/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #define UNCHECKED_BITSTREAM_READER 1 #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "internal.h" #include "cabac.h" #include "cabac_functions.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "h264.h" #include "h264data.h" #include "h264chroma.h" #include "h264_mvpred.h" #include "golomb.h" #include "mathops.h" #include "rectangle.h" #include "svq3.h" #include "thread.h" #include "vdpau_internal.h" #include "libavutil/avassert.h" // #undef NDEBUG #include const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; static const uint8_t rem6[QP_MAX_NUM + 1] = { 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, }; static const uint8_t div6[QP_MAX_NUM + 1] = { 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13, 14,14,14,14, }; static const enum AVPixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = { #if CONFIG_H264_DXVA2_HWACCEL AV_PIX_FMT_DXVA2_VLD, #endif #if CONFIG_H264_VAAPI_HWACCEL AV_PIX_FMT_VAAPI_VLD, #endif #if CONFIG_H264_VDA_HWACCEL AV_PIX_FMT_VDA_VLD, #endif #if CONFIG_H264_VDPAU_HWACCEL AV_PIX_FMT_VDPAU, #endif AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_NONE }; int avpriv_h264_has_num_reorder_frames(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; return h ? h->sps.num_reorder_frames : 0; } static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, int (*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped) { H264Context *h = opaque; h->mb_x = mb_x; h->mb_y = mb_y; h->mb_xy = mb_x + mb_y * h->mb_stride; memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache)); av_assert1(ref >= 0); /* FIXME: It is possible albeit uncommon that slice references * differ between slices. We take the easy approach and ignore * it for now. If this turns out to have any relevance in * practice then correct remapping should be added. */ if (ref >= h->ref_count[0]) ref = 0; if (!h->ref_list[0][ref].f.data[0]) { av_log(h->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n"); ref = 0; } if ((h->ref_list[0][ref].f.reference&3) != 3) { av_log(h->avctx, AV_LOG_DEBUG, "Reference invalid\n"); return; } fill_rectangle(&h->cur_pic.f.ref_index[0][4 * h->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); h->mb_mbaff = h->mb_field_decoding_flag = 0; ff_h264_hl_decode_mb(h); } void ff_h264_draw_horiz_band(H264Context *h, int y, int height) { ff_draw_horiz_band(h->avctx, &h->dsp, &h->cur_pic, h->ref_list[0][0].f.data[0] ? &h->ref_list[0][0] : NULL, y, height, h->picture_structure, h->first_field, 1, h->low_delay, h->mb_height * 16, h->mb_width * 16); } static void free_frame_buffer(H264Context *h, Picture *pic) { pic->period_since_free = 0; ff_thread_release_buffer(h->avctx, &pic->f); av_freep(&pic->f.hwaccel_picture_private); } static void free_picture(H264Context *h, Picture *pic) { int i; if (pic->f.data[0]) free_frame_buffer(h, pic); av_freep(&pic->qscale_table_base); pic->f.qscale_table = NULL; av_freep(&pic->mb_type_base); pic->f.mb_type = NULL; for (i = 0; i < 2; i++) { av_freep(&pic->motion_val_base[i]); av_freep(&pic->f.ref_index[i]); pic->f.motion_val[i] = NULL; } } static void release_unused_pictures(H264Context *h, int remove_current) { int i; /* release non reference frames */ for (i = 0; i < h->picture_count; i++) { if (h->DPB[i].f.data[0] && !h->DPB[i].f.reference && (!h->DPB[i].owner2 || h->DPB[i].owner2 == h) && (remove_current || &h->DPB[i] != h->cur_pic_ptr)) { free_frame_buffer(h, &h->DPB[i]); } } } static int alloc_scratch_buffers(H264Context *h, int linesize) { int alloc_size = FFALIGN(FFABS(linesize) + 32, 32); if (h->bipred_scratchpad) return 0; h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size); // edge emu needs blocksize + filter length - 1 // (= 21x21 for h264) h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21); h->me.scratchpad = av_mallocz(alloc_size * 2 * 16 * 2); if (!h->bipred_scratchpad || !h->edge_emu_buffer || !h->me.scratchpad) { av_freep(&h->bipred_scratchpad); av_freep(&h->edge_emu_buffer); av_freep(&h->me.scratchpad); return AVERROR(ENOMEM); } h->me.temp = h->me.scratchpad; return 0; } static int alloc_picture(H264Context *h, Picture *pic) { const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1; const int mb_array_size = h->mb_stride * h->mb_height; const int b4_stride = h->mb_width * 4 + 1; const int b4_array_size = b4_stride * h->mb_height * 4; int i, ret = 0; av_assert0(!pic->f.data[0]); if (h->avctx->hwaccel) { const AVHWAccel *hwaccel = h->avctx->hwaccel; av_assert0(!pic->f.hwaccel_picture_private); if (hwaccel->priv_data_size) { pic->f.hwaccel_picture_private = av_mallocz(hwaccel->priv_data_size); if (!pic->f.hwaccel_picture_private) return AVERROR(ENOMEM); } } ret = ff_thread_get_buffer(h->avctx, &pic->f); if (ret < 0) goto fail; h->linesize = pic->f.linesize[0]; h->uvlinesize = pic->f.linesize[1]; if (pic->f.qscale_table == NULL) { FF_ALLOCZ_OR_GOTO(h->avctx, pic->qscale_table_base, (big_mb_num + h->mb_stride) * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, pic->mb_type_base, (big_mb_num + h->mb_stride) * sizeof(uint32_t), fail) pic->f.mb_type = pic->mb_type_base + 2 * h->mb_stride + 1; pic->f.qscale_table = pic->qscale_table_base + 2 * h->mb_stride + 1; for (i = 0; i < 2; i++) { FF_ALLOCZ_OR_GOTO(h->avctx, pic->motion_val_base[i], 2 * (b4_array_size + 4) * sizeof(int16_t), fail) pic->f.motion_val[i] = pic->motion_val_base[i] + 4; FF_ALLOCZ_OR_GOTO(h->avctx, pic->f.ref_index[i], 4 * mb_array_size * sizeof(uint8_t), fail) } pic->f.motion_subsample_log2 = 2; pic->f.qstride = h->mb_stride; } pic->owner2 = h; return 0; fail: free_frame_buffer(h, pic); return (ret < 0) ? ret : AVERROR(ENOMEM); } static inline int pic_is_unused(H264Context *h, Picture *pic) { if ( (h->avctx->active_thread_type & FF_THREAD_FRAME) && pic->f.qscale_table //check if the frame has anything allocated && pic->period_since_free < h->avctx->thread_count) return 0; if (pic->f.data[0] == NULL) return 1; if (pic->needs_realloc && !(pic->f.reference & DELAYED_PIC_REF)) if (!pic->owner2 || pic->owner2 == h) return 1; return 0; } static int find_unused_picture(H264Context *h) { int i; for (i = h->picture_range_start; i < h->picture_range_end; i++) { if (pic_is_unused(h, &h->DPB[i])) break; } if (i == h->picture_range_end) return AVERROR_INVALIDDATA; if (h->DPB[i].needs_realloc) { h->DPB[i].needs_realloc = 0; free_picture(h, &h->DPB[i]); avcodec_get_frame_defaults(&h->DPB[i].f); } return i; } /** * Check if the top & left blocks are available if needed and * change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra4x4_pred_mode(H264Context *h) { static const int8_t top[12] = { -1, 0, LEFT_DC_PRED, -1, -1, -1, -1, -1, 0 }; static const int8_t left[12] = { 0, -1, TOP_DC_PRED, 0, -1, -1, -1, 0, -1, DC_128_PRED }; int i; if (!(h->top_samples_available & 0x8000)) { for (i = 0; i < 4; i++) { int status = top[h->intra4x4_pred_mode_cache[scan8[0] + i]]; if (status < 0) { av_log(h->avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, h->mb_x, h->mb_y); return -1; } else if (status) { h->intra4x4_pred_mode_cache[scan8[0] + i] = status; } } } if ((h->left_samples_available & 0x8888) != 0x8888) { static const int mask[4] = { 0x8000, 0x2000, 0x80, 0x20 }; for (i = 0; i < 4; i++) if (!(h->left_samples_available & mask[i])) { int status = left[h->intra4x4_pred_mode_cache[scan8[0] + 8 * i]]; if (status < 0) { av_log(h->avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, h->mb_x, h->mb_y); return -1; } else if (status) { h->intra4x4_pred_mode_cache[scan8[0] + 8 * i] = status; } } } return 0; } // FIXME cleanup like ff_h264_check_intra_pred_mode /** * Check if the top & left blocks are available if needed and * change the dc mode so it only uses the available blocks. */ int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma) { static const int8_t top[7] = { LEFT_DC_PRED8x8, 1, -1, -1 }; static const int8_t left[7] = { TOP_DC_PRED8x8, -1, 2, -1, DC_128_PRED8x8 }; if (mode > 6U) { av_log(h->avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", h->mb_x, h->mb_y); return -1; } if (!(h->top_samples_available & 0x8000)) { mode = top[mode]; if (mode < 0) { av_log(h->avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", h->mb_x, h->mb_y); return -1; } } if ((h->left_samples_available & 0x8080) != 0x8080) { mode = left[mode]; if (is_chroma && (h->left_samples_available & 0x8080)) { // mad cow disease mode, aka MBAFF + constrained_intra_pred mode = ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available & 0x8000)) + 2 * (mode == DC_128_PRED8x8); } if (mode < 0) { av_log(h->avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", h->mb_x, h->mb_y); return -1; } } return mode; } const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length) { int i, si, di; uint8_t *dst; int bufidx; // src[0]&0x80; // forbidden bit h->nal_ref_idc = src[0] >> 5; h->nal_unit_type = src[0] & 0x1F; src++; length--; #define STARTCODE_TEST \ if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \ if (src[i + 2] != 3) { \ /* startcode, so we must be past the end */ \ length = i; \ } \ break; \ } #if HAVE_FAST_UNALIGNED #define FIND_FIRST_ZERO \ if (i > 0 && !src[i]) \ i--; \ while (src[i]) \ i++ #if HAVE_FAST_64BIT for (i = 0; i + 1 < length; i += 9) { if (!((~AV_RN64A(src + i) & (AV_RN64A(src + i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 7; } #else for (i = 0; i + 1 < length; i += 5) { if (!((~AV_RN32A(src + i) & (AV_RN32A(src + i) - 0x01000101U)) & 0x80008080U)) continue; FIND_FIRST_ZERO; STARTCODE_TEST; i -= 3; } #endif #else for (i = 0; i + 1 < length; i += 2) { if (src[i]) continue; if (i > 0 && src[i - 1] == 0) i--; STARTCODE_TEST; } #endif // use second escape buffer for inter data bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; si = h->rbsp_buffer_size[bufidx]; av_fast_padded_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+MAX_MBPAIR_SIZE); dst = h->rbsp_buffer[bufidx]; if (dst == NULL) return NULL; if(i>=length-1){ //no escaped 0 *dst_length= length; *consumed= length+1; //+1 for the header if(h->avctx->flags2 & CODEC_FLAG2_FAST){ return src; }else{ memcpy(dst, src, length); return dst; } } memcpy(dst, src, i); si = di = i; while (si + 2 < length) { // remove escapes (very rare 1:2^22) if (src[si + 2] > 3) { dst[di++] = src[si++]; dst[di++] = src[si++]; } else if (src[si] == 0 && src[si + 1] == 0) { if (src[si + 2] == 3) { // escape dst[di++] = 0; dst[di++] = 0; si += 3; continue; } else // next start code goto nsc; } dst[di++] = src[si++]; } while (si < length) dst[di++] = src[si++]; nsc: memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE); *dst_length = di; *consumed = si + 1; // +1 for the header /* FIXME store exact number of bits in the getbitcontext * (it is needed for decoding) */ return dst; } /** * Identify the exact end of the bitstream * @return the length of the trailing, or 0 if damaged */ static int decode_rbsp_trailing(H264Context *h, const uint8_t *src) { int v = *src; int r; tprintf(h->avctx, "rbsp trailing %X\n", v); for (r = 1; r < 9; r++) { if (v & 1) return r; v >>= 1; } return 0; } static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height, int y_offset, int list) { int raw_my = h->mv_cache[list][scan8[n]][1]; int filter_height_down = (raw_my & 3) ? 3 : 0; int full_my = (raw_my >> 2) + y_offset; int bottom = full_my + filter_height_down + height; av_assert2(height >= 0); return FFMAX(0, bottom); } static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, int height, int y_offset, int list0, int list1, int *nrefs) { int my; y_offset += 16 * (h->mb_y >> MB_FIELD); if (list0) { int ref_n = h->ref_cache[0][scan8[n]]; Picture *ref = &h->ref_list[0][ref_n]; // Error resilience puts the current picture in the ref list. // Don't try to wait on these as it will cause a deadlock. // Fields can wait on each other, though. if (ref->f.thread_opaque != h->cur_pic.f.thread_opaque || (ref->f.reference & 3) != h->picture_structure) { my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0); if (refs[0][ref_n] < 0) nrefs[0] += 1; refs[0][ref_n] = FFMAX(refs[0][ref_n], my); } } if (list1) { int ref_n = h->ref_cache[1][scan8[n]]; Picture *ref = &h->ref_list[1][ref_n]; if (ref->f.thread_opaque != h->cur_pic.f.thread_opaque || (ref->f.reference & 3) != h->picture_structure) { my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1); if (refs[1][ref_n] < 0) nrefs[1] += 1; refs[1][ref_n] = FFMAX(refs[1][ref_n], my); } } } /** * Wait until all reference frames are available for MC operations. * * @param h the H264 context */ static void await_references(H264Context *h) { const int mb_xy = h->mb_xy; const int mb_type = h->cur_pic.f.mb_type[mb_xy]; int refs[2][48]; int nrefs[2] = { 0 }; int ref, list; memset(refs, -1, sizeof(refs)); if (IS_16X16(mb_type)) { get_lowest_part_y(h, refs, 0, 16, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); } else if (IS_16X8(mb_type)) { get_lowest_part_y(h, refs, 0, 8, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); get_lowest_part_y(h, refs, 8, 8, 8, IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); } else if (IS_8X16(mb_type)) { get_lowest_part_y(h, refs, 0, 16, 0, IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs); get_lowest_part_y(h, refs, 4, 16, 0, IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs); } else { int i; av_assert2(IS_8X8(mb_type)); for (i = 0; i < 4; i++) { const int sub_mb_type = h->sub_mb_type[i]; const int n = 4 * i; int y_offset = (i & 2) << 2; if (IS_SUB_8X8(sub_mb_type)) { get_lowest_part_y(h, refs, n, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else if (IS_SUB_8X4(sub_mb_type)) { get_lowest_part_y(h, refs, n, 4, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); get_lowest_part_y(h, refs, n + 2, 4, y_offset + 4, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else if (IS_SUB_4X8(sub_mb_type)) { get_lowest_part_y(h, refs, n, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); get_lowest_part_y(h, refs, n + 1, 8, y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } else { int j; av_assert2(IS_SUB_4X4(sub_mb_type)); for (j = 0; j < 4; j++) { int sub_y_offset = y_offset + 2 * (j & 2); get_lowest_part_y(h, refs, n + j, 4, sub_y_offset, IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs); } } } } for (list = h->list_count - 1; list >= 0; list--) for (ref = 0; ref < 48 && nrefs[list]; ref++) { int row = refs[list][ref]; if (row >= 0) { Picture *ref_pic = &h->ref_list[list][ref]; int ref_field = ref_pic->f.reference - 1; int ref_field_picture = ref_pic->field_picture; int pic_height = 16 * h->mb_height >> ref_field_picture; row <<= MB_MBAFF; nrefs[list]--; if (!FIELD_PICTURE && ref_field_picture) { // frame referencing two fields ff_thread_await_progress(&ref_pic->f, FFMIN((row >> 1) - !