/* * FFV1 codec for libavcodec * * Copyright (c) 2003 Michael Niedermayer * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * FF Video Codec 1 (a lossless codec) */ #include "avcodec.h" #include "get_bits.h" #include "put_bits.h" #include "dsputil.h" #include "rangecoder.h" #include "golomb.h" #include "mathops.h" #include "libavutil/avassert.h" #define MAX_PLANES 4 #define CONTEXT_SIZE 32 #define MAX_QUANT_TABLES 8 #define MAX_CONTEXT_INPUTS 5 extern const uint8_t ff_log2_run[41]; static const int8_t quant5_10bit[256]={ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0, }; static const int8_t quant5[256]={ 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1, }; static const int8_t quant9_10bit[256]={ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3, -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2, -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0, }; static const int8_t quant11[256]={ 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5, -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4, -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4, -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1, }; static const uint8_t ver2_state[256]= { 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49, 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39, 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52, 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69, 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97, 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98, 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125, 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129, 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148, 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160, 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178, 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196, 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214, 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225, 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242, 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255, }; typedef struct VlcState{ int16_t drift; uint16_t error_sum; int8_t bias; uint8_t count; } VlcState; typedef struct PlaneContext{ int16_t quant_table[MAX_CONTEXT_INPUTS][256]; int quant_table_index; int context_count; uint8_t (*state)[CONTEXT_SIZE]; VlcState *vlc_state; uint8_t interlace_bit_state[2]; } PlaneContext; #define MAX_SLICES 256 typedef struct FFV1Context{ AVCodecContext *avctx; RangeCoder c; GetBitContext gb; PutBitContext pb; uint64_t rc_stat[256][2]; uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2]; int version; int width, height; int chroma_h_shift, chroma_v_shift; int chroma_planes; int transparency; int flags; int picture_number; AVFrame picture; int plane_count; int ac; ///< 1=range coder <-> 0=golomb rice PlaneContext plane[MAX_PLANES]; int16_t quant_table[MAX_CONTEXT_INPUTS][256]; int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256]; int context_count[MAX_QUANT_TABLES]; uint8_t state_transition[256]; uint8_t (*initial_states[MAX_QUANT_TABLES])[32]; int run_index; int colorspace; int16_t *sample_buffer; int gob_count; int packed_at_lsb; int quant_table_count; DSPContext dsp; struct FFV1Context *slice_context[MAX_SLICES]; int slice_count; int num_v_slices; int num_h_slices; int slice_width; int slice_height; int slice_x; int slice_y; int bits_per_raw_sample; }FFV1Context; static av_always_inline int fold(int diff, int bits){ if(bits==8) diff= (int8_t)diff; else{ diff+= 1<<(bits-1); diff&=(1<quant_table[3][127]){ const int TT= last2[0]; const int LL= src[-2]; return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF] +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF]; }else return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]; } static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){ int i,j,k,m; double l2tab[256]; for(i=1; i<256; i++) l2tab[i]= log2(i/256.0); for(i=0; i<256; i++){ double best_len[256]; double p= i/256.0; for(j=0; j<256; j++) best_len[j]= 1<<30; for(j=FFMAX(i-10,1); j=0; i--){ put_rac(c, state+22+i, (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + e, v < 0); //11..21 }else{ for(i=0; i=0; i--){ put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31 } if(is_signed) put_rac(c, state+11 + 10, v < 0); //11..21 } }else{ put_rac(c, state+0, 1); } #undef put_rac } static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){ put_symbol_inline(c, state, v, is_signed, NULL, NULL); } static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){ if(get_rac(c, state+0)) return 0; else{ int i, e, a; e= 0; while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10 e++; } a= 1; for(i=e-1; i>=0; i--){ a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31 } e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21 return (a^e)-e; } } static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){ return get_symbol_inline(c, state, is_signed); } static inline void update_vlc_state(VlcState * const state, const int v){ int drift= state->drift; int count= state->count; state->error_sum += FFABS(v); drift += v; if(count == 128){ //FIXME variable count >>= 1; drift >>= 1; state->error_sum >>= 1; } count++; if(drift <= -count){ if(state->bias > -128) state->bias--; drift += count; if(drift <= -count) drift= -count + 1; }else if(drift > 0){ if(state->bias < 127) state->bias++; drift -= count; if(drift > 0) drift= 0; } state->drift= drift; state->count= count; } static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){ int i, k, code; //printf("final: %d ", v); v = fold(v - state->bias, bits); i= state->count; k=0; while(i < state->error_sum){ //FIXME optimize k++; i += i; } assert(k<=8); #if 0 // JPEG LS if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1); else code= v; #else code= v ^ ((2*state->drift + state->count)>>31); #endif //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k); set_sr_golomb(pb, code, k, 12, bits); update_vlc_state(state, v); } static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){ int k, i, v, ret; i= state->count; k=0; while(i < state->error_sum){ //FIXME optimize k++; i += i; } assert(k<=8); v= get_sr_golomb(gb, k, 12, bits); //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k); #if 0 // JPEG LS if(k==0 && 2*state->drift <= - state->count) v ^= (-1); #else v ^= ((2*state->drift + state->count)>>31); #endif ret= fold(v + state->bias, bits); update_vlc_state(state, v); //printf("final: %d\n", ret); return ret; } #if CONFIG_FFV1_ENCODER static av_always_inline int encode_line(FFV1Context *s, int w, int16_t *sample[2], int plane_index, int bits) { PlaneContext * const p= &s->plane[plane_index]; RangeCoder * const c= &s->c; int x; int run_index= s->run_index; int run_count=0; int run_mode=0; if(s->ac){ if(c->bytestream_end - c->bytestream < w*20){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } }else{ if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } } for(x=0; xac){ if(s->flags & CODEC_FLAG_PASS1){ put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]); }else{ put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL); } }else{ if(context == 0) run_mode=1; if(run_mode){ if(diff){ while(run_count >= 1<pb, 1, 1); } put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count); if(run_index) run_index--; run_count=0; run_mode=0; if(diff>0) diff--; }else{ run_count++; } } // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb)); if(run_mode == 0) put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits); } } if(run_mode){ while(run_count >= 1<pb, 1, 1); } if(run_count) put_bits(&s->pb, 1, 1); } s->run_index= run_index; return 0; } static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){ int x,y,i; const int ring_size= s->avctx->context_model ? 3 : 2; int16_t *sample[3]; s->run_index=0; memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer)); for(y=0; ysample_buffer + (w+6)*((h+i-y)%ring_size) + 3; sample[0][-1]= sample[1][0 ]; sample[1][ w]= sample[1][w-1]; //{START_TIMER if(s->bits_per_raw_sample<=8){ for(x=0; xpacked_at_lsb){ for(x=0; x> (16 - s->bits_per_raw_sample); } } encode_line(s, w, sample, plane_index, s->bits_per_raw_sample); } //STOP_TIMER("encode line")} } } static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){ int x, y, p, i; const int ring_size= s->avctx->context_model ? 