/* * Copyright (c) 2012-2013 Clément Bœsch * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini). */ #include <math.h> #include "libavcodec/avfft.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "avfilter.h" #include "internal.h" enum DisplayMode { COMBINED, SEPARATE, NB_MODES }; enum DisplayScale { LINEAR, SQRT, CBRT, LOG, NB_SCALES }; enum ColorMode { CHANNEL, INTENSITY, NB_CLMODES }; enum WindowFunc { WFUNC_NONE, WFUNC_HANN, WFUNC_HAMMING, WFUNC_BLACKMAN, NB_WFUNC }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, NB_SLIDES }; typedef struct { const AVClass *class; int w, h; AVFrame *outpicref; int req_fullfilled; int nb_display_channels; int channel_height; int sliding; ///< 1 if sliding mode, 0 otherwise enum DisplayMode mode; ///< channel display mode enum ColorMode color_mode; ///< display color scheme enum DisplayScale scale; float saturation; ///< color saturation multiplier int xpos; ///< x position (current column) RDFTContext *rdft; ///< Real Discrete Fourier Transform context int rdft_bits; ///< number of bits (RDFT window size = 1<<rdft_bits) FFTSample **rdft_data; ///< bins holder for each (displayed) channels float *window_func_lut; ///< Window function LUT enum WindowFunc win_func; float *combine_buffer; ///< color combining buffer (3 * h items) } ShowSpectrumContext; #define OFFSET(x) offsetof(ShowSpectrumContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption showspectrum_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS }, { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES, FLAGS, "slide" }, { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, "slide" }, { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, "slide" }, { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, "slide" }, { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, "mode" }, { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" }, { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" }, { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, "color" }, { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" }, { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" }, { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, "scale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANN}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "hann", "Hann window", 0, AV_OPT_TYPE_CONST, {.i64 = WFUNC_HANN}, 0, 0, FLAGS, "win_func" }, { "hamming", "Hamming window", 0, AV_OPT_TYPE_CONST, {.i64 = WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" }, { "blackman", "Blackman window", 0, AV_OPT_TYPE_CONST, {.i64 = WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" }, { NULL } }; AVFILTER_DEFINE_CLASS(showspectrum); static const struct { float a, y, u, v; } intensity_color_table[] = { { 0, 0, 0, 0 }, { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 }, { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 }, { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 }, { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 }, { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 }, { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 }, { 1, 1, 0, 0 } }; static av_cold void uninit(AVFilterContext *ctx) { ShowSpectrumContext *s = ctx->priv; int i; av_freep(&s->combine_buffer); av_rdft_end(s->rdft); for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->rdft_data[i]); av_freep(&s->rdft_data); av_freep(&s->window_func_lut); av_frame_free(&s->outpicref); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE }; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if (!formats) return AVERROR(ENOMEM); ff_formats_ref(formats, &inlink->out_formats); layouts = ff_all_channel_layouts(); if (!layouts) return AVERROR(ENOMEM); ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts); formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); ff_formats_ref(formats, &inlink->out_samplerates); /* set output video format */ formats = ff_make_format_list(pix_fmts); if (!formats) return AVERROR(ENOMEM); ff_formats_ref(formats, &outlink->in_formats); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowSpectrumContext *s = ctx->priv; int i, rdft_bits, win_size, h; outlink->w = s->w; outlink->h = s->h; h = (s->mode == COMBINED) ? outlink->h : outlink->h / inlink->channels; s->channel_height = h; /* RDFT window size (precision) according to the requested output frame height */ for (rdft_bits = 1; 1 << rdft_bits < 2 * h; rdft_bits++); win_size = 1 << rdft_bits; /* (re-)configuration if the video output changed (or first init) */ if (rdft_bits != s->rdft_bits) { size_t rdft_size, rdft_listsize; AVFrame *outpicref; av_rdft_end(s->rdft); s->rdft = av_rdft_init(rdft_bits, DFT_R2C); if (!s->rdft) { av_log(ctx, AV_LOG_ERROR, "Unable to create RDFT context. " "The window size might be too high.