(row & 1), pic_height - 1), 1); ff_thread_await_progress(&ref_pic->f, FFMIN((row >> 1), pic_height - 1), 0); } else if (FIELD_PICTURE && !ref_field_picture) { // field referencing one field of a frame ff_thread_await_progress(&ref_pic->f, FFMIN(row * 2 + ref_field, pic_height - 1), 0); } else if (FIELD_PICTURE) { ff_thread_await_progress(&ref_pic->f, FFMIN(row, pic_height - 1), ref_field); } else { ff_thread_await_progress(&ref_pic->f, FFMIN(row, pic_height - 1), 0); } } } } static av_always_inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int height, int delta, int list, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int src_x_offset, int src_y_offset, qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op, int pixel_shift, int chroma_idc) { const int mx = h->mv_cache[list][scan8[n]][0] + src_x_offset * 8; int my = h->mv_cache[list][scan8[n]][1] + src_y_offset * 8; const int luma_xy = (mx & 3) + ((my & 3) << 2); int offset = ((mx >> 2) << pixel_shift) + (my >> 2) * h->mb_linesize; uint8_t *src_y = pic->f.data[0] + offset; uint8_t *src_cb, *src_cr; int extra_width = h->emu_edge_width; int extra_height = h->emu_edge_height; int emu = 0; const int full_mx = mx >> 2; const int full_my = my >> 2; const int pic_width = 16 * h->mb_width; const int pic_height = 16 * h->mb_height >> MB_FIELD; int ysh; if (mx & 7) extra_width -= 3; if (my & 7) extra_height -= 3; if (full_mx < 0 - extra_width || full_my < 0 - extra_height || full_mx + 16 /*FIXME*/ > pic_width + extra_width || full_my + 16 /*FIXME*/ > pic_height + extra_height) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_y - (2 << pixel_shift) - 2 * h->mb_linesize, h->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_y = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; emu = 1; } qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize); if (CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY) return; if (chroma_idc == 3 /* yuv444 */) { src_cb = pic->f.data[1] + offset; if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2 * h->mb_linesize, h->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_cb = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; } qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize); src_cr = pic->f.data[2] + offset; if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2 * h->mb_linesize, h->mb_linesize, 16 + 5, 16 + 5 /*FIXME*/, full_mx - 2, full_my - 2, pic_width, pic_height); src_cr = h->edge_emu_buffer + (2 << pixel_shift) + 2 * h->mb_linesize; } qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); // FIXME try variable height perhaps? if (!square) qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize); return; } ysh = 3 - (chroma_idc == 2 /* yuv422 */); if (chroma_idc == 1 /* yuv420 */ && MB_FIELD) { // chroma offset when predicting from a field of opposite parity my += 2 * ((h->mb_y & 1) - (pic->f.reference - 1)); emu |= (my >> 3) < 0 || (my >> 3) + 8 >= (pic_height >> 1); } src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize; src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + (my >> ysh) * h->mb_uvlinesize; if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); src_cb = h->edge_emu_buffer; } chroma_op(dest_cb, src_cb, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); if (emu) { h->vdsp.emulated_edge_mc(h->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 8 * chroma_idc + 1, (mx >> 3), (my >> ysh), pic_width >> 1, pic_height >> (chroma_idc == 1 /* yuv420 */)); src_cr = h->edge_emu_buffer; } chroma_op(dest_cr, src_cr, h->mb_uvlinesize, height >> (chroma_idc == 1 /* yuv420 */), mx & 7, (my << (chroma_idc == 2 /* yuv422 */)) & 7); } static av_always_inline void mc_part_std(H264Context *h, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg, int list0, int list1, int pixel_shift, int chroma_idc) { qpel_mc_func *qpix_op = qpix_put; h264_chroma_mc_func chroma_op = chroma_put; dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; if (chroma_idc == 3 /* yuv444 */) { dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; } else if (chroma_idc == 2 /* yuv422 */) { dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; } else { /* yuv420 */ dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; } x_offset += 8 * h->mb_x; y_offset += 8 * (h->mb_y >> MB_FIELD); if (list0) { Picture *ref = &h->ref_list[0][h->ref_cache[0][scan8[n]]]; mc_dir_part(h, ref, n, square, height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, pixel_shift, chroma_idc); qpix_op = qpix_avg; chroma_op = chroma_avg; } if (list1) { Picture *ref = &h->ref_list[1][h->ref_cache[1][scan8[n]]]; mc_dir_part(h, ref, n, square, height, delta, 1, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_op, chroma_op, pixel_shift, chroma_idc); } } static av_always_inline void mc_part_weighted(H264Context *h, int n, int square, int height, int delta, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int x_offset, int y_offset, qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put, h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op, h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg, int list0, int list1, int pixel_shift, int chroma_idc) { int chroma_height; dest_y += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; if (chroma_idc == 3 /* yuv444 */) { chroma_height = height; chroma_weight_avg = luma_weight_avg; chroma_weight_op = luma_weight_op; dest_cb += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; dest_cr += (2 * x_offset << pixel_shift) + 2 * y_offset * h->mb_linesize; } else if (chroma_idc == 2 /* yuv422 */) { chroma_height = height; dest_cb += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + 2 * y_offset * h->mb_uvlinesize; } else { /* yuv420 */ chroma_height = height >> 1; dest_cb += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; dest_cr += (x_offset << pixel_shift) + y_offset * h->mb_uvlinesize; } x_offset += 8 * h->mb_x; y_offset += 8 * (h->mb_y >> MB_FIELD); if (list0 && list1) { /* don't optimize for luma-only case, since B-frames usually * use implicit weights => chroma too. */ uint8_t *tmp_cb = h->bipred_scratchpad; uint8_t *tmp_cr = h->bipred_scratchpad + (16 << pixel_shift); uint8_t *tmp_y = h->bipred_scratchpad + 16 * h->mb_uvlinesize; int refn0 = h->ref_cache[0][scan8[n]]; int refn1 = h->ref_cache[1][scan8[n]]; mc_dir_part(h, &h->ref_list[0][refn0], n, square, height, delta, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); mc_dir_part(h, &h->ref_list[1][refn1], n, square, height, delta, 1, tmp_y, tmp_cb, tmp_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); if (h->use_weight == 2) { int weight0 = h->implicit_weight[refn0][refn1][h->mb_y & 1]; int weight1 = 64 - weight0; luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, 5, weight0, weight1, 0); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, 5, weight0, weight1, 0); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, 5, weight0, weight1, 0); } else { luma_weight_avg(dest_y, tmp_y, h->mb_linesize, height, h->luma_log2_weight_denom, h->luma_weight[refn0][0][0], h->luma_weight[refn1][1][0], h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]); chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom, h->chroma_weight[refn0][0][0][0], h->chroma_weight[refn1][1][0][0], h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]); chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom, h->chroma_weight[refn0][0][1][0], h->chroma_weight[refn1][1][1][0], h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]); } } else { int list = list1 ? 1 : 0; int refn = h->ref_cache[list][scan8[n]]; Picture *ref = &h->ref_list[list][refn]; mc_dir_part(h, ref, n, square, height, delta, list, dest_y, dest_cb, dest_cr, x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma_idc); luma_weight_op(dest_y, h->mb_linesize, height, h->luma_log2_weight_denom, h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]); if (h->use_weight_chroma) { chroma_weight_op(dest_cb, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom, h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]); chroma_weight_op(dest_cr, h->mb_uvlinesize, chroma_height, h->chroma_log2_weight_denom, h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]); } } } static av_always_inline void prefetch_motion(H264Context *h, int list, int pixel_shift, int chroma_idc) { /* fetch pixels for estimated mv 4 macroblocks ahead * optimized for 64byte cache lines */ const int refn = h->ref_cache[list][scan8[0]]; if (refn >= 0) { const int mx = (h->mv_cache[list][scan8[0]][0] >> 2) + 16 * h->mb_x + 8; const int my = (h->mv_cache[list][scan8[0]][1] >> 2) + 16 * h->mb_y; uint8_t **src = h->ref_list[list][refn].f.data; int off = (mx << pixel_shift) + (my + (h->mb_x & 3) * 4) * h->mb_linesize + (64 << pixel_shift); h->vdsp.prefetch(src[0] + off, h->linesize, 4); if (chroma_idc == 3 /* yuv444 */) { h->vdsp.prefetch(src[1] + off, h->linesize, 4); h->vdsp.prefetch(src[2] + off, h->linesize, 4); } else { off= (((mx>>1)+64)<>1) + (h->mb_x&7))*h->uvlinesize; h->vdsp.prefetch(src[1] + off, src[2] - src[1], 2); } } } static void free_tables(H264Context *h, int free_rbsp) { int i; H264Context *hx; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table = NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); if (free_rbsp) { for (i = 0; i < h->picture_count && !h->avctx->internal->is_copy; i++) free_picture(h, &h->DPB[i]); av_freep(&h->DPB); h->picture_count = 0; } else if (h->DPB) { for (i = 0; i < h->picture_count; i++) h->DPB[i].needs_realloc = 1; } h->cur_pic_ptr = NULL; for (i = 0; i < MAX_THREADS; i++) { hx = h->thread_context[i]; if (!hx) continue; av_freep(&hx->top_borders[1]); av_freep(&hx->top_borders[0]); av_freep(&hx->bipred_scratchpad); av_freep(&hx->edge_emu_buffer); av_freep(&hx->dc_val_base); av_freep(&hx->me.scratchpad); av_freep(&hx->er.mb_index2xy); av_freep(&hx->er.error_status_table); av_freep(&hx->er.er_temp_buffer); av_freep(&hx->er.mbintra_table); av_freep(&hx->er.mbskip_table); if (free_rbsp) { av_freep(&hx->rbsp_buffer[1]); av_freep(&hx->rbsp_buffer[0]); hx->rbsp_buffer_size[0] = 0; hx->rbsp_buffer_size[1] = 0; } if (i) av_freep(&h->thread_context[i]); } } static void init_dequant8_coeff_table(H264Context *h) { int i, j, q, x; const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); for (i = 0; i < 6; i++) { h->dequant8_coeff[i] = h->dequant8_buffer[i]; for (j = 0; j < i; j++) if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64 * sizeof(uint8_t))) { h->dequant8_coeff[i] = h->dequant8_buffer[j]; break; } if (j < i) continue; for (q = 0; q < max_qp + 1; q++) { int shift = div6[q]; int idx = rem6[q]; for (x = 0; x < 64; x++) h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] = ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] * h->pps.scaling_matrix8[i][x]) << shift; } } } static void init_dequant4_coeff_table(H264Context *h) { int i, j, q, x; const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8); for (i = 0; i < 6; i++) { h->dequant4_coeff[i] = h->dequant4_buffer[i]; for (j = 0; j < i; j++) if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16 * sizeof(uint8_t))) { h->dequant4_coeff[i] = h->dequant4_buffer[j]; break; } if (j < i) continue; for (q = 0; q < max_qp + 1; q++) { int shift = div6[q] + 2; int idx = rem6[q]; for (x = 0; x < 16; x++) h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] = ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] * h->pps.scaling_matrix4[i][x]) << shift; } } } static void init_dequant_tables(H264Context *h) { int i, x; init_dequant4_coeff_table(h); if (h->pps.transform_8x8_mode) init_dequant8_coeff_table(h); if (h->sps.transform_bypass) { for (i = 0; i < 6; i++) for (x = 0; x < 16; x++) h->dequant4_coeff[i][0][x] = 1 << 6; if (h->pps.transform_8x8_mode) for (i = 0; i < 6; i++) for (x = 0; x < 64; x++) h->dequant8_coeff[i][0][x] = 1 << 6; } } int ff_h264_alloc_tables(H264Context *h) { const int big_mb_num = h->mb_stride * (h->mb_height + 1); const int row_mb_num = 2*h->mb_stride*FFMAX(h->avctx->thread_count, 1); int x, y, i; FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, big_mb_num * 48 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0], 16 * row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1], 16 * row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, 4 * big_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail) memset(h->slice_table_base, -1, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, big_mb_num * sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, big_mb_num * sizeof(uint32_t), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) { const int mb_xy = x + y * h->mb_stride; const int b_xy = 4 * x + 4 * y * h->b_stride; h->mb2b_xy[mb_xy] = b_xy; h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); } if (!h->dequant4_coeff[0]) init_dequant_tables(h); if (!h->DPB) { h->picture_count = MAX_PICTURE_COUNT * FFMAX(1, h->avctx->thread_count); h->DPB = av_mallocz_array(h->picture_count, sizeof(*h->DPB)); if (!h->DPB) return AVERROR(ENOMEM); for (i = 0; i < h->picture_count; i++) avcodec_get_frame_defaults(&h->DPB[i].f); avcodec_get_frame_defaults(&h->cur_pic.f); } return 0; fail: free_tables(h, 1); return -1; } /** * Mimic alloc_tables(), but for every context thread. */ static void clone_tables(H264Context *dst, H264Context *src, int i) { dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride; dst->non_zero_count = src->non_zero_count; dst->slice_table = src->slice_table; dst->cbp_table = src->cbp_table; dst->mb2b_xy = src->mb2b_xy; dst->mb2br_xy = src->mb2br_xy; dst->chroma_pred_mode_table = src->chroma_pred_mode_table; dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride; dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride; dst->direct_table = src->direct_table; dst->list_counts = src->list_counts; dst->DPB = src->DPB; dst->cur_pic_ptr = src->cur_pic_ptr; dst->cur_pic = src->cur_pic; dst->bipred_scratchpad = NULL; dst->edge_emu_buffer = NULL; dst->me.scratchpad = NULL; ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma, src->sps.chroma_format_idc); } /** * Init context * Allocate buffers which are not shared amongst multiple threads. */ static int context_init(H264Context *h) { ERContext *er = &h->er; int mb_array_size = h->mb_height * h->mb_stride; int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); int c_size = h->mb_stride * (h->mb_height + 1); int yc_size = y_size + 2 * c_size; int x, y, i; FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[0], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->top_borders[1], h->mb_width * 16 * 3 * sizeof(uint8_t) * 2, fail) h->ref_cache[0][scan8[5] + 1] = h->ref_cache[0][scan8[7] + 1] = h->ref_cache[0][scan8[13] + 1] = h->ref_cache[1][scan8[5] + 1] = h->ref_cache[1][scan8[7] + 1] = h->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; /* init ER */ er->avctx = h->avctx; er->dsp = &h->dsp; er->decode_mb = h264_er_decode_mb; er->opaque = h; er->quarter_sample = 1; er->mb_num = h->mb_num; er->mb_width = h->mb_width; er->mb_height = h->mb_height; er->mb_stride = h->mb_stride; er->b8_stride = h->mb_width * 2 + 1; FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int), fail); // error ressilience code looks cleaner with this for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * h->mb_stride + h->mb_width; FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, mb_array_size * sizeof(uint8_t), fail); FF_ALLOC_OR_GOTO(h->avctx, er->mbintra_table, mb_array_size, fail); memset(er->mbintra_table, 1, mb_array_size); FF_ALLOCZ_OR_GOTO(h->avctx, er->mbskip_table, mb_array_size + 2, fail); FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride, fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->dc_val_base, yc_size * sizeof(int16_t), fail); er->dc_val[0] = h->dc_val_base + h->mb_width * 2 + 2; er->dc_val[1] = h->dc_val_base + y_size + h->mb_stride + 1; er->dc_val[2] = er->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) h->dc_val_base[i] = 1024; return 0; fail: return -1; // free_tables will clean up for us } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, int parse_extradata); static av_cold void common_init(H264Context *h) { h->width = h->avctx->width; h->height = h->avctx->height; h->bit_depth_luma = 8; h->chroma_format_idc = 1; h->avctx->bits_per_raw_sample = 8; h->cur_chroma_format_idc = 1; ff_h264dsp_init(&h->h264dsp, 8, 1); av_assert0(h->sps.bit_depth_chroma == 0); ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, 8); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, 8, 1); h->dequant_coeff_pps = -1; h->dsp.dct_bits = 16; /* needed so that IDCT permutation is known early */ ff_dsputil_init(&h->dsp, h->avctx); ff_videodsp_init(&h->vdsp, 8); memset(h->pps.scaling_matrix4, 16, 6 * 16 * sizeof(uint8_t)); memset(h->pps.scaling_matrix8, 16, 2 * 64 * sizeof(uint8_t)); } int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size) { AVCodecContext *avctx = h->avctx; if (!buf || size <= 0) return -1; if (buf[0] == 1) { int i, cnt, nalsize; const unsigned char *p = buf; h->is_avc = 1; if (size < 7) { av_log(avctx, AV_LOG_ERROR, "avcC too short\n"); return -1; } /* sps and pps in the avcC always have length coded with 2 bytes, * so put a fake nal_length_size = 2 while parsing them */ h->nal_length_size = 2; // Decode sps from avcC cnt = *(p + 5) & 0x1f; // Number of sps p += 6; for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(nalsize > size - (p-buf)) return -1; if (decode_nal_units(h, p, nalsize, 1) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i); return -1; } p += nalsize; } // Decode pps from avcC cnt = *(p++); // Number of pps for (i = 0; i < cnt; i++) { nalsize = AV_RB16(p) + 2; if(nalsize > size - (p-buf)) return -1; if (decode_nal_units(h, p, nalsize, 1) < 0) { av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i); return -1; } p += nalsize; } // Now store right nal length size, that will be used to parse all other nals h->nal_length_size = (buf[4] & 0x03) + 1; } else { h->is_avc = 0; if (decode_nal_units(h, buf, size, 1) < 0) return -1; } return size; } av_cold int ff_h264_decode_init(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; h->avctx = avctx; common_init(h); h->picture_structure = PICT_FRAME; h->picture_range_start = 0; h->picture_range_end = MAX_PICTURE_COUNT; h->slice_context_count = 1; h->workaround_bugs = avctx->workaround_bugs; h->flags = avctx->flags; /* set defaults */ // s->decode_mb = ff_h263_decode_mb; if (!avctx->has_b_frames) h->low_delay = 1; avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; ff_h264_decode_init_vlc(); h->pixel_shift = 0; h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8; h->thread_context[0] = h; h->outputed_poc = h->next_outputed_poc = INT_MIN; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->prev_poc_msb = 1 << 16; h->prev_frame_num = -1; h->x264_build = -1; ff_h264_reset_sei(h); if (avctx->codec_id == AV_CODEC_ID_H264) { if (avctx->ticks_per_frame == 1) { if(h->avctx->time_base.den < INT_MAX/2) { h->avctx->time_base.den *= 2; } else h->avctx->time_base.num /= 2; } avctx->ticks_per_frame = 2; } if (avctx->extradata_size > 0 && avctx->extradata && ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size) < 0) { ff_h264_free_context(h); return -1; } if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames < h->sps.num_reorder_frames) { h->avctx->has_b_frames = h->sps.num_reorder_frames; h->low_delay = 0; } ff_init_cabac_states(); return 0; } #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size)))) #undef REBASE_PICTURE #define REBASE_PICTURE(pic, new_ctx, old_ctx) \ ((pic && pic >= old_ctx->DPB && \ pic < old_ctx->DPB + old_ctx->picture_count) ? \ &new_ctx->DPB[pic - old_ctx->DPB] : NULL) static void copy_picture_range(Picture **to, Picture **from, int count, H264Context *new_base, H264Context *old_base) { int i; for (i = 0; i < count; i++) { assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) || IN_RANGE(from[i], old_base->DPB, sizeof(Picture) * old_base->picture_count) || !from[i])); to[i] = REBASE_PICTURE(from[i], new_base, old_base); } } static void copy_parameter_set(void **to, void **from, int count, int size) { int i; for (i = 0; i < count; i++) { if (to[i] && !from[i]) av_freep(&to[i]); else if (from[i] && !to[i]) to[i] = av_malloc(size); if (from[i]) memcpy(to[i], from[i], size); } } static int decode_init_thread_copy(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; if (!avctx->internal->is_copy) return 0; memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); h->context_initialized = 0; return 0; } #define copy_fields(to, from, start_field, end_field) \ memcpy(&to->start_field, &from->start_field, \ (char *)&to->end_field - (char *)&to->start_field) static int h264_slice_header_init(H264Context *, int); static int h264_set_parameter_from_sps(H264Context *h); static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { H264Context *h = dst->priv_data, *h1 = src->priv_data; int inited = h->context_initialized, err = 0; int context_reinitialized = 0; int i; if (dst == src) return 0; if (inited && (h->width != h1->width || h->height != h1->height || h->mb_width != h1->mb_width || h->mb_height != h1->mb_height || h->sps.bit_depth_luma != h1->sps.bit_depth_luma || h->sps.chroma_format_idc != h1->sps.chroma_format_idc || h->sps.colorspace != h1->sps.colorspace)) { av_freep(&h->bipred_scratchpad); h->width = h1->width; h->height = h1->height; h->mb_height = h1->mb_height; h->mb_width = h1->mb_width; h->mb_num = h1->mb_num; h->mb_stride = h1->mb_stride; h->b_stride = h1->b_stride; // SPS/PPS copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS)); h->sps = h1->sps; copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS)); h->pps = h1->pps; if ((err = h264_slice_header_init(h, 1)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed"); return err; } context_reinitialized = 1; #if 0 h264_set_parameter_from_sps(h); //Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted h->cur_chroma_format_idc = h1->cur_chroma_format_idc; #endif } /* update linesize on resize for h264. The h264 decoder doesn't * necessarily call ff_MPV_frame_start in the new thread */ h->linesize = h1->linesize; h->uvlinesize = h1->uvlinesize; /* copy block_offset since frame_start may not be called */ memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset)); if (!inited) { for (i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for (i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); memcpy(h, h1, offsetof(H264Context, mb)); memcpy(&h->cabac, &h1->cabac, sizeof(H264Context) - offsetof(H264Context, cabac)); av_assert0(&h->cabac == &h->mb_padding + 1); memset(h->sps_buffers, 0, sizeof(h->sps_buffers)); memset(h->pps_buffers, 0, sizeof(h->pps_buffers)); memset(&h->er, 0, sizeof(h->er)); memset(&h->me, 0, sizeof(h->me)); h->avctx = dst; h->DPB = NULL; if (h1->context_initialized) { h->context_initialized = 0; h->picture_range_start += MAX_PICTURE_COUNT; h->picture_range_end += MAX_PICTURE_COUNT; h->cur_pic.f.extended_data = h->cur_pic.f.data; if (ff_h264_alloc_tables(h) < 0) { av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n"); return AVERROR(ENOMEM); } context_init(h); } for (i = 0; i < 2; i++) { h->rbsp_buffer[i] = NULL; h->rbsp_buffer_size[i] = 0; } h->bipred_scratchpad = NULL; h->edge_emu_buffer = NULL; h->thread_context[0] = h; h->context_initialized = h1->context_initialized; } h->avctx->coded_height = h1->avctx->coded_height; h->avctx->coded_width = h1->avctx->coded_width; h->avctx->width = h1->avctx->width; h->avctx->height = h1->avctx->height; h->coded_picture_number = h1->coded_picture_number; h->first_field = h1->first_field; h->picture_structure = h1->picture_structure; h->qscale = h1->qscale; h->droppable = h1->droppable; h->data_partitioning = h1->data_partitioning; h->low_delay = h1->low_delay; memcpy(h->DPB, h1->DPB, h1->picture_count * sizeof(*h1->DPB)); // reset s->picture[].f.extended_data to s->picture[].f.data for (i = 0; i < h->picture_count; i++) { h->DPB[i].f.extended_data = h->DPB[i].f.data; h->DPB[i].period_since_free ++; } h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1); h->cur_pic = h1->cur_pic; h->cur_pic.f.extended_data = h->cur_pic.f.data; h->workaround_bugs = h1->workaround_bugs; h->low_delay = h1->low_delay; h->droppable = h1->droppable; /* frame_start may not be called for the next thread (if it's decoding * a bottom field) so this has to be allocated here */ if (h1->linesize) { err = alloc_scratch_buffers(h, h1->linesize); if (err < 0) return err; } // extradata/NAL handling h->is_avc = h1->is_avc; // SPS/PPS copy_parameter_set((void **)h->sps_buffers, (void **)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS)); h->sps = h1->sps; copy_parameter_set((void **)h->pps_buffers, (void **)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS)); h->pps = h1->pps; // Dequantization matrices // FIXME these are big - can they be only copied when PPS changes? copy_fields(h, h1, dequant4_buffer, dequant4_coeff); for (i = 0; i < 6; i++) h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]); for (i = 0; i < 6; i++) h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]); h->dequant_coeff_pps = h1->dequant_coeff_pps; // POC timing copy_fields(h, h1, poc_lsb, redundant_pic_count); // reference lists copy_fields(h, h1, ref_count, list_count); copy_fields(h, h1, ref2frm, intra_gb); copy_fields(h, h1, short_ref, cabac_init_idc); copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1); copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1); copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT + 2, h, h1); h->last_slice_type = h1->last_slice_type; h->sync = h1->sync; if (context_reinitialized) h264_set_parameter_from_sps(h); if (!h->cur_pic_ptr) return 0; if (!h->droppable) { err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb = h->poc_msb; h->prev_poc_lsb = h->poc_lsb; } h->prev_frame_num_offset = h->frame_num_offset; h->prev_frame_num = h->frame_num; h->outputed_poc = h->next_outputed_poc; return err; } int ff_h264_frame_start(H264Context *h) { Picture *pic; int i, ret; const int pixel_shift = h->pixel_shift; int c[4] = { 1<<(h->sps.bit_depth_luma-1), 1<<(h->sps.bit_depth_chroma-1), 1<<(h->sps.bit_depth_chroma-1), -1 }; if (!ff_thread_can_start_frame(h->avctx)) { av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n"); return -1; } release_unused_pictures(h, 1); h->cur_pic_ptr = NULL; i = find_unused_picture(h); if (i < 0) { av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n"); return i; } pic = &h->DPB[i]; pic->f.reference = h->droppable ? 0 : h->picture_structure; pic->f.coded_picture_number = h->coded_picture_number++; pic->field_picture = h->picture_structure != PICT_FRAME; /* * Zero key_frame here; IDR markings per slice in frame or fields are ORed * in later. * See decode_nal_units(). */ pic->f.key_frame = 0; pic->sync = 0; pic->mmco_reset = 0; if ((ret = alloc_picture(h, pic)) < 0) return ret; if(!h->sync && !h->avctx->hwaccel) avpriv_color_frame(&pic->f, c); h->cur_pic_ptr = pic; h->cur_pic = *h->cur_pic_ptr; h->cur_pic.f.extended_data = h->cur_pic.f.data; ff_er_frame_start(&h->er); assert(h->linesize && h->uvlinesize); for (i = 0; i < 16; i++) { h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3); } for (i = 0; i < 16; i++) { h->block_offset[16 + i] = h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); h->block_offset[48 + 16 + i] = h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3); } /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ for (i = 0; i < h->slice_context_count; i++) if (h->thread_context[i]) { ret = alloc_scratch_buffers(h->thread_context[i], h->linesize); if (ret < 0) return ret; } /* Some macroblocks can be accessed before they're available in case * of lost slices, MBAFF or threading. */ memset(h->slice_table, -1, (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table)); // s->decode = (h->flags & CODEC_FLAG_PSNR) || !s->encoding || // h->cur_pic.f.reference /* || h->contains_intra */ || 1; /* We mark the current picture as non-reference after allocating it, so * that if we break out due to an error it can be released automatically * in the next ff_MPV_frame_start(). * SVQ3 as well as most other codecs have only last/next/current and thus * get released even with set reference, besides SVQ3 and others do not * mark frames as reference later "naturally". */ if (h->avctx->codec_id != AV_CODEC_ID_SVQ3) h->cur_pic_ptr->f.reference = 0; h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX; h->next_output_pic = NULL; assert(h->cur_pic_ptr->long_ref == 0); return 0; } /** * Run setup operations that must be run after slice header decoding. * This includes finding the next displayed frame. * * @param h h264 master context * @param setup_finished enough NALs have been read that we can call * ff_thread_finish_setup() */ static void decode_postinit(H264Context *h, int setup_finished) { Picture *out = h->cur_pic_ptr; Picture *cur = h->cur_pic_ptr; int i, pics, out_of_order, out_idx; h->cur_pic_ptr->f.qscale_type = FF_QSCALE_TYPE_H264; h->cur_pic_ptr->f.pict_type = h->pict_type; if (h->next_output_pic) return; if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { /* FIXME: if we have two PAFF fields in one packet, we can't start * the next thread here. If we have one field per packet, we can. * The check in decode_nal_units() is not good enough to find this * yet, so we assume the worst for now. */ // if (setup_finished) // ff_thread_finish_setup(h->avctx); return; } cur->f.interlaced_frame = 0; cur->f.repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used * decoding process if it exists. */ if (h->sps.pic_struct_present_flag) { switch (h->sei_pic_struct) { case SEI_PIC_STRUCT_FRAME: break; case SEI_PIC_STRUCT_TOP_FIELD: case SEI_PIC_STRUCT_BOTTOM_FIELD: cur->f.interlaced_frame = 1; break; case SEI_PIC_STRUCT_TOP_BOTTOM: case SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE) cur->f.interlaced_frame = 1; else // try to flag soft telecine progressive cur->f.interlaced_frame = h->prev_interlaced_frame; break; case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: /* Signal the possibility of telecined film externally * (pic_struct 5,6). From these hints, let the applications * decide if they apply deinterlacing. */ cur->f.repeat_pict = 1; break; case SEI_PIC_STRUCT_FRAME_DOUBLING: cur->f.repeat_pict = 2; break; case SEI_PIC_STRUCT_FRAME_TRIPLING: cur->f.repeat_pict = 4; break; } if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0; } else { /* Derive interlacing flag from used decoding process. */ cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE; } h->prev_interlaced_frame = cur->f.interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]) { /* Derive top_field_first from field pocs. */ cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1]; } else { if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) { /* Use picture timing SEI information. Even if it is a * information of a past frame, better than nothing. */ if (h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) cur->f.top_field_first = 1; else cur->f.top_field_first = 0; } else { /* Most likely progressive */ cur->f.top_field_first = 0; } } cur->mmco_reset = h->mmco_reset; h->mmco_reset = 0; // FIXME do something with unavailable reference frames /* Sort B-frames into display order */ if (h->sps.bitstream_restriction_flag && h->avctx->has_b_frames < h->sps.num_reorder_frames) { h->avctx->has_b_frames = h->sps.num_reorder_frames; h->low_delay = 0; } if (h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT && !h->sps.bitstream_restriction_flag) { h->avctx->has_b_frames = MAX_DELAYED_PIC_COUNT - 