3 : 2; int16_t *sample[4][3]; s->run_index=0; memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer)); for(y=0; ysample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3; for(x=0; x>8)&0xFF; int r= (v>>16)&0xFF; int a= v>>24; b -= g; r -= g; g += (b + r)>>2; b += 0x100; r += 0x100; // assert(g>=0 && b>=0 && r>=0); // assert(g<256 && b<512 && r<512); sample[0][0][x]= g; sample[1][0][x]= b; sample[2][0][x]= r; sample[3][0][x]= a; } for(p=0; p<3 + s->transparency; p++){ sample[p][0][-1]= sample[p][1][0 ]; sample[p][1][ w]= sample[p][1][w-1]; encode_line(s, w, sample[p], (p+1)/2, 9); } } } static void write_quant_table(RangeCoder *c, int16_t *quant_table){ int last=0; int i; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for(i=1; i<128 ; i++){ if(quant_table[i] != quant_table[i-1]){ put_symbol(c, state, i-last-1, 0); last= i; } } put_symbol(c, state, i-last-1, 0); } static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){ int i; for(i=0; i<5; i++) write_quant_table(c, quant_table[i]); } static void write_header(FFV1Context *f){ uint8_t state[CONTEXT_SIZE]; int i, j; RangeCoder * const c= &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if(f->version < 2){ put_symbol(c, state, f->version, 0); put_symbol(c, state, f->ac, 0); if(f->ac>1){ for(i=1; i<256; i++){ put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1); } } put_symbol(c, state, f->colorspace, 0); //YUV cs type if(f->version>0) put_symbol(c, state, f->bits_per_raw_sample, 0); put_rac(c, state, f->chroma_planes); put_symbol(c, state, f->chroma_h_shift, 0); put_symbol(c, state, f->chroma_v_shift, 0); put_rac(c, state, f->transparency); write_quant_tables(c, f->quant_table); }else{ put_symbol(c, state, f->slice_count, 0); for(i=0; islice_count; i++){ FFV1Context *fs= f->slice_context[i]; put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0); put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0); put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0); put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0); for(j=0; jplane_count; j++){ put_symbol(c, state, f->plane[j].quant_table_index, 0); av_assert0(f->plane[j].quant_table_index == f->avctx->context_model); } } } } #endif /* CONFIG_FFV1_ENCODER */ static av_cold int common_init(AVCodecContext *avctx){ FFV1Context *s = avctx->priv_data; s->avctx= avctx; s->flags= avctx->flags; avcodec_get_frame_defaults(&s->picture); dsputil_init(&s->dsp, avctx); s->width = avctx->width; s->height= avctx->height; assert(s->width && s->height); //defaults s->num_h_slices=1; s->num_v_slices=1; return 0; } static int init_slice_state(FFV1Context *f){ int i, j; for(i=0; islice_count; i++){ FFV1Context *fs= f->slice_context[i]; fs->plane_count= f->plane_count; fs->transparency= f->transparency; for(j=0; jplane_count; j++){ PlaneContext * const p= &fs->plane[j]; if(fs->ac){ if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t)); if(!p-> state) return AVERROR(ENOMEM); }else{ if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState)); if(!p->vlc_state) return AVERROR(ENOMEM); } } if (fs->ac>1){ //FIXME only redo if state_transition changed for(j=1; j<256; j++){ fs->c.one_state [ j]= fs->state_transition[j]; fs->c.zero_state[256-j]= 256-fs->c.one_state [j]; } } } return 0; } static av_cold int init_slice_contexts(FFV1Context *f){ int i; f->slice_count= f->num_h_slices * f->num_v_slices; for(i=0; islice_count; i++){ FFV1Context *fs= av_mallocz(sizeof(*fs)); int sx= i % f->num_h_slices; int sy= i / f->num_h_slices; int sxs= f->avctx->width * sx / f->num_h_slices; int sxe= f->avctx->width *(sx+1) / f->num_h_slices; int sys= f->avctx->height* sy / f->num_v_slices; int sye= f->avctx->height*(sy+1) / f->num_v_slices; f->slice_context[i]= fs; memcpy(fs, f, sizeof(*fs)); memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2)); fs->slice_width = sxe - sxs; fs->slice_height= sye - sys; fs->slice_x = sxs; fs->slice_y = sys; fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer)); if (!fs->sample_buffer) return AVERROR(ENOMEM); } return 0; } static int allocate_initial_states(FFV1Context *f){ int i; for(i=0; iquant_table_count; i++){ f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i])); if(!f->initial_states[i]) return AVERROR(ENOMEM); memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i])); } return 0; } #if CONFIG_FFV1_ENCODER static int write_extra_header(FFV1Context *f){ RangeCoder * const c= &f->c; uint8_t state[CONTEXT_SIZE]; int i, j, k; uint8_t state2[32][CONTEXT_SIZE]; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32); ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); put_symbol(c, state, f->version, 0); put_symbol(c, state, f->ac, 0); if(f->ac>1){ for(i=1; i<256; i++){ put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1); } } put_symbol(c, state, f->colorspace, 0); //YUV cs type put_symbol(c, state, f->bits_per_raw_sample, 0); put_rac(c, state, f->chroma_planes); put_symbol(c, state, f->chroma_h_shift, 0); put_symbol(c, state, f->chroma_v_shift, 0); put_rac(c, state, f->transparency); put_symbol(c, state, f->num_h_slices-1, 0); put_symbol(c, state, f->num_v_slices-1, 0); put_symbol(c, state, f->quant_table_count, 0); for(i=0; iquant_table_count; i++) write_quant_tables(c, f->quant_tables[i]); for(i=0; iquant_table_count; i++){ for(j=0; jcontext_count[i]*CONTEXT_SIZE; j++) if(f->initial_states[i] && f->initial_states[i][0][j] != 128) break; if(jcontext_count[i]*CONTEXT_SIZE){ put_rac(c, state, 1); for(j=0; jcontext_count[i]; j++){ for(k=0; kinitial_states[i][j-1][k] : 128; put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1); } } }else{ put_rac(c, state, 0); } } f->avctx->extradata_size= ff_rac_terminate(c); return 0; } static int sort_stt(FFV1Context *s, uint8_t stt[256]){ int i,i2,changed,print=0; do{ changed=0; for(i=12; i<244; i++){ for(i2=i+1; i2<245 && i2rc_stat[old][0]*-log2((256-(new))/256.0)\ +s->rc_stat[old][1]*-log2( (new) /256.0) #define COST2(old, new) \ COST(old, new)\ +COST(256-(old), 256-(new)) double size0= COST2(i, i ) + COST2(i2, i2); double sizeX= COST2(i, i2) + COST2(i2, i ); if(sizeX < size0 && i!=128 && i2!=128){ int j; FFSWAP(int, stt[ i], stt[ i2]); FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]); FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]); if(i != 256-i2){ FFSWAP(int, stt[256-i], stt[256-i2]); FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]); FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]); } for(j=1; j<256; j++){ if (stt[j] == i ) stt[j] = i2; else if(stt[j] == i2) stt[j] = i ; if(i != 256-i2){ if (stt[256-j] == 256-i ) stt[256-j] = 256-i2; else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ; } } print=changed=1; } } } }while(changed); return print; } static av_cold int encode_init(AVCodecContext *avctx) { FFV1Context *s = avctx->priv_data; int i, j, k, m; common_init(avctx); s->version=0; s->ac= avctx->coder_type ? 2:0; if(s->ac>1) for(i=1; i<256; i++) s->state_transition[i]=ver2_state[i]; s->plane_count=3; switch(avctx->pix_fmt){ case PIX_FMT_YUV420P9: if (!avctx->bits_per_raw_sample) s->bits_per_raw_sample = 9; case PIX_FMT_YUV420P10: case PIX_FMT_YUV422P10: s->packed_at_lsb = 1; if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) s->bits_per_raw_sample = 10; case PIX_FMT_GRAY16: case PIX_FMT_YUV444P16: case PIX_FMT_YUV422P16: case PIX_FMT_YUV420P16: if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) { s->bits_per_raw_sample = 16; } else if (!s->bits_per_raw_sample){ s->bits_per_raw_sample = avctx->bits_per_raw_sample; } if(s->bits_per_raw_sample <=8){ av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n"); return -1; } if(!s->ac){ av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n"); return -1; } s->version= FFMAX(s->version, 1); case PIX_FMT_YUV444P: case PIX_FMT_YUV440P: case PIX_FMT_YUV422P: case PIX_FMT_YUV420P: case PIX_FMT_YUV411P: case PIX_FMT_YUV410P: s->chroma_planes= avctx->pix_fmt == PIX_FMT_GRAY16 ? 0 : 1; s->colorspace= 0; break; case PIX_FMT_YUVA444P: case PIX_FMT_YUVA420P: s->chroma_planes= 1; s->colorspace= 0; s->transparency= 1; break; case PIX_FMT_RGB32: s->colorspace= 1; s->transparency= 1; break; case PIX_FMT_0RGB32: s->colorspace= 1; break; default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } for(i=0; i<256; i++){ s->quant_table_count=2; if(s->bits_per_raw_sample <=8){ s->quant_tables[0][0][i]= quant11[i]; s->quant_tables[0][1][i]= 11*quant11[i]; s->quant_tables[0][2][i]= 11*11*quant11[i]; s->quant_tables[1][0][i]= quant11[i]; s->quant_tables[1][1][i]= 11*quant11[i]; s->quant_tables[1][2][i]= 11*11*quant5 [i]; s->quant_tables[1][3][i]= 5*11*11*quant5 [i]; s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i]; }else{ s->quant_tables[0][0][i]= quant9_10bit[i]; s->quant_tables[0][1][i]= 11*quant9_10bit[i]; s->quant_tables[0][2][i]= 11*11*quant9_10bit[i]; s->quant_tables[1][0][i]= quant9_10bit[i]; s->quant_tables[1][1][i]= 