\n"); return AVERROR(EINVAL); } s->rdft_bits = rdft_bits; /* RDFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->rdft_data[i]); av_freep(&s->rdft_data); s->nb_display_channels = inlink->channels; if (av_size_mult(sizeof(*s->rdft_data), s->nb_display_channels, &rdft_listsize) < 0) return AVERROR(EINVAL); if (av_size_mult(sizeof(**s->rdft_data), win_size, &rdft_size) < 0) return AVERROR(EINVAL); s->rdft_data = av_malloc(rdft_listsize); if (!s->rdft_data) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->rdft_data[i] = av_malloc(rdft_size); if (!s->rdft_data[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); switch (s->win_func) { case WFUNC_NONE: for (i = 0; i < win_size; i++) s->window_func_lut[i] = 1.; break; case WFUNC_HANN: for (i = 0; i < win_size; i++) s->window_func_lut[i] = .5f * (1 - cos(2*M_PI*i / (win_size-1))); break; case WFUNC_HAMMING: for (i = 0; i < win_size; i++) s->window_func_lut[i] = .54f - .46f * cos(2*M_PI*i / (win_size-1)); break; case WFUNC_BLACKMAN: { for (i = 0; i < win_size; i++) s->window_func_lut[i] = .42f - .5f*cos(2*M_PI*i / (win_size-1)) + .08f*cos(4*M_PI*i / (win_size-1)); break; } default: av_assert0(0); } /* prepare the initial picref buffer (black frame) */ av_frame_free(&s->outpicref); s->outpicref = outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpicref) return AVERROR(ENOMEM); outlink->sample_aspect_ratio = (AVRational){1,1}; for (i = 0; i < outlink->h; i++) { memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w); memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w); memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w); } } if (s->xpos >= outlink->w) s->xpos = 0; outlink->frame_rate = av_make_q(inlink->sample_rate, win_size); if (s->sliding == FULLFRAME) outlink->frame_rate.den *= outlink->w; inlink->min_samples = inlink->max_samples = inlink->partial_buf_size = win_size; s->combine_buffer = av_realloc_f(s->combine_buffer, outlink->h * 3, sizeof(*s->combine_buffer)); av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d RDFT window size:%d\n", s->w, s->h, win_size); return 0; } static int request_frame(AVFilterLink *outlink) { ShowSpectrumContext *s = outlink->src->priv; AVFilterLink *inlink = outlink->src->inputs[0]; unsigned i; int ret; s->req_fullfilled = 0; do { ret = ff_request_frame(inlink); if (ret == AVERROR_EOF && s->sliding == FULLFRAME && s->xpos > 0 && s->outpicref) { for (i = 0; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos); } ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; s->req_fullfilled = 1; } } while (!s->req_fullfilled && ret >= 0); return ret; } static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { int ret; AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; AVFrame *outpicref = s->outpicref; /* nb_freq contains the power of two superior or equal to the output image * height (or half the RDFT window size) */ const int nb_freq = 1 << (s->rdft_bits - 1); const int win_size = nb_freq << 1; const double w = 1. / (sqrt(nb_freq) * 32768.); int h = s->channel_height; int ch, plane, n, y; av_assert0(insamples->nb_samples == win_size); /* fill RDFT input with the number of samples available */ for (ch = 0; ch < s->nb_display_channels; ch++) { const int16_t *p = (int16_t *)insamples->extended_data[ch]; for (n = 0; n < win_size; n++) s->rdft_data[ch][n] = p[n] * s->window_func_lut[n]; } /* TODO reindent */ /* run RDFT on each samples set */ for (ch = 0; ch < s->nb_display_channels; ch++) av_rdft_calc(s->rdft, s->rdft_data[ch]); /* fill a new spectrum column */ #define RE(y, ch) s->rdft_data[ch][2 * (y) + 0] #define IM(y, ch) s->rdft_data[ch][2 * (y) + 1] #define MAGNITUDE(y, ch) hypot(RE(y, ch), IM(y, ch)) /* initialize buffer for combining to black */ for (y = 0; y < outlink->h; y++) { s->combine_buffer[3 * y ] = 0; s->combine_buffer[3 * y + 1] = 127.5; s->combine_buffer[3 * y + 2] = 127.5; } for (ch = 0; ch < s->nb_display_channels; ch++) { float yf, uf, vf; /* decide color range */ switch (s->mode) { case COMBINED: // reduce range by channel count yf = 256.0f / s->nb_display_channels; switch (s->color_mode) { case INTENSITY: uf = yf; vf = yf; break; case CHANNEL: /* adjust saturation for mixed UV coloring */ /* this factor is correct for infinite channels, an approximation otherwise */ uf = yf * M_PI; vf = yf * M_PI; break; default: av_assert0(0); } break; case SEPARATE: // full range yf = 256.0f; uf = 256.0f; vf = 256.0f; break; default: av_assert0(0); } if (s->color_mode == CHANNEL) { if (s->nb_display_channels > 1) { uf *= 0.5 * sin((2 * M_PI * ch) / s->nb_display_channels); vf *= 0.5 * cos((2 * M_PI * ch) / s->nb_display_channels); } else { uf = 0.0f; vf = 0.0f; } } uf *= s->saturation; vf *= s->saturation; /* draw the channel */ for (y = 0; y < h; y++) { int row = (s->mode == COMBINED) ? y : ch * h + y; float *out = &s->combine_buffer[3 * row]; /* get magnitude */ float a = w * MAGNITUDE(y, ch); /* apply scale */ switch (s->scale) { case LINEAR: break; case SQRT: a = sqrt(a); break; case CBRT: a = cbrt(a); break; case LOG: a = 1 - log(FFMAX(FFMIN(1, a), 1e-6)) / log(1e-6); // zero = -120dBFS break; default: av_assert0(0); } if (s->color_mode == INTENSITY) { float y, u, v; int i; for (i = 1; i < sizeof(intensity_color_table) / sizeof(*intensity_color_table) - 1; i++) if (intensity_color_table[i].a >= a) break; // i now is the first item >= the color // now we know to interpolate between item i - 1 and i if (a <= intensity_color_table[i - 1].a) { y = intensity_color_table[i - 1].y; u = intensity_color_table[i - 1].u; v = intensity_color_table[i - 1].v; } else if (a >= intensity_color_table[i].a) { y = intensity_color_table[i].y; u = intensity_color_table[i].u; v = intensity_color_table[i].v; } else { float start = intensity_color_table[i - 1].a; float end = intensity_color_table[i].a; float lerpfrac = (a - start) / (end - start); y = intensity_color_table[i - 1].y * (1.0f - lerpfrac) + intensity_color_table[i].y * lerpfrac; u = intensity_color_table[i - 1].u * (1.0f - lerpfrac) + intensity_color_table[i].u * lerpfrac; v = intensity_color_table[i - 1].v * (1.0f - lerpfrac) + intensity_color_table[i].v * lerpfrac; } out[0] += y * yf; out[1] += u * uf; out[2] += v * vf; } else { out[0] += a * yf; out[1] += a * uf; out[2] += a * vf; } } } /* copy to output */ if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < outlink->h; y++) { uint8_t *p = outpicref->data[plane] + y * outpicref->linesize[plane]; memmove(p, p + 1, outlink->w - 1); } } s->xpos = outlink->w - 1; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + (outlink->h - 1) * outpicref->linesize[plane] + s->xpos; for (y = 0; y < outlink->h; y++) { *p = rint(FFMAX(0, FFMIN(s->combine_buffer[3 * y + plane], 255))); p -= outpicref->linesize[plane]; } } if (s->sliding != FULLFRAME || s->xpos == 0) outpicref->pts = insamples->pts; s->xpos++; if (s->xpos >= outlink->w) s->xpos = 0; if (s->sliding != FULLFRAME || s->xpos == 0) { s->req_fullfilled = 1; ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref)); if (ret < 0) return ret; } return win_size; } static int filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowSpectrumContext *s = ctx->priv; unsigned win_size = 1 << s->rdft_bits; int ret = 0; av_assert0(insamples->nb_samples <= win_size); if (insamples->nb_samples == win_size) ret = plot_spectrum_column(inlink, insamples); av_frame_free(&insamples); return ret; } static const AVFilterPad showspectrum_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad showspectrum_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_avf_showspectrum = { .name = "showspectrum", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowSpectrumContext), .inputs = showspectrum_inputs, .outputs = showspectrum_outputs, .priv_class = &showspectrum_class, };