1; h->low_delay = 0; } for (i = 0; 1; i++) { if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){ if(i) h->last_pocs[i-1] = cur->poc; break; } else if(i) { h->last_pocs[i-1]= h->last_pocs[i]; } } out_of_order = MAX_DELAYED_PIC_COUNT - i; if( cur->f.pict_type == AV_PICTURE_TYPE_B || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2)) out_of_order = FFMAX(out_of_order, 1); if (out_of_order == MAX_DELAYED_PIC_COUNT) { av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]); for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->last_pocs[0] = cur->poc; cur->mmco_reset = 1; } else if(h->avctx->has_b_frames < out_of_order && !h->sps.bitstream_restriction_flag){ av_log(h->avctx, AV_LOG_VERBOSE, "Increasing reorder buffer to %d\n", out_of_order); h->avctx->has_b_frames = out_of_order; h->low_delay = 0; } pics = 0; while (h->delayed_pic[pics]) pics++; av_assert0(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if (cur->f.reference == 0) cur->f.reference = DELAYED_PIC_REF; out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } if (h->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) h->next_outputed_poc = INT_MIN; out_of_order = out->poc < h->next_outputed_poc; if (out_of_order || pics > h->avctx->has_b_frames) { out->f.reference &= ~DELAYED_PIC_REF; // for frame threading, the owner must be the second field's thread or // else the first thread can release the picture and reuse it unsafely out->owner2 = h; for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; } if (!out_of_order && pics > h->avctx->has_b_frames) { h->next_output_pic = out; if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) { h->next_outputed_poc = INT_MIN; } else h->next_outputed_poc = out->poc; } else { av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : ""); } if (h->next_output_pic && h->next_output_pic->sync) { h->sync |= 2; } if (setup_finished) ff_thread_finish_setup(h->avctx); } static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple) { uint8_t *top_border; int top_idx = 1; const int pixel_shift = h->pixel_shift; int chroma444 = CHROMA444; int chroma422 = CHROMA422; src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; if (!simple && FRAME_MBAFF) { if (h->mb_y & 1) { if (!MB_MBAFF) { top_border = h->top_borders[0][h->mb_x]; AV_COPY128(top_border, src_y + 15 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 15 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16); AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize); AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); } } } } } else if (MB_MBAFF) { top_idx = 0; } else return; } top_border = h->top_borders[top_idx][h->mb_x]; /* There are two lines saved, the line above the top macroblock * of a pair, and the line above the bottom macroblock. */ AV_COPY128(top_border, src_y + 16 * linesize); if (pixel_shift) AV_COPY128(top_border + 16, src_y + 16 * linesize + 16); if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { if (chroma444) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * linesize); AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16); AV_COPY128(top_border + 64, src_cr + 16 * linesize); AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16); } else { AV_COPY128(top_border + 16, src_cb + 16 * linesize); AV_COPY128(top_border + 32, src_cr + 16 * linesize); } } else if (chroma422) { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize); } } else { if (pixel_shift) { AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize); AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize); } else { AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize); } } } } static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int chroma444, int simple, int pixel_shift) { int deblock_topleft; int deblock_top; int top_idx = 1; uint8_t *top_border_m1; uint8_t *top_border; if (!simple && FRAME_MBAFF) { if (h->mb_y & 1) { if (!MB_MBAFF) return; } else { top_idx = MB_MBAFF ? 0 : 1; } } if (h->deblocking_filter == 2) { deblock_topleft = h->slice_table[h->mb_xy - 1 - h->mb_stride] == h->slice_num; deblock_top = h->top_type; } else { deblock_topleft = (h->mb_x > 0); deblock_top = (h->mb_y > !!MB_FIELD); } src_y -= linesize + 1 + pixel_shift; src_cb -= uvlinesize + 1 + pixel_shift; src_cr -= uvlinesize + 1 + pixel_shift; top_border_m1 = h->top_borders[top_idx][h->mb_x - 1]; top_border = h->top_borders[top_idx][h->mb_x]; #define XCHG(a, b, xchg) \ if (pixel_shift) { \ if (xchg) { \ AV_SWAP64(b + 0, a + 0); \ AV_SWAP64(b + 8, a + 8); \ } else { \ AV_COPY128(b, a); \ } \ } else if (xchg) \ AV_SWAP64(b, a); \ else \ AV_COPY64(b, a); if (deblock_top) { if (deblock_topleft) { XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1); } XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg); XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1); if (h->mb_x + 1 < h->mb_width) { XCHG(h->top_borders[top_idx][h->mb_x + 1], src_y + (17 << pixel_shift), 1); } } if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) { if (chroma444) { if (deblock_topleft) { XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1); XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1); } XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg); XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1); XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg); XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1); if (h->mb_x + 1 < h->mb_width) { XCHG(h->top_borders[top_idx][h->mb_x + 1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1); XCHG(h->top_borders[top_idx][h->mb_x + 1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1); } } else { if (deblock_top) { if (deblock_topleft) { XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1); XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1); } XCHG(top_border + (16 << pixel_shift), src_cb + 1 + pixel_shift, 1); XCHG(top_border + (24 << pixel_shift), src_cr + 1 + pixel_shift, 1); } } } } static av_always_inline int dctcoef_get(int16_t *mb, int high_bit_depth, int index) { if (high_bit_depth) { return AV_RN32A(((int32_t *)mb) + index); } else return AV_RN16A(mb + index); } static av_always_inline void dctcoef_set(int16_t *mb, int high_bit_depth, int index, int value) { if (high_bit_depth) { AV_WN32A(((int32_t *)mb) + index, value); } else AV_WN16A(mb + index, value); } static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass, int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p) { void (*idct_add)(uint8_t *dst, int16_t *block, int stride); void (*idct_dc_add)(uint8_t *dst, int16_t *block, int stride); int i; int qscale = p == 0 ? h->qscale : h->chroma_qp[p - 1]; block_offset += 16 * p; if (IS_INTRA4x4(mb_type)) { if (IS_8x8DCT(mb_type)) { if (transform_bypass) { idct_dc_add = idct_add = h->h264dsp.h264_add_pixels8; } else { idct_dc_add = h->h264dsp.h264_idct8_dc_add; idct_add = h->h264dsp.h264_idct8_add; } for (i = 0; i < 16; i += 4) { uint8_t *const ptr = dest_y + block_offset[i]; const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { h->hpc.pred8x8l_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else { const int nnz = h->non_zero_count_cache[scan8[i + p * 16]]; h->hpc.pred8x8l[dir](ptr, (h->topleft_samples_available << i) & 0x8000, (h->topright_samples_available << i) & 0x4000, linesize); if (nnz) { if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); else idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } } } } else { if (transform_bypass) { idct_dc_add = idct_add = h->h264dsp.h264_add_pixels4; } else { idct_dc_add = h->h264dsp.h264_idct_dc_add; idct_add = h->h264dsp.h264_idct_add; } for (i = 0; i < 16; i++) { uint8_t *const ptr = dest_y + block_offset[i]; const int dir = h->intra4x4_pred_mode_cache[scan8[i]]; if (transform_bypass && h->sps.profile_idc == 244 && dir <= 1) { h->hpc.pred4x4_add[dir](ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else { uint8_t *topright; int nnz, tr; uint64_t tr_high; if (dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED) { const int topright_avail = (h->topright_samples_available << i) & 0x8000; av_assert2(h->mb_y || linesize <= block_offset[i]); if (!topright_avail) { if (pixel_shift) { tr_high = ((uint16_t *)ptr)[3 - linesize / 2] * 0x0001000100010001ULL; topright = (uint8_t *)&tr_high; } else { tr = ptr[3 - linesize] * 0x01010101u; topright = (uint8_t *)&tr; } } else topright = ptr + (4 << pixel_shift) - linesize; } else topright = NULL; h->hpc.pred4x4[dir](ptr, topright, linesize); nnz = h->non_zero_count_cache[scan8[i + p * 16]]; if (nnz) { if (is_h264) { if (nnz == 1 && dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) idct_dc_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); else idct_add(ptr, h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else if (CONFIG_SVQ3_DECODER) ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, qscale, 0); } } } } } else { h->hpc.pred16x16[h->intra16x16_pred_mode](dest_y, linesize); if (is_h264) { if (h->non_zero_count_cache[scan8[LUMA_DC_BLOCK_INDEX + p]]) { if (!transform_bypass) h->h264dsp.h264_luma_dc_dequant_idct(h->mb + (p * 256 << pixel_shift), h->mb_luma_dc[p], h->dequant4_coeff[p][qscale][0]); else { static const uint8_t dc_mapping[16] = { 0 * 16, 1 * 16, 4 * 16, 5 * 16, 2 * 16, 3 * 16, 6 * 16, 7 * 16, 8 * 16, 9 * 16, 12 * 16, 13 * 16, 10 * 16, 11 * 16, 14 * 16, 15 * 16 }; for (i = 0; i < 16; i++) dctcoef_set(h->mb + (p * 256 << pixel_shift), pixel_shift, dc_mapping[i], dctcoef_get(h->mb_luma_dc[p], pixel_shift, i)); } } } else if (CONFIG_SVQ3_DECODER) ff_svq3_luma_dc_dequant_idct_c(h->mb + p * 256, h->mb_luma_dc[p], qscale); } } static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass, int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p) { void (*idct_add)(uint8_t *dst, int16_t *block, int stride); int i; block_offset += 16 * p; if (!IS_INTRA4x4(mb_type)) { if (is_h264) { if (IS_INTRA16x16(mb_type)) { if (transform_bypass) { if (h->sps.profile_idc == 244 && (h->intra16x16_pred_mode == VERT_PRED8x8 || h->intra16x16_pred_mode == HOR_PRED8x8)) { h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb + (p * 256 << pixel_shift), linesize); } else { for (i = 0; i < 16; i++) if (h->non_zero_count_cache[scan8[i + p * 16]] || dctcoef_get(h->mb, pixel_shift, i * 16 + p * 256)) h->h264dsp.h264_add_pixels4(dest_y + block_offset[i], h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } } else { h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb + (p * 256 << pixel_shift), linesize, h->non_zero_count_cache + p * 5 * 8); } } else if (h->cbp & 15) { if (transform_bypass) { const int di = IS_8x8DCT(mb_type) ? 4 : 1; idct_add = IS_8x8DCT(mb_type) ? h->h264dsp.h264_add_pixels8 : h->h264dsp.h264_add_pixels4; for (i = 0; i < 16; i += di) if (h->non_zero_count_cache[scan8[i + p * 16]]) idct_add(dest_y + block_offset[i], h->mb + (i * 16 + p * 256 << pixel_shift), linesize); } else { if (IS_8x8DCT(mb_type)) h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb + (p * 256 << pixel_shift), linesize, h->non_zero_count_cache + p * 5 * 8); else h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb + (p * 256 << pixel_shift), linesize, h->non_zero_count_cache + p * 5 * 8); } } } else if (CONFIG_SVQ3_DECODER) { for (i = 0; i < 16; i++) if (h->non_zero_count_cache[scan8[i + p * 16]] || h->mb[i * 16 + p * 256]) { // FIXME benchmark weird rule, & below uint8_t *const ptr = dest_y + block_offset[i]; ff_svq3_add_idct_c(ptr, h->mb + i * 16 + p * 256, linesize, h->qscale, IS_INTRA(mb_type) ? 1 : 0); } } } } #define BITS 8 #define SIMPLE 1 #include "h264_mb_template.c" #undef BITS #define BITS 16 #include "h264_mb_template.c" #undef SIMPLE #define SIMPLE 0 #include "h264_mb_template.c" void ff_h264_hl_decode_mb(H264Context *h) { const int mb_xy = h->mb_xy; const int mb_type = h->cur_pic.f.mb_type[mb_xy]; int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || h->qscale == 0; if (CHROMA444) { if (is_complex || h->pixel_shift) hl_decode_mb_444_complex(h); else hl_decode_mb_444_simple_8(h); } else if (is_complex) { hl_decode_mb_complex(h); } else if (h->pixel_shift) { hl_decode_mb_simple_16(h); } else hl_decode_mb_simple_8(h); } static int pred_weight_table(H264Context *h) { int list, i; int luma_def, chroma_def; h->use_weight = 0; h->use_weight_chroma = 0; h->luma_log2_weight_denom = get_ue_golomb(&h->gb); if (h->sps.chroma_format_idc) h->chroma_log2_weight_denom = get_ue_golomb(&h->gb); luma_def = 1 << h->luma_log2_weight_denom; chroma_def = 1 << h->chroma_log2_weight_denom; for (list = 0; list < 2; list++) { h->luma_weight_flag[list] = 0; h->chroma_weight_flag[list] = 0; for (i = 0; i < h->ref_count[list]; i++) { int luma_weight_flag, chroma_weight_flag; luma_weight_flag = get_bits1(&h->gb); if (luma_weight_flag) { h->luma_weight[i][list][0] = get_se_golomb(&h->gb); h->luma_weight[i][list][1] = get_se_golomb(&h->gb); if (h->luma_weight[i][list][0] != luma_def || h->luma_weight[i][list][1] != 0) { h->use_weight = 1; h->luma_weight_flag[list] = 1; } } else { h->luma_weight[i][list][0] = luma_def; h->luma_weight[i][list][1] = 0; } if (h->sps.chroma_format_idc) { chroma_weight_flag = get_bits1(&h->gb); if (chroma_weight_flag) { int j; for (j = 0; j < 2; j++) { h->chroma_weight[i][list][j][0] = get_se_golomb(&h->gb); h->chroma_weight[i][list][j][1] = get_se_golomb(&h->gb); if (h->chroma_weight[i][list][j][0] != chroma_def || h->chroma_weight[i][list][j][1] != 0) { h->use_weight_chroma = 1; h->chroma_weight_flag[list] = 1; } } } else { int j; for (j = 0; j < 2; j++) { h->chroma_weight[i][list][j][0] = chroma_def; h->chroma_weight[i][list][j][1] = 0; } } } } if (h->slice_type_nos != AV_PICTURE_TYPE_B) break; } h->use_weight = h->use_weight || h->use_weight_chroma; return 0; } /** * Initialize implicit_weight table. * @param field 0/1 initialize the weight for interlaced MBAFF * -1 initializes the rest */ static void implicit_weight_table(H264Context *h, int field) { int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } if (field < 0) { if (h->picture_structure == PICT_FRAME) { cur_poc = h->cur_pic_ptr->poc; } else { cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1]; } if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) { h->use_weight = 0; h->use_weight_chroma = 0; return; } ref_start = 0; ref_count0 = h->ref_count[0]; ref_count1 = h->ref_count[1]; } else { cur_poc = h->cur_pic_ptr->field_poc[field]; ref_start = 16; ref_count0 = 16 + 2 * h->ref_count[0]; ref_count1 = 16 + 2 * h->ref_count[1]; } h->use_weight = 2; h->use_weight_chroma = 2; h->luma_log2_weight_denom = 5; h->chroma_log2_weight_denom = 5; for (ref0 = ref_start; ref0 < ref_count0; ref0++) { int poc0 = h->ref_list[0][ref0].poc; for (ref1 = ref_start; ref1 < ref_count1; ref1++) { int w = 32; if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) { int poc1 = h->ref_list[1][ref1].poc; int td = av_clip(poc1 - poc0, -128, 127); if (td) { int tb = av_clip(cur_poc - poc0, -128, 127); int tx = (16384 + (FFABS(td) >> 1)) / td; int dist_scale_factor = (tb * tx + 32) >> 8; if (dist_scale_factor >= -64 && dist_scale_factor <= 128) w = 64 - dist_scale_factor; } } if (field < 0) { h->implicit_weight[ref0][ref1][0] = h->implicit_weight[ref0][ref1][1] = w; } else { h->implicit_weight[ref0][ref1][field] = w; } } } } /** * instantaneous decoder refresh. */ static void idr(H264Context *h) { int i; ff_h264_remove_all_refs(h); h->prev_frame_num = 0; h->prev_frame_num_offset = 0; h->prev_poc_msb = 1<<16; h->prev_poc_lsb = 0; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; } /* forget old pics after a seek */ static void flush_change(H264Context *h) { int i, j; h->outputed_poc = h->next_outputed_poc = INT_MIN; h->prev_interlaced_frame = 1; idr(h); h->prev_frame_num = -1; if (h->cur_pic_ptr) { h->cur_pic_ptr->f.reference = 0; for (j=i=0; h->delayed_pic[i]; i++) if (h->delayed_pic[i] != h->cur_pic_ptr) h->delayed_pic[j++] = h->delayed_pic[i]; h->delayed_pic[j] = NULL; } h->first_field = 0; memset(h->ref_list[0], 0, sizeof(h->ref_list[0])); memset(h->ref_list[1], 0, sizeof(h->ref_list[1])); memset(h->default_ref_list[0], 0, sizeof(h->default_ref_list[0])); memset(h->default_ref_list[1], 0, sizeof(h->default_ref_list[1])); ff_h264_reset_sei(h); h->recovery_frame= -1; h->sync= 0; h->list_count = 0; h->current_slice = 0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; for (i = 0; i <= MAX_DELAYED_PIC_COUNT; i++) { if (h->delayed_pic[i]) h->delayed_pic[i]->f.reference = 0; h->delayed_pic[i] = NULL; } flush_change(h); for (i = 0; i < h->picture_count; i++) { if (h->DPB[i].f.data[0]) free_frame_buffer(h, &h->DPB[i]); } h->cur_pic_ptr = NULL; h->mb_x = h->mb_y = 0; h->parse_context.state = -1; h->parse_context.frame_start_found = 0; h->parse_context.overread = 0; h->parse_context.overread_index = 0; h->parse_context.index = 0; h->parse_context.last_index = 0; } static int init_poc(H264Context *h) { const int max_frame_num = 1 << h->sps.log2_max_frame_num; int field_poc[2]; Picture *cur = h->cur_pic_ptr; h->frame_num_offset = h->prev_frame_num_offset; if (h->frame_num < h->prev_frame_num) h->frame_num_offset += max_frame_num; if (h->sps.poc_type == 0) { const int max_poc_lsb = 1 << h->sps.log2_max_poc_lsb; if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb / 2) h->poc_msb = h->prev_poc_msb + max_poc_lsb; else if (h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb / 2) h->poc_msb = h->prev_poc_msb - max_poc_lsb; else h->poc_msb = h->prev_poc_msb; field_poc[0] = field_poc[1] = h->poc_msb + h->poc_lsb; if (h->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc_bottom; } else if (h->sps.poc_type == 1) { int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc; int i; if (h->sps.poc_cycle_length != 0) abs_frame_num = h->frame_num_offset + h->frame_num; else abs_frame_num = 0; if (h->nal_ref_idc == 0 && abs_frame_num > 0) abs_frame_num--; expected_delta_per_poc_cycle = 0; for (i = 0; i < h->sps.poc_cycle_length; i++) // FIXME integrate during sps parse expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[i]; if (abs_frame_num > 0) { int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length; int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length; expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle; for (i = 0; i <= frame_num_in_poc_cycle; i++) expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[i]; } else expectedpoc = 0; if (h->nal_ref_idc == 0) expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic; field_poc[0] = expectedpoc + h->delta_poc[0]; field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field; if (h->picture_structure == PICT_FRAME) field_poc[1] += h->delta_poc[1]; } else { int poc = 2 * (h->frame_num_offset + h->frame_num); if (!h->nal_ref_idc) poc--; field_poc[0] = poc; field_poc[1] = poc; } if (h->picture_structure != PICT_BOTTOM_FIELD) h->cur_pic_ptr->field_poc[0] = field_poc[0]; if (h->picture_structure != PICT_TOP_FIELD) h->cur_pic_ptr->field_poc[1] = field_poc[1]; cur->poc = FFMIN(cur->field_poc[0], cur->field_poc[1]); return 0; } /** * initialize scan tables */ static void init_scan_tables(H264Context *h) { int i; for (i = 0; i < 16; i++) { #define T(x) (x >> 2) | ((x << 2) & 0xF) h->zigzag_scan[i] = T(zigzag_scan[i]); h->field_scan[i] = T(field_scan[i]); #undef T } for (i = 0; i < 64; i++) { #define T(x) (x >> 3) | ((x & 7) << 3) h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]); h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]); h->field_scan8x8[i] = T(field_scan8x8[i]); h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]); #undef T } if (h->sps.transform_bypass) { // FIXME same ugly memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } else { memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 )); memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 )); memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0)); memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 )); memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 )); memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 )); } } static int field_end(H264Context *h, int in_setup) { AVCodecContext *const avctx = h->avctx; int err = 0; h->mb_y = 0; if (!in_setup && !h->droppable) ff_thread_report_progress(&h->cur_pic_ptr->f, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); if (CONFIG_H264_VDPAU_DECODER && h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_set_reference_frames(h); if (in_setup || !(avctx->active_thread_type & FF_THREAD_FRAME)) { if (!h->droppable) { err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); h->prev_poc_msb = h->poc_msb; h->prev_poc_lsb = h->poc_lsb; } h->prev_frame_num_offset = h->frame_num_offset; h->prev_frame_num = h->frame_num; h->outputed_poc = h->next_outputed_poc; } if (avctx->hwaccel) { if (avctx->hwaccel->end_frame(avctx) < 0) av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n"); } if (CONFIG_H264_VDPAU_DECODER && h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_complete(h); /* * FIXME: Error handling code does not seem to support interlaced * when slices span multiple rows * The ff_er_add_slice calls don't work right for bottom * fields; they cause massive erroneous error concealing * Error marking covers both fields (top and bottom). * This causes a mismatched s->error_count * and a bad error table. Further, the error count goes to * INT_MAX when called for bottom field, because mb_y is * past end by one (callers fault) and resync_mb_y != 0 * causes problems for the first MB line, too. */ if (!FIELD_PICTURE && h->current_slice && !h->sps.new) { h->er.cur_pic = h->cur_pic_ptr; h->er.last_pic = h->ref_count[0] ? &h->ref_list[0][0] : NULL; h->er.next_pic = h->ref_count[1] ? &h->ref_list[1][0] : NULL; ff_er_frame_end(&h->er); } /* redraw edges for the frame if decoding didn't complete */ if (h->er.error_count && !h->avctx->hwaccel && !(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) && h->cur_pic_ptr->f.reference && !(h->flags & CODEC_FLAG_EMU_EDGE)) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(h->avctx->pix_fmt); int hshift = desc->log2_chroma_w; int vshift = desc->log2_chroma_h; h->dsp.draw_edges(h->cur_pic.f.data[0], h->linesize, h->mb_width * 16, h->mb_height * 16, EDGE_WIDTH, EDGE_WIDTH, EDGE_TOP | EDGE_BOTTOM); h->dsp.draw_edges(h->cur_pic.f.data[1], h->uvlinesize, (h->mb_width * 16) >> hshift, (h->mb_height * 16) >> vshift, EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift, EDGE_TOP | EDGE_BOTTOM); h->dsp.draw_edges(h->cur_pic.f.data[2], h->uvlinesize, (h->mb_width * 16) >> hshift, (h->mb_height * 16) >> vshift, EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift, EDGE_TOP | EDGE_BOTTOM); } emms_c(); h->current_slice = 0; return err; } /** * Replicate H264 "master" context to thread contexts. */ static int clone_slice(H264Context *dst, H264Context *src) { memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset)); dst->cur_pic_ptr = src->cur_pic_ptr; dst->cur_pic = src->cur_pic; dst->linesize = src->linesize; dst->uvlinesize = src->uvlinesize; dst->first_field = src->first_field; dst->prev_poc_msb = src->prev_poc_msb; dst->prev_poc_lsb = src->prev_poc_lsb; dst->prev_frame_num_offset = src->prev_frame_num_offset; dst->prev_frame_num = src->prev_frame_num; dst->short_ref_count = src->short_ref_count; memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref)); memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref)); memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list)); memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff)); memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff)); return 0; } /** * Compute profile from profile_idc and constraint_set?_flags. * * @param sps SPS * * @return profile as defined by FF_PROFILE_H264_* */ int ff_h264_get_profile(SPS *sps) { int profile = sps->profile_idc; switch (sps->profile_idc) { case FF_PROFILE_H264_BASELINE: // constraint_set1_flag set to 1 profile |= (sps->constraint_set_flags & 1 << 1) ? FF_PROFILE_H264_CONSTRAINED : 0; break; case FF_PROFILE_H264_HIGH_10: case FF_PROFILE_H264_HIGH_422: case FF_PROFILE_H264_HIGH_444_PREDICTIVE: // constraint_set3_flag set to 1 profile |= (sps->constraint_set_flags & 1 << 3) ? FF_PROFILE_H264_INTRA : 0; break; } return profile; } static int h264_set_parameter_from_sps(H264Context *h) { if (h->flags & CODEC_FLAG_LOW_DELAY || (h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames)) { if (h->avctx->has_b_frames > 1 || h->delayed_pic[0]) av_log(h->avctx, AV_LOG_WARNING, "Delayed frames seen. " "Reenabling low delay requires a codec flush.\n"); else h->low_delay = 1; } if (h->avctx->has_b_frames < 2) h->avctx->has_b_frames = !h->low_delay; if (h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc) { if (h->avctx->codec && h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU && (h->sps.bit_depth_luma != 8 || h->sps.chroma_format_idc > 1)) { av_log(h->avctx, AV_LOG_ERROR, "VDPAU decoding does not support video colorspace.\n"); return AVERROR_INVALIDDATA; } if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 14 && h->sps.bit_depth_luma != 11 && h->sps.bit_depth_luma != 13 && (h->sps.bit_depth_luma != 9 || !CHROMA422)) { h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma; h->cur_chroma_format_idc = h->sps.chroma_format_idc; h->pixel_shift = h->sps.bit_depth_luma > 8; ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc); ff_h264chroma_init(&h->h264chroma, h->sps.bit_depth_chroma); ff_h264qpel_init(&h->h264qpel, h->sps.bit_depth_luma); ff_h264_pred_init(&h->hpc, h->avctx->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc); h->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16; ff_dsputil_init(&h->dsp, h->avctx); ff_videodsp_init(&h->vdsp, h->sps.bit_depth_luma); } else { av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma); return AVERROR_INVALIDDATA; } } return 0; } static enum PixelFormat get_pixel_format(H264Context *h) { switch (h->sps.bit_depth_luma) { case 9: if (CHROMA444) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP9; } else return AV_PIX_FMT_YUV444P9; } else if (CHROMA422) return AV_PIX_FMT_YUV422P9; else return AV_PIX_FMT_YUV420P9; break; case 10: if (CHROMA444) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP10; } else return AV_PIX_FMT_YUV444P10; } else if (CHROMA422) return AV_PIX_FMT_YUV422P10; else return AV_PIX_FMT_YUV420P10; break; case 12: if (CHROMA444) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP12; } else return AV_PIX_FMT_YUV444P12; } else if (CHROMA422) return AV_PIX_FMT_YUV422P12; else return AV_PIX_FMT_YUV420P12; break; case 14: if (CHROMA444) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { return AV_PIX_FMT_GBRP14; } else return AV_PIX_FMT_YUV444P14; } else if (CHROMA422) return AV_PIX_FMT_YUV422P14; else return AV_PIX_FMT_YUV420P14; break; case 8: if (CHROMA444) { if (h->avctx->colorspace == AVCOL_SPC_RGB) { av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n"); return AV_PIX_FMT_GBR24P; } else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) { av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n"); } return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P : AV_PIX_FMT_YUV444P; } else if (CHROMA422) { return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P : AV_PIX_FMT_YUV422P; } else { return h->avctx->get_format(h->avctx, h->avctx->codec->pix_fmts ? h->avctx->codec->pix_fmts : h->avctx->color_range == AVCOL_RANGE_JPEG ? hwaccel_pixfmt_list_h264_jpeg_420 : ff_hwaccel_pixfmt_list_420); } break; default: av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth: %d\n", h->sps.bit_depth_luma); return AVERROR_INVALIDDATA; } } static int h264_slice_header_init(H264Context *h, int reinit) { int nb_slices = (HAVE_THREADS && h->avctx->active_thread_type & FF_THREAD_SLICE) ? h->avctx->thread_count : 1; int i; if( FFALIGN(h->avctx->width , 16 ) == h->width && FFALIGN(h->avctx->height, 16*(2 - h->sps.frame_mbs_only_flag)) == h->height && !h->sps.crop_right && !h->sps.crop_bottom && (h->avctx->width != h->width || h->avctx->height && h->height) ) { av_log(h->avctx, AV_LOG_DEBUG, "Using externally provided dimensions\n"); h->avctx->coded_width = h->width; h->avctx->coded_height = h->height; } else{ avcodec_set_dimensions(h->avctx, h->width, h->height); h->avctx->width -= (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<avctx->height -= (1<chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>h->chroma_y_shift)-1) * (2 - h->sps.frame_mbs_only_flag); } h->avctx->sample_aspect_ratio = h->sps.sar; av_assert0(h->avctx->sample_aspect_ratio.den); av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt, &h->chroma_x_shift, &h->chroma_y_shift); if (h->sps.timing_info_present_flag) { int64_t den = h->sps.time_scale; if (h->x264_build < 44U) den *= 2; av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den, h->sps.num_units_in_tick, den, 1 << 30); } h->avctx->hwaccel = ff_find_hwaccel(h->avctx->codec->id, h->avctx->pix_fmt); if (reinit) free_tables(h, 0); h->first_field = 0; h->prev_interlaced_frame = 1; init_scan_tables(h); if (ff_h264_alloc_tables(h) < 0) { av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory for h264\n"); return AVERROR(ENOMEM); } if (nb_slices > MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) { int max_slices; if (h->mb_height) max_slices = FFMIN(MAX_THREADS, h->mb_height); else max_slices = MAX_THREADS; av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices (%d)," " reducing to %d\n", nb_slices, max_slices); nb_slices = max_slices; } h->slice_context_count = nb_slices; if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) { if (context_init(h) < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); return -1; } } else { for (i = 1; i < h->slice_context_count; i++) { H264Context *c; c = h->thread_context[i] = av_mallocz(sizeof(H264Context)); c->avctx = h->avctx; c->dsp = h->dsp; c->vdsp = h->vdsp; c->h264dsp = h->h264dsp; c->h264qpel = h->h264qpel; c->h264chroma = h->h264chroma; c->sps = h->sps; c->pps = h->pps; c->pixel_shift = h->pixel_shift; c->cur_chroma_format_idc = h->cur_chroma_format_idc; c->width = h->width; c->height = h->height; c->linesize = h->linesize; c->uvlinesize = h->uvlinesize; c->chroma_x_shift = h->chroma_x_shift; c->chroma_y_shift = h->chroma_y_shift; c->qscale = h->qscale; c->droppable = h->droppable; c->data_partitioning = h->data_partitioning; c->low_delay = h->low_delay; c->mb_width = h->mb_width; c->mb_height = h->mb_height; c->mb_stride = h->mb_stride; c->mb_num = h->mb_num; c->flags = h->flags; c->workaround_bugs = h->workaround_bugs; c->pict_type = h->pict_type; init_scan_tables(c); clone_tables(c, h, i); c->context_initialized = 1; } for (i = 0; i < h->slice_context_count; i++) if (context_init(h->thread_context[i]) < 0) { av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n"); return -1; } } h->context_initialized = 1; return 0; } /** * Decode a slice header. * This will also call ff_MPV_common_init() and frame_start() as needed. * * @param h