAULT_MAX_PRED_ORDER;
 | 
						|
    if(avctx->max_prediction_order >= 0) {
 | 
						|
        if(avctx->max_prediction_order < MIN_LPC_ORDER ||
 | 
						|
           avctx->max_prediction_order > ALAC_MAX_LPC_ORDER) {
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", avctx->max_prediction_order);
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        s->max_prediction_order = avctx->max_prediction_order;
 | 
						|
    }
 | 
						|
 | 
						|
    if(s->max_prediction_order < s->min_prediction_order) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
 | 
						|
               s->min_prediction_order, s->max_prediction_order);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    avctx->extradata = alac_extradata;
 | 
						|
    avctx->extradata_size = ALAC_EXTRADATA_SIZE;
 | 
						|
 | 
						|
    avctx->coded_frame = avcodec_alloc_frame();
 | 
						|
    avctx->coded_frame->key_frame = 1;
 | 
						|
 | 
						|
    s->avctx = avctx;
 | 
						|
    dsputil_init(&s->dspctx, avctx);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int alac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
 | 
						|
                             int buf_size, void *data)
 | 
						|
{
 | 
						|
    AlacEncodeContext *s = avctx->priv_data;
 | 
						|
    PutBitContext *pb = &s->pbctx;
 | 
						|
    int i, out_bytes, verbatim_flag = 0;
 | 
						|
 | 
						|
    if(avctx->frame_size > DEFAULT_FRAME_SIZE) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "input frame size exceeded\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if(buf_size < 2*s->max_coded_frame_size) {
 | 
						|
        av_log(avctx, AV_LOG_ERROR, "buffer size is too small\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
verbatim:
 | 
						|
    init_put_bits(pb, frame, buf_size);
 | 
						|
 | 
						|
    if((s->compression_level == 0) || verbatim_flag) {
 | 
						|
        // Verbatim mode
 | 
						|
        int16_t *samples = data;
 | 
						|
        write_frame_header(s, 1);
 | 
						|
        for(i=0; i<avctx->frame_size*avctx->channels; i++) {
 | 
						|
            put_sbits(pb, 16, *samples++);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        init_sample_buffers(s, data);
 | 
						|
        write_frame_header(s, 0);
 | 
						|
        write_compressed_frame(s);
 | 
						|
    }
 | 
						|
 | 
						|
    put_bits(pb, 3, 7);
 | 
						|
    flush_put_bits(pb);
 | 
						|
    out_bytes = put_bits_count(pb) >> 3;
 | 
						|
 | 
						|
    if(out_bytes > s->max_coded_frame_size) {
 | 
						|
        /* frame too large. use verbatim mode */
 | 
						|
        if(verbatim_flag || (s->compression_level == 0)) {
 | 
						|
            /* still too large. must be an error. */
 | 
						|
            av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        verbatim_flag = 1;
 | 
						|
        goto verbatim;
 | 
						|
    }
 | 
						|
 | 
						|
    return out_bytes;
 | 
						|
}
 | 
						|
 | 
						|
static av_cold int alac_encode_close(AVCodecContext *avctx)
 | 
						|
{
 | 
						|
    av_freep(&avctx->extradata);
 | 
						|
    avctx->extradata_size = 0;
 | 
						|
    av_freep(&avctx->coded_frame);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
AVCodec alac_encoder = {
 | 
						|
    "alac",
 | 
						|
    CODEC_TYPE_AUDIO,
 | 
						|
    CODEC_ID_ALAC,
 | 
						|
    sizeof(AlacEncodeContext),
 | 
						|
    alac_encode_init,
 | 
						|
    alac_encode_frame,
 | 
						|
    alac_encode_close,
 | 
						|
    .capabilities = CODEC_CAP_SMALL_LAST_FRAME,
 | 
						|
    .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
 | 
						|
};
 |