h264context * @param h0 h264 master context (differs from 'h' when doing sliced based * parallel decoding) * * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded */ static int decode_slice_header(H264Context *h, H264Context *h0) { unsigned int first_mb_in_slice; unsigned int pps_id; int num_ref_idx_active_override_flag, ret; unsigned int slice_type, tmp, i, j; int default_ref_list_done = 0; int last_pic_structure, last_pic_droppable; int must_reinit; int needs_reinit = 0; h->me.qpel_put = h->h264qpel.put_h264_qpel_pixels_tab; h->me.qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab; first_mb_in_slice = get_ue_golomb_long(&h->gb); if (first_mb_in_slice == 0) { // FIXME better field boundary detection if (h0->current_slice && FIELD_PICTURE) { field_end(h, 1); } h0->current_slice = 0; if (!h0->first_field) { if (h->cur_pic_ptr && !h->droppable && h->cur_pic_ptr->owner2 == h) { ff_thread_report_progress(&h->cur_pic_ptr->f, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } h->cur_pic_ptr = NULL; } } slice_type = get_ue_golomb_31(&h->gb); if (slice_type > 9) { av_log(h->avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", slice_type, h->mb_x, h->mb_y); return -1; } if (slice_type > 4) { slice_type -= 5; h->slice_type_fixed = 1; } else h->slice_type_fixed = 0; slice_type = golomb_to_pict_type[slice_type]; if (slice_type == AV_PICTURE_TYPE_I || (h0->current_slice != 0 && slice_type == h0->last_slice_type)) { default_ref_list_done = 1; } h->slice_type = slice_type; h->slice_type_nos = slice_type & 3; // to make a few old functions happy, it's wrong though h->pict_type = h->slice_type; pps_id = get_ue_golomb(&h->gb); if (pps_id >= MAX_PPS_COUNT) { av_log(h->avctx, AV_LOG_ERROR, "pps_id %d out of range\n", pps_id); return -1; } if (!h0->pps_buffers[pps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id); return -1; } h->pps = *h0->pps_buffers[pps_id]; if (!h0->sps_buffers[h->pps.sps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id); return -1; } if (h->pps.sps_id != h->current_sps_id || h0->sps_buffers[h->pps.sps_id]->new) { h0->sps_buffers[h->pps.sps_id]->new = 0; h->current_sps_id = h->pps.sps_id; h->sps = *h0->sps_buffers[h->pps.sps_id]; if (h->mb_width != h->sps.mb_width || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc ) needs_reinit = 1; if (h->bit_depth_luma != h->sps.bit_depth_luma || h->chroma_format_idc != h->sps.chroma_format_idc) { h->bit_depth_luma = h->sps.bit_depth_luma; h->chroma_format_idc = h->sps.chroma_format_idc; needs_reinit = 1; } if ((ret = h264_set_parameter_from_sps(h)) < 0) return ret; } h->avctx->profile = ff_h264_get_profile(&h->sps); h->avctx->level = h->sps.level_idc; h->avctx->refs = h->sps.ref_frame_count; must_reinit = (h->context_initialized && ( 16*h->sps.mb_width != h->avctx->coded_width || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc || av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio))); if (h0->avctx->pix_fmt != get_pixel_format(h0)) must_reinit = 1; h->mb_width = h->sps.mb_width; h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->mb_num = h->mb_width * h->mb_height; h->mb_stride = h->mb_width + 1; h->b_stride = h->mb_width * 4; h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p h->width = 16 * h->mb_width; h->height = 16 * h->mb_height; if (h->sps.video_signal_type_present_flag) { h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (h->sps.colour_description_present_flag) { if (h->avctx->colorspace != h->sps.colorspace) needs_reinit = 1; h->avctx->color_primaries = h->sps.color_primaries; h->avctx->color_trc = h->sps.color_trc; h->avctx->colorspace = h->sps.colorspace; } } if (h->context_initialized && ( needs_reinit || must_reinit)) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "changing width/height on " "slice %d\n", h0->current_slice + 1); return AVERROR_INVALIDDATA; } flush_change(h); if ((ret = get_pixel_format(h)) < 0) return ret; h->avctx->pix_fmt = ret; av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, " "pix_fmt: %d\n", h->width, h->height, h->avctx->pix_fmt); if ((ret = h264_slice_header_init(h, 1)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (!h->context_initialized) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n"); return -1; } if ((ret = get_pixel_format(h)) < 0) return ret; h->avctx->pix_fmt = ret; if ((ret = h264_slice_header_init(h, 0)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (h == h0 && h->dequant_coeff_pps != pps_id) { h->dequant_coeff_pps = pps_id; init_dequant_tables(h); } h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num); h->mb_mbaff = 0; h->mb_aff_frame = 0; last_pic_structure = h0->picture_structure; last_pic_droppable = h0->droppable; h->droppable = h->nal_ref_idc == 0; if (h->sps.frame_mbs_only_flag) { h->picture_structure = PICT_FRAME; } else { if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); return -1; } if (get_bits1(&h->gb)) { // field_pic_flag h->picture_structure = PICT_TOP_FIELD + get_bits1(&h->gb); // bottom_field_flag } else { h->picture_structure = PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME; if (h0->current_slice != 0) { if (last_pic_structure != h->picture_structure || last_pic_droppable != h->droppable) { av_log(h->avctx, AV_LOG_ERROR, "Changing field mode (%d -> %d) between slices is not allowed\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (!h0->cur_pic_ptr) { av_log(h->avctx, AV_LOG_ERROR, "unset cur_pic_ptr on %d. slice\n", h0->current_slice + 1); return AVERROR_INVALIDDATA; } } else { /* Shorten frame num gaps so we don't have to allocate reference * frames just to throw them away */ if (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0) { int unwrap_prev_frame_num = h->prev_frame_num; int max_frame_num = 1 << h->sps.log2_max_frame_num; if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num; if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) { unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1; if (unwrap_prev_frame_num < 0) unwrap_prev_frame_num += max_frame_num; h->prev_frame_num = unwrap_prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * Here, we're using that to see if we should mark previously * decode frames as "finished". * We have to do that before the "dummy" in-between frame allocation, * since that can modify h->cur_pic_ptr. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.data[0]); assert(h0->cur_pic_ptr->f.reference != DELAYED_PIC_REF); /* Mark old field/frame as completed */ if (!last_pic_droppable && h0->cur_pic_ptr->owner2 == h0) { ff_thread_report_progress(&h0->cur_pic_ptr->f, INT_MAX, last_pic_structure == PICT_BOTTOM_FIELD); } /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ if (!last_pic_droppable && last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->f, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { if (h0->cur_pic_ptr->frame_num != h->frame_num) { /* This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ if (!last_pic_droppable && last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->f, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { /* Second field in complementary pair */ if (!((last_pic_structure == PICT_TOP_FIELD && h->picture_structure == PICT_BOTTOM_FIELD) || (last_pic_structure == PICT_BOTTOM_FIELD && h->picture_structure == PICT_TOP_FIELD))) { av_log(h->avctx, AV_LOG_ERROR, "Invalid field mode combination %d/%d\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (last_pic_droppable != h->droppable) { av_log(h->avctx, AV_LOG_ERROR, "Cannot combine reference and non-reference fields in the same frame\n"); av_log_ask_for_sample(h->avctx, NULL); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_PATCHWELCOME; } /* Take ownership of this buffer. Note that if another thread owned * the first field of this buffer, we're not operating on that pointer, * so the original thread is still responsible for reporting progress * on that first field (or if that was us, we just did that above). * By taking ownership, we assign responsibility to ourselves to * report progress on the second field. */ h0->cur_pic_ptr->owner2 = h0; } } } while (h->frame_num != h->prev_frame_num && h->prev_frame_num >= 0 && !h0->first_field && h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) { Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num); if (!h->sps.gaps_in_frame_num_allowed_flag) for(i=0; ilast_pocs); i++) h->last_pocs[i] = INT_MIN; if (ff_h264_frame_start(h) < 0) return -1; h->prev_frame_num++; h->prev_frame_num %= 1 << h->sps.log2_max_frame_num; h->cur_pic_ptr->frame_num = h->prev_frame_num; ff_thread_report_progress(&h->cur_pic_ptr->f, INT_MAX, 0); ff_thread_report_progress(&h->cur_pic_ptr->f, INT_MAX, 1); if ((ret = ff_generate_sliding_window_mmcos(h, 1)) < 0 && h->avctx->err_recognition & AV_EF_EXPLODE) return ret; if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; /* Error concealment: if a ref is missing, copy the previous ref in its place. * FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions * about there being no actual duplicates. * FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're * concealing a lost frame, this probably isn't noticeable by comparison, but it should * be fixed. */ if (h->short_ref_count) { if (prev) { av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize, (const uint8_t **)prev->f.data, prev->f.linesize, h->avctx->pix_fmt, h->mb_width * 16, h->mb_height * 16); h->short_ref[0]->poc = prev->poc + 2; } h->short_ref[0]->frame_num = h->prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * We're using that to see whether to continue decoding in that * frame, or to allocate a new one. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.data[0]); assert(h0->cur_pic_ptr->f.reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ h0->cur_pic_ptr = NULL; h0->first_field = FIELD_PICTURE; } else { if (h0->cur_pic_ptr->frame_num != h->frame_num) { ff_thread_report_progress((AVFrame*)h0->cur_pic_ptr, INT_MAX, h0->picture_structure==PICT_BOTTOM_FIELD); /* This and the previous field had different frame_nums. * Consider this field first in pair. Throw away previous * one except for reference purposes. */ h0->first_field = 1; h0->cur_pic_ptr = NULL; } else { /* Second field in complementary pair */ h0->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ h0->first_field = FIELD_PICTURE; } if (!FIELD_PICTURE || h0->first_field) { if (ff_h264_frame_start(h) < 0) { h0->first_field = 0; return -1; } } else { release_unused_pictures(h, 0); } } if (h != h0 && (ret = clone_slice(h, h0)) < 0) return ret; h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup av_assert1(h->mb_num == h->mb_width * h->mb_height); if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= h->mb_num || first_mb_in_slice >= h->mb_num) { av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return -1; } h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width; h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) << FIELD_OR_MBAFF_PICTURE; if (h->picture_structure == PICT_BOTTOM_FIELD) h->resync_mb_y = h->mb_y = h->mb_y + 1; av_assert1(h->mb_y < h->mb_height); if (h->picture_structure == PICT_FRAME) { h->curr_pic_num = h->frame_num; h->max_pic_num = 1 << h->sps.log2_max_frame_num; } else { h->curr_pic_num = 2 * h->frame_num + 1; h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1); } if (h->nal_unit_type == NAL_IDR_SLICE) get_ue_golomb(&h->gb); /* idr_pic_id */ if (h->sps.poc_type == 0) { h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc_bottom = get_se_golomb(&h->gb); } if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) { h->delta_poc[0] = get_se_golomb(&h->gb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc[1] = get_se_golomb(&h->gb); } init_poc(h); if (h->pps.redundant_pic_cnt_present) h->redundant_pic_count = get_ue_golomb(&h->gb); // set defaults, might be overridden a few lines later h->ref_count[0] = h->pps.ref_count[0]; h->ref_count[1] = h->pps.ref_count[1]; if (h->slice_type_nos != AV_PICTURE_TYPE_I) { unsigned max[2]; max[0] = max[1] = h->picture_structure == PICT_FRAME ? 15 : 31; if (h->slice_type_nos == AV_PICTURE_TYPE_B) h->direct_spatial_mv_pred = get_bits1(&h->gb); num_ref_idx_active_override_flag = get_bits1(&h->gb); if (num_ref_idx_active_override_flag) { h->ref_count[0] = get_ue_golomb(&h->gb) + 1; if (h->slice_type_nos == AV_PICTURE_TYPE_B) { h->ref_count[1] = get_ue_golomb(&h->gb) + 1; } else // full range is spec-ok in this case, even for frames h->ref_count[1] = 1; } if (h->ref_count[0]-1 > max[0] || h->ref_count[1]-1 > max[1]){ av_log(h->avctx, AV_LOG_ERROR, "reference overflow %u > %u or %u > %u\n", h->ref_count[0]-1, max[0], h->ref_count[1]-1, max[1]); h->ref_count[0] = h->ref_count[1] = 1; return AVERROR_INVALIDDATA; } if (h->slice_type_nos == AV_PICTURE_TYPE_B) h->list_count = 2; else h->list_count = 1; } else h->ref_count[1]= h->ref_count[0]= h->list_count= 0; if (!default_ref_list_done) ff_h264_fill_default_ref_list(h); if (h->slice_type_nos != AV_PICTURE_TYPE_I && ff_h264_decode_ref_pic_list_reordering(h) < 0) { h->ref_count[1] = h->ref_count[0] = 0; return -1; } if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) || (h->pps.weighted_bipred_idc == 1 && h->slice_type_nos == AV_PICTURE_TYPE_B)) pred_weight_table(h); else if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, -1); } else { h->use_weight = 0; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } } // If frame-mt is enabled, only update mmco tables for the first slice // in a field. Subsequent slices can temporarily clobber h->mmco_index // or h->mmco, which will cause ref list mix-ups and decoding errors // further down the line. This may break decoding if the first slice is // corrupt, thus we only do this if frame-mt is enabled. if (h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &h->gb, !(h->avctx->active_thread_type & FF_THREAD_FRAME) || h0->current_slice == 0) < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; if (FRAME_MBAFF) { ff_h264_fill_mbaff_ref_list(h); if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, 0); implicit_weight_table(h, 1); } } if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h); ff_h264_direct_ref_list_init(h); if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n"); return -1; } h->cabac_init_idc = tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&h->gb); if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) { av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return -1; } h->qscale = tmp; h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); // FIXME qscale / qp ... stuff if (h->slice_type == AV_PICTURE_TYPE_SP) get_bits1(&h->gb); /* sp_for_switch_flag */ if (h->slice_type == AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI) get_se_golomb(&h->gb); /* slice_qs_delta */ h->deblocking_filter = 1; h->slice_alpha_c0_offset = 52; h->slice_beta_offset = 52; if (h->pps.deblocking_filter_parameters_present) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return -1; } h->deblocking_filter = tmp; if (h->deblocking_filter < 2) h->deblocking_filter ^= 1; // 1<->0 if (h->deblocking_filter) { h->slice_alpha_c0_offset += get_se_golomb(&h->gb) << 1; h->slice_beta_offset += get_se_golomb(&h->gb) << 1; if (h->slice_alpha_c0_offset > 104U || h->slice_beta_offset > 104U) { av_log(h->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset); return -1; } } } if (h->avctx->skip_loop_filter >= AVDISCARD_ALL || (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter = 0; if (h->deblocking_filter == 1 && h0->max_contexts > 1) { if (h->avctx->flags2 & CODEC_FLAG2_FAST) { /* Cheat slightly for speed: * Do not bother to deblock across slices. */ h->deblocking_filter = 2; } else { h0->max_contexts = 1; if (!h0->single_decode_warning) { av_log(h->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n"); h0->single_decode_warning = 1; } if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n"); return 1; } } } h->qp_thresh = 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]) + 6 * (h->sps.bit_depth_luma - 8); h0->last_slice_type = slice_type; h->slice_num = ++h0->current_slice; if (h->slice_num) h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y; if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y && h->slice_num >= MAX_SLICES) { //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES); } for (j = 0; j < 2; j++) { int id_list[16]; int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j]; for (i = 0; i < 16; i++) { id_list[i] = 60; if (h->ref_list[j][i].f.data[0]) { int k; uint8_t *base = h->ref_list[j][i].f.base[0]; for (k = 0; k < h->short_ref_count; k++) if (h->short_ref[k]->f.base[0] == base) { id_list[i] = k; break; } for (k = 0; k < h->long_ref_count; k++) if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) { id_list[i] = h->short_ref_count + k; break; } } } ref2frm[0] = ref2frm[1] = -1; for (i = 0; i < 16; i++) ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].f.reference & 3); ref2frm[18 + 0] = ref2frm[18 + 1] = -1; for (i = 16; i < 48; i++) ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + (h->ref_list[j][i].f.reference & 3); } // FIXME: fix draw_edges + PAFF + frame threads h->emu_edge_width = (h->flags & CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && h->avctx->active_thread_type)) ? 0 : 16; h->emu_edge_height = (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width; if (h->avctx->debug & FF_DEBUG_PICT_INFO) { av_log(h->avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", h->slice_num, (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", pps_id, h->frame_num, h->cur_pic_ptr->field_poc[0], h->cur_pic_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], h->qscale, h->deblocking_filter, h->slice_alpha_c0_offset / 2 - 26, h->slice_beta_offset / 2 - 26, h->use_weight, h->use_weight == 1 && h->use_weight_chroma ? "c" : "", h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); } return 0; } int ff_h264_get_slice_type(const H264Context *h) { switch (h->slice_type) { case AV_PICTURE_TYPE_P: return 0; case AV_PICTURE_TYPE_B: return 1; case AV_PICTURE_TYPE_I: return 2; case AV_PICTURE_TYPE_SP: return 3; case AV_PICTURE_TYPE_SI: return 4; default: return -1; } } static av_always_inline void fill_filter_caches_inter(H264Context *h, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list) { int b_stride = h->b_stride; int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]]; int8_t *ref_cache = &h->ref_cache[list][scan8[0]]; if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) { if (USES_LIST(top_type, list)) { const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride; const int b8_xy = 4 * top_xy + 2; int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); AV_COPY128(mv_dst - 1 * 8, h->cur_pic.f.motion_val[list][b_xy + 0]); ref_cache[0 - 1 * 8] = ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.f.ref_index[list][b8_xy + 0]]; ref_cache[2 - 1 * 8] = ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.f.ref_index[list][b8_xy + 1]]; } else { AV_ZERO128(mv_dst - 1 * 8); AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); } if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) { if (USES_LIST(left_type[LTOP], list)) { const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3; const int b8_xy = 4 * left_xy[LTOP] + 1; int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); AV_COPY32(mv_dst - 1 + 0, h->cur_pic.f.motion_val[list][b_xy + b_stride * 0]); AV_COPY32(mv_dst - 1 + 8, h->cur_pic.f.motion_val[list][b_xy + b_stride * 1]); AV_COPY32(mv_dst - 1 + 16, h->cur_pic.f.motion_val[list][b_xy + b_stride * 2]); AV_COPY32(mv_dst - 1 + 24, h->cur_pic.f.motion_val[list][b_xy + b_stride * 3]); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.f.ref_index[list][b8_xy + 2 * 0]]; ref_cache[-1 + 16] = ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.f.ref_index[list][b8_xy + 2 * 1]]; } else { AV_ZERO32(mv_dst - 1 + 0); AV_ZERO32(mv_dst - 1 + 8); AV_ZERO32(mv_dst - 1 + 16); AV_ZERO32(mv_dst - 1 + 24); ref_cache[-1 + 0] = ref_cache[-1 + 8] = ref_cache[-1 + 16] = ref_cache[-1 + 24] = LIST_NOT_USED; } } } if (!USES_LIST(mb_type, list)) { fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4); AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u); return; } { int8_t *ref = &h->cur_pic.f.ref_index[list][4 * mb_xy]; int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF ? 20 : 2)); uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101; uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101; AV_WN32A(&ref_cache[0 * 8], ref01); AV_WN32A(&ref_cache[1 * 8], ref01); AV_WN32A(&ref_cache[2 * 8], ref23); AV_WN32A(&ref_cache[3 * 8], ref23); } { int16_t(*mv_src)[2] = &h->cur_pic.f.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride]; AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride); AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride); AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride); AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride); } } /** * * @return non zero if the loop filter can be skipped */ static int fill_filter_caches(H264Context *h, int mb_type) { const int mb_xy = h->mb_xy; int top_xy, left_xy[LEFT_MBS]; int top_type, left_type[LEFT_MBS]; uint8_t *nnz; uint8_t *nnz_cache; top_xy = mb_xy - (h->mb_stride << MB_FIELD); /* Wow, what a mess, why didn't they simplify the interlacing & intra * stuff, I can't imagine that these complex rules are worth it. */ left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1; if (FRAME_MBAFF) { const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.f.mb_type[mb_xy - 1]); const int curr_mb_field_flag = IS_INTERLACED(mb_type); if (h->mb_y & 1) { if (left_mb_field_flag != curr_mb_field_flag) left_xy[LTOP] -= h->mb_stride; } else { if (curr_mb_field_flag) top_xy += h->mb_stride & (((h->cur_pic.f.mb_type[top_xy] >> 7) & 1) - 1); if (left_mb_field_flag != curr_mb_field_flag) left_xy[LBOT] += h->mb_stride; } } h->top_mb_xy = top_xy; h->left_mb_xy[LTOP] = left_xy[LTOP]; h->left_mb_xy[LBOT] = left_xy[LBOT]; { /* For sufficiently low qp, filtering wouldn't do anything. * This is a conservative estimate: could also check beta_offset * and more accurate chroma_qp. */ int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice int qp = h->cur_pic.f.qscale_table[mb_xy]; if (qp <= qp_thresh && (left_xy[LTOP] < 0 || ((qp + h->cur_pic.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) && (top_xy < 0 || ((qp + h->cur_pic.f.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) { if (!FRAME_MBAFF) return 1; if ((left_xy[LTOP] < 0 || ((qp + h->cur_pic.f.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) && (top_xy < h->mb_stride || ((qp + h->cur_pic.f.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh)) return 1; } } top_type = h->cur_pic.f.mb_type[top_xy]; left_type[LTOP] = h->cur_pic.f.mb_type[left_xy[LTOP]]; left_type[LBOT] = h->cur_pic.f.mb_type[left_xy[LBOT]]; if (h->deblocking_filter == 2) { if (h->slice_table[top_xy] != h->slice_num) top_type = 0; if (h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP] = left_type[LBOT] = 0; } else { if (h->slice_table[top_xy] == 0xFFFF) top_type = 0; if (h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP] = left_type[LBOT] = 0; } h->top_type = top_type; h->left_type[LTOP] = left_type[LTOP]; h->left_type[LBOT] = left_type[LBOT]; if (IS_INTRA(mb_type)) return 0; fill_filter_caches_inter(h, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0); if (h->list_count == 2) fill_filter_caches_inter(h, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1); nnz = h->non_zero_count[mb_xy]; nnz_cache = h->non_zero_count_cache; AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]); AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]); AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]); AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]); h->cbp = h->cbp_table[mb_xy]; if (top_type) { nnz = h->non_zero_count[top_xy]; AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]); } if (left_type[LTOP]) { nnz = h->non_zero_count[left_xy[LTOP]]; nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4]; nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4]; nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4]; nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4]; } /* CAVLC 8x8dct requires NNZ values for residual decoding that differ * from what the loop filter needs */ if (!CABAC && h->pps.transform_8x8_mode) { if (IS_8x8DCT(top_type)) { nnz_cache[4 + 8 * 0] = nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12; nnz_cache[6 + 8 * 0] = nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12; } if (IS_8x8DCT(left_type[LTOP])) { nnz_cache[3 + 8 * 1] = nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(left_type[LBOT])) { nnz_cache[3 + 8 * 3] = nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF } if (IS_8x8DCT(mb_type)) { nnz_cache[scan8[0]] = nnz_cache[scan8[1]] = nnz_cache[scan8[2]] = nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12; nnz_cache[scan8[0 + 4]] = nnz_cache[scan8[1 + 4]] = nnz_cache[scan8[2 + 4]] = nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12; nnz_cache[scan8[0 + 8]] = nnz_cache[scan8[1 + 8]] = nnz_cache[scan8[2 + 8]] = nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12; nnz_cache[scan8[0 + 12]] = nnz_cache[scan8[1 + 12]] = nnz_cache[scan8[2 + 12]] = nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12; } } return 0; } static void loop_filter(H264Context *h, int start_x, int end_x) { uint8_t *dest_y, *dest_cb, *dest_cr; int linesize, uvlinesize, mb_x, mb_y; const int end_mb_y = h->mb_y + FRAME_MBAFF; const int old_slice_type = h->slice_type; const int pixel_shift = h->pixel_shift; const int block_h = 16 >> h->chroma_y_shift; if (h->deblocking_filter) { for (mb_x = start_x; mb_x < end_x; mb_x++) for (mb_y = end_mb_y - FRAME_MBAFF; mb_y <= end_mb_y; mb_y++) { int mb_xy, mb_type; mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride; h->slice_num = h->slice_table[mb_xy]; mb_type = h->cur_pic.f.mb_type[mb_xy]; h->list_count = h->list_counts[mb_xy]; if (FRAME_MBAFF) h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type); h->mb_x = mb_x; h->mb_y = mb_y; dest_y = h->cur_pic.f.data[0] + ((mb_x << pixel_shift) + mb_y * h->linesize) * 16; dest_cb = h->cur_pic.f.data[1] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * h->uvlinesize * block_h; dest_cr = h->cur_pic.f.data[2] + (mb_x << pixel_shift) * (8 << CHROMA444) + mb_y * h->uvlinesize * block_h; // FIXME simplify above if (MB_FIELD) { linesize = h->mb_linesize = h->linesize * 2; uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2; if (mb_y & 1) { // FIXME move out of this function? dest_y -= h->linesize * 15; dest_cb -= h->uvlinesize * (block_h - 1); dest_cr -= h->uvlinesize * (block_h - 1); } } else { linesize = h->mb_linesize = h->linesize; uvlinesize = h->mb_uvlinesize = h->uvlinesize; } backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0); if (fill_filter_caches(h, mb_type)) continue; h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.f.qscale_table[mb_xy]); h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.f.qscale_table[mb_xy]); if (FRAME_MBAFF) { ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } else { ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize); } } } h->slice_type = old_slice_type; h->mb_x = end_x; h->mb_y = end_mb_y - FRAME_MBAFF; h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); } static void predict_field_decoding_flag(H264Context *h) { const int mb_xy = h->mb_x + h->mb_y * h->mb_stride; int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ? h->cur_pic.f.mb_type[mb_xy - 1] : (h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ? h->cur_pic.f.mb_type[mb_xy - h->mb_stride] : 0; h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0; } /** * Draw edges and report progress for the last MB row. */ static void decode_finish_row(H264Context *h) { int top = 16 * (h->mb_y >> FIELD_PICTURE); int pic_height = 16 * h->mb_height >> FIELD_PICTURE; int height = 16 << FRAME_MBAFF; int deblock_border = (16 + 4) << FRAME_MBAFF; if (h->deblocking_filter) { if ((top + height) >= pic_height) height += deblock_border; top -= deblock_border; } if (top >= pic_height || (top + height) < h->emu_edge_height) return; height = FFMIN(height, pic_height - top); if (top < h->emu_edge_height) { height = top + height; top = 0; } ff_h264_draw_horiz_band(h, top, height); if (h->droppable) return; ff_thread_report_progress(&h->cur_pic_ptr->f, top + height - 1, h->picture_structure == PICT_BOTTOM_FIELD); } static void er_add_slice(H264Context *h, int startx, int starty, int endx, int endy, int status) { ERContext *er = &h->er; er->ref_count = h->ref_count[0]; ff_er_add_slice(er, startx, starty, endx, endy, status); } static int decode_slice(struct AVCodecContext *avctx, void *arg) { H264Context *h = *(void **)arg; int lf_x_start = h->mb_x; h->mb_skip_run = -1; av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3)); h->is_complex = FRAME_MBAFF || h->picture_structure != PICT_FRAME || avctx->codec_id != AV_CODEC_ID_H264 || (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY)); if (h->pps.cabac) { /* realign */ align_get_bits(&h->gb); /* init cabac */ ff_init_cabac_decoder(&h->cabac, h->gb.buffer + get_bits_count(&h->gb) / 8, (get_bits_left(&h->gb) + 7) / 8); ff_h264_init_cabac_states(h); for (;;) { // START_TIMER int ret = ff_h264_decode_mb_cabac(h); int eos; // STOP_TIMER("decode_mb_cabac") if (ret >= 0) ff_h264_hl_decode_mb(h); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF) { h->mb_y++; ret = ff_h264_decode_mb_cabac(h); if (ret >= 0) ff_h264_hl_decode_mb(h); h->mb_y--; } eos = get_cabac_terminate(&h->cabac); if ((h->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x >= lf_x_start) loop_filter(h, lf_x_start, h->mb_x + 1); return 0; } if (h->cabac.bytestream > h->cabac.bytestream_end + 2 ) av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %td\n", h->cabac.bytestream_end - h->cabac.bytestream); if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", h->mb_x, h->mb_y, h->cabac.bytestream_end - h->cabac.bytestream); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return -1; } if (++h->mb_x >= h->mb_width) { loop_filter(h, lf_x_start, h->mb_x); h->mb_x = lf_x_start = 0; decode_finish_row(h); ++h->mb_y; if (FIELD_OR_MBAFF_PICTURE) { ++h->mb_y; if (FRAME_MBAFF && h->mb_y < h->mb_height) predict_field_decoding_flag(h); } } if (eos || h->mb_y >= h->mb_height) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x > lf_x_start) loop_filter(h, lf_x_start, h->mb_x); return 0; } } } else { for (;;) { int ret = ff_h264_decode_mb_cavlc(h); if (ret >= 0) ff_h264_hl_decode_mb(h); // FIXME optimal? or let mb_decode decode 16x32 ? if (ret >= 0 && FRAME_MBAFF) { h->mb_y++; ret = ff_h264_decode_mb_cavlc(h); if (ret >= 0) ff_h264_hl_decode_mb(h); h->mb_y--; } if (ret < 0) { av_log(h->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", h->mb_x, h->mb_y); er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return -1; } if (++h->mb_x >= h->mb_width) { loop_filter(h, lf_x_start, h->mb_x); h->mb_x = lf_x_start = 0; decode_finish_row(h); ++h->mb_y; if (FIELD_OR_MBAFF_PICTURE) { ++h->mb_y; if (FRAME_MBAFF && h->mb_y < h->mb_height) predict_field_decoding_flag(h); } if (h->mb_y >= h->mb_height) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); if ( get_bits_left(&h->gb) == 0 || get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); return 0; } else { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_END); return -1; } } } if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) { tprintf(h->avctx, "slice end %d %d\n", get_bits_count(&h->gb), h->gb.size_in_bits); if (get_bits_left(&h->gb) == 0) { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1, h->mb_y, ER_MB_END); if (h->mb_x > lf_x_start) loop_filter(h, lf_x_start, h->mb_x); return 0; } else { er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x, h->mb_y, ER_MB_ERROR); return -1; } } } } } /** * Call decode_slice() for each context. * * @param h h264 master context * @param context_count number of contexts to execute */ static int execute_decode_slices(H264Context *h, int context_count) { AVCodecContext *const avctx = h->avctx; H264Context *hx; int i; if (h->avctx->hwaccel || h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) return 0; if (context_count == 1) { return decode_slice(avctx, &h); } else { av_assert0(context_count > 0); for (i = 1; i < context_count; i++) { hx = h->thread_context[i]; hx->er.error_count = 0; hx->x264_build = h->x264_build; } avctx->execute(avctx, decode_slice, h->thread_context, NULL, context_count, sizeof(void *)); /* pull back stuff from slices to master context */ hx = h->thread_context[context_count - 1]; h->mb_x = hx->mb_x; h->mb_y = hx->mb_y; h->droppable = hx->droppable; h->picture_structure = hx->picture_structure; for (i = 1; i < context_count; i++) h->er.error_count += h->thread_context[i]->er.error_count; } return 0; } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size, int parse_extradata) { AVCodecContext *const avctx = h->avctx; H264Context *hx; ///< thread context int buf_index; int context_count; int next_avc; int pass = !(avctx->active_thread_type & FF_THREAD_FRAME); int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts int nal_index; int idr_cleared=0; int first_slice = 0; h->nal_unit_type= 0; if(!h->slice_context_count) h->slice_context_count= 1; h->max_contexts = h->slice_context_count; if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) { h->current_slice = 0; if (!h->first_field) h->cur_pic_ptr = NULL; ff_h264_reset_sei(h); } if (h->nal_length_size == 4) { if (buf_size > 8 && AV_RB32(buf) == 1 && AV_RB32(buf+5) > (unsigned)buf_size) { h->is_avc = 0; }else if(buf_size > 3 && AV_RB32(buf) > 1 && AV_RB32(buf) <= (unsigned)buf_size) h->is_avc = 1; } for (; pass <= 1; pass++) { buf_index = 0; context_count = 0; next_avc = h->is_avc ? 0 : buf_size; nal_index = 0; for (;;) { int consumed; int dst_length; int bit_length; const uint8_t *ptr; int i, nalsize = 0; int err; if (buf_index >= next_avc) { if (buf_index >= buf_size - h->nal_length_size) break; nalsize = 0; for (i = 0; i < h->nal_length_size; i++) nalsize = (nalsize << 8) | buf[buf_index++]; if (nalsize <= 0 || nalsize > buf_size - buf_index) { av_log(h->avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize); break; } next_avc = buf_index + nalsize; } else { // start code prefix search for (; buf_index + 3 < next_avc; buf_index++) // This should always succeed in the first iteration. if (buf[buf_index] == 0 && buf[buf_index + 1] == 0 && buf[buf_index + 2] == 1) break; if (buf_index + 3 >= buf_size) { buf_index = buf_size; break; } buf_index += 3; if (buf_index >= next_avc) continue; } hx = h->thread_context[context_count]; ptr = ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index); if (ptr == NULL || dst_length < 0) { buf_index = -1; goto end; } i = buf_index + consumed; if ((h->workaround_bugs & FF_BUG_AUTODETECT) && i + 3 < next_avc && buf[i] == 0x00 && buf[i + 1] == 0x00 && buf[i + 2] == 0x01 && buf[i + 3] == 0xE0) h->workaround_bugs |= FF_BUG_TRUNCATED; if (!(h->workaround_bugs & FF_BUG_TRUNCATED)) while(dst_length > 0 && ptr[dst_length - 1] == 0) dst_length--; bit_length = !dst_length ? 0 : (8 * dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1)); if (h->avctx->debug & FF_DEBUG_STARTCODE) av_log(h->avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d pass %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length, pass); if (h->is_avc && (nalsize != consumed) && nalsize) av_log(h->avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize); buf_index += consumed; nal_index++; if (pass == 0) { /* packets can sometimes contain multiple PPS/SPS, * e.g. two PAFF field pictures in one packet, or a demuxer * which splits NALs strangely if so, when frame threading we * can't start the next thread until we've read all of them */ switch (hx->nal_unit_type) { case NAL_SPS: case NAL_PPS: nals_needed = nal_index; break; case NAL_DPA: case NAL_IDR_SLICE: case NAL_SLICE: init_get_bits(&hx->gb, ptr, bit_length); if (!get_ue_golomb(&hx->gb) || !first_slice) nals_needed = nal_index; if (!first_slice) first_slice = hx->nal_unit_type; } continue; } if (!first_slice) switch (hx->nal_unit_type) { case NAL_DPA: case NAL_IDR_SLICE: case NAL_SLICE: first_slice = hx->nal_unit_type; } // FIXME do not discard SEI id if (avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0) continue; again: /* Ignore per frame NAL unit type during extradata * parsing. Decoding slices is not possible in codec init * with frame-mt */ if (parse_extradata) { switch (hx->nal_unit_type) { case NAL_IDR_SLICE: case NAL_SLICE: case NAL_DPA: case NAL_DPB: case NAL_DPC: case NAL_AUXILIARY_SLICE: av_log(h->avctx, AV_LOG_WARNING, "Ignoring NAL %d in global header/extradata\n", hx->nal_unit_type); hx->nal_unit_type = NAL_FF_IGNORE; } } err = 0; switch (hx->nal_unit_type) { case NAL_IDR_SLICE: if (first_slice != NAL_IDR_SLICE) { av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices\n"); buf_index = -1; goto end; } if(!idr_cleared) idr(h); // FIXME ensure we don't lose some frames if there is reordering idr_cleared = 1; case NAL_SLICE: init_get_bits(&hx->gb, ptr, bit_length); hx->intra_gb_ptr = hx->inter_gb_ptr = &hx->gb; hx->data_partitioning = 0; if ((err = decode_slice_header(hx, h))) break; if (h->sei_recovery_frame_cnt >= 0 && (h->frame_num != h->sei_recovery_frame_cnt || hx->slice_type_nos != AV_PICTURE_TYPE_I)) h->valid_recovery_point = 1; if ( h->sei_recovery_frame_cnt >= 0 && ( h->recovery_frame<0 || ((h->recovery_frame - h->frame_num) & ((1 << h->sps.log2_max_frame_num)-1)) > h->sei_recovery_frame_cnt)) { h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) % (1 << h->sps.log2_max_frame_num); if (!h->valid_recovery_point) h->recovery_frame = h->frame_num; } h->cur_pic_ptr->f.key_frame |= (hx->nal_unit_type == NAL_IDR_SLICE); if (h->recovery_frame == h->frame_num) { h->cur_pic_ptr->sync |= 1; h->recovery_frame = -1; } h->sync |= !!h->cur_pic_ptr->f.key_frame; h->sync |= 3*!!(avctx->flags2 & CODEC_FLAG2_SHOW_ALL); h->cur_pic_ptr->sync |= h->sync; if (h->current_slice == 1) { if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS)) decode_postinit(h, nal_index >= nals_needed); if (h->avctx->hwaccel && h->avctx->hwaccel->start_frame(h->avctx, NULL, 0) < 0) return -1; if (CONFIG_H264_VDPAU_DECODER && h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) ff_vdpau_h264_picture_start(h); } if (hx->redundant_pic_count == 0 && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos != AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos == AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL) { if (avctx->hwaccel) { if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0) return -1; } else if (CONFIG_H264_VDPAU_DECODER && h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) { static const uint8_t start_code[] = { 0x00, 0x00, 0x01 }; ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], start_code, sizeof(start_code)); ff_vdpau_add_data_chunk(h->cur_pic_ptr->f.data[0], &buf[buf_index - consumed], consumed); } else context_count++; } break; case NAL_DPA: init_get_bits(&hx->gb, ptr, bit_length); hx->intra_gb_ptr = hx->inter_gb_ptr = NULL; if ((err = decode_slice_header(hx, h)) < 0) break; hx->data_partitioning = 1; break; case NAL_DPB: init_get_bits(&hx->intra_gb, ptr, bit_length); hx->intra_gb_ptr = &hx->intra_gb; break; case NAL_DPC: init_get_bits(&hx->inter_gb, ptr, bit_length); hx->inter_gb_ptr = &hx->inter_gb; av_log(h->avctx, AV_LOG_ERROR, "Partitioned H.264 support is incomplete\n"); break; if (hx->redundant_pic_count == 0 && hx->intra_gb_ptr && hx->data_partitioning && h->cur_pic_ptr && h->context_initialized && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos != AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos == AV_PICTURE_TYPE_I) && avctx->skip_frame < AVDISCARD_ALL) context_count++; break; case NAL_SEI: init_get_bits(&h->gb, ptr, bit_length); ff_h264_decode_sei(h); break; case NAL_SPS: init_get_bits(&h->gb, ptr, bit_length); if (ff_h264_decode_seq_parameter_set(h) < 0 && (h->is_avc ? (nalsize != consumed) && nalsize : 1)) { av_log(h->avctx, AV_LOG_DEBUG, "SPS decoding failure, trying again with the complete NAL\n"); if (h->is_avc) av_assert0(next_avc - buf_index + consumed == nalsize); if ((next_avc - buf_index + consumed - 1) >= INT_MAX/8) break; init_get_bits(&h->gb, &buf[buf_index + 1 - consumed], 8*(next_avc - buf_index + consumed - 1)); ff_h264_decode_seq_parameter_set(h); } break; case NAL_PPS: init_get_bits(&h->gb, ptr, bit_length); ff_h264_decode_picture_parameter_set(h, bit_length); break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; case NAL_FF_IGNORE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length); } if (context_count == h->max_contexts) { execute_decode_slices(h, context_count); context_count = 0; } if (err < 0) av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); else if (err == 1) { /* Slice could not be decoded in parallel mode, copy down * NAL unit stuff to context 0 and restart. Note that * rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ h->nal_unit_type = hx->nal_unit_type; h->nal_ref_idc = hx->nal_ref_idc; hx = h; goto again; } } } if (context_count) execute_decode_slices(h, context_count); end: /* clean up */ if (h->cur_pic_ptr && h->cur_pic_ptr->owner2 == h && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->f, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } return buf_index; } /** * Return the number of bytes consumed for building the current frame. */ static int get_consumed_bytes(int pos, int buf_size) { if (pos == 0) pos = 1; // avoid infinite loops (i doubt that is needed but ...) if (pos + 10 > buf_size) pos = buf_size; // oops ;) return pos; } static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; AVFrame *pict = data; int buf_index = 0; Picture *out; int i, out_idx; h->flags = avctx->flags; /* end of stream, output what is still in the buffers */ if (buf_size == 0) { out: h->cur_pic_ptr = NULL; h->first_field = 0; // FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; if (out) { out->f.reference &= ~DELAYED_PIC_REF; *got_frame = 1; *pict = out->f; } return buf_index; } if(h->is_avc && buf_size >= 9 && buf[0]==1 && buf[2]==0 && (buf[4]&0xFC)==0xFC && (buf[5]&0x1F) && buf[8]==0x67){ int cnt= buf[5]&0x1f; const uint8_t *p= buf+6; while(cnt--){ int nalsize= AV_RB16(p) + 2; if(nalsize > buf_size - (p-buf) || p[2]!=0x67) goto not_extra; p += nalsize; } cnt = *(p++); if(!cnt) goto not_extra; while(cnt--){ int nalsize= AV_RB16(p) + 2; if(nalsize > buf_size - (p-buf) || p[2]!=0x68) goto not_extra; p += nalsize; } return ff_h264_decode_extradata(h, buf, buf_size); } not_extra: buf_index = decode_nal_units(h, buf, buf_size, 0); if (buf_index < 0) return -1; if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { av_assert0(buf_index <= buf_size); goto out; } if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { if (avctx->skip_frame >= AVDISCARD_NONREF || buf_size >= 4 && !memcmp("Q264", buf, 4)) return buf_size; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return -1; } if (!(avctx->flags2 & CODEC_FLAG2_CHUNKS) || (h->mb_y >= h->mb_height && h->mb_height)) { if (avctx->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1); field_end(h, 0); /* Wait for second field. */ *got_frame = 0; if (h->next_output_pic && (h->next_output_pic->sync || h->sync>1)) { *got_frame = 1; *pict = h->next_output_pic->f; } } assert(pict->data[0] || !*got_frame); return get_consumed_bytes(buf_index, buf_size); } av_cold void ff_h264_free_context(H264Context *h) { int i; free_tables(h, 1); // FIXME cleanup init stuff perhaps for (i = 0; i < MAX_SPS_COUNT; i++) av_freep(h->sps_buffers + i); for (i = 0; i < MAX_PPS_COUNT; i++) av_freep(h->pps_buffers + i); } static av_cold int h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; ff_h264_remove_all_refs(h); ff_h264_free_context(h); if (h->DPB && !h->avctx->internal->is_copy) { for (i = 0; i < h->picture_count; i++) { free_picture(h, &h->DPB[i]); } } av_freep(&h->DPB); return 0; } static const AVProfile profiles[] = { { FF_PROFILE_H264_BASELINE, "Baseline" }, { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" }, { FF_PROFILE_H264_MAIN, "Main" }, { FF_PROFILE_H264_EXTENDED, "Extended" }, { FF_PROFILE_H264_HIGH, "High" }, { FF_PROFILE_H264_HIGH_10, "High 10" }, { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" }, { FF_PROFILE_H264_HIGH_422, "High 4:2:2" }, { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" }, { FF_PROFILE_H264_HIGH_444, "High 4:4:4" }, { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" }, { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" }, { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" }, { FF_PROFILE_UNKNOWN }, }; static const AVOption h264_options[] = { {"is_avc", "is avc", offsetof(H264Context, is_avc), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 1, 0}, {"nal_length_size", "nal_length_size", offsetof(H264Context, nal_length_size), FF_OPT_TYPE_INT, {.i64 = 0}, 0, 4, 0}, {NULL} }; static const AVClass h264_class = { .class_name = "H264 Decoder", .item_name = av_default_item_name, .option = h264_options, .version = LIBAVUTIL_VERSION_INT, }; static const AVClass h264_vdpau_class = { .class_name = "H264 VDPAU Decoder", .item_name = av_default_item_name, .option = h264_options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_h264_decoder = { .name = "h264", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_H264, .priv_data_size = sizeof(H264Context), .init = ff_h264_decode_init, .close = h264_decode_end, .decode = decode_frame, .capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS, .flush = flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(profiles), .priv_class = &h264_class, }; #if CONFIG_H264_VDPAU_DECODER AVCodec ff_h264_vdpau_decoder = { .name = "h264_vdpau", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_H264, .priv_data_size = sizeof(H264Context), .init = ff_h264_decode_init, .close = h264_decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU, .flush = flush_dpb, .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"), .pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_VDPAU_H264, AV_PIX_FMT_NONE}, .profiles = NULL_IF_CONFIG_SMALL(profiles), .priv_class = &h264_vdpau_class, }; #endif