11*quant9_10bit[i]; s->quant_tables[1][2][i]= 11*11*quant5_10bit[i]; s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i]; s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i]; } } s->context_count[0]= (11*11*11+1)/2; s->context_count[1]= (11*11*5*5*5+1)/2; memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table)); for(i=0; iplane_count; i++){ PlaneContext * const p= &s->plane[i]; memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table)); p->quant_table_index= avctx->context_model; p->context_count= s->context_count[p->quant_table_index]; } if(allocate_initial_states(s) < 0) return AVERROR(ENOMEM); avctx->coded_frame= &s->picture; if(!s->transparency) s->plane_count= 2; avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift); s->picture_number=0; if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){ for(i=0; iquant_table_count; i++){ s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i])); if(!s->rc_stat2[i]) return AVERROR(ENOMEM); } } if(avctx->stats_in){ char *p= avctx->stats_in; uint8_t best_state[256][256]; int gob_count=0; char *next; av_assert0(s->version>=2); for(;;){ for(j=0; j<256; j++){ for(i=0; i<2; i++){ s->rc_stat[j][i]= strtol(p, &next, 0); if(next==p){ av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p); return -1; } p=next; } } for(i=0; iquant_table_count; i++){ for(j=0; jcontext_count[i]; j++){ for(k=0; k<32; k++){ for(m=0; m<2; m++){ s->rc_stat2[i][j][k][m]= strtol(p, &next, 0); if(next==p){ av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p); return -1; } p=next; } } } } gob_count= strtol(p, &next, 0); if(next==p || gob_count <0){ av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n"); return -1; } p=next; while(*p=='\n' || *p==' ') p++; if(p[0]==0) break; } sort_stt(s, s->state_transition); find_best_state(best_state, s->state_transition); for(i=0; iquant_table_count; i++){ for(j=0; jcontext_count[i]; j++){ for(k=0; k<32; k++){ double p= 128; if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){ p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]); } s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)]; } } } } if(s->version>1){ s->num_h_slices=2; s->num_v_slices=2; write_extra_header(s); } if(init_slice_contexts(s) < 0) return -1; if(init_slice_state(s) < 0) return -1; #define STATS_OUT_SIZE 1024*1024*6 if(avctx->flags & CODEC_FLAG_PASS1){ avctx->stats_out= av_mallocz(STATS_OUT_SIZE); for(i=0; iquant_table_count; i++){ for(j=0; jslice_count; j++){ FFV1Context *sf= s->slice_context[j]; av_assert0(!sf->rc_stat2[i]); sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i])); if(!sf->rc_stat2[i]) return AVERROR(ENOMEM); } } } return 0; } #endif /* CONFIG_FFV1_ENCODER */ static void clear_state(FFV1Context *f){ int i, si, j; for(si=0; sislice_count; si++){ FFV1Context *fs= f->slice_context[si]; for(i=0; iplane_count; i++){ PlaneContext *p= &fs->plane[i]; p->interlace_bit_state[0]= 128; p->interlace_bit_state[1]= 128; if(fs->ac){ if(f->initial_states[p->quant_table_index]){ memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count); }else memset(p->state, 128, CONTEXT_SIZE*p->context_count); }else{ for(j=0; jcontext_count; j++){ p->vlc_state[j].drift= 0; p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2); p->vlc_state[j].bias= 0; p->vlc_state[j].count= 1; } } } } } #if CONFIG_FFV1_ENCODER static int encode_slice(AVCodecContext *c, void *arg){ FFV1Context *fs= *(void**)arg; FFV1Context *f= fs->avctx->priv_data; int width = fs->slice_width; int height= fs->slice_height; int x= fs->slice_x; int y= fs->slice_y; AVFrame * const p= &f->picture; const int ps= (f->bits_per_raw_sample>8)+1; if(f->colorspace==0){ const int chroma_width = -((-width )>>f->chroma_h_shift); const int chroma_height= -((-height)>>f->chroma_v_shift); const int cx= x>>f->chroma_h_shift; const int cy= y>>f->chroma_v_shift; encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0); if (f->chroma_planes){ encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1); encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1); } if (fs->transparency) encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2); }else{ encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4); } emms_c(); return 0; } static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){ FFV1Context *f = avctx->priv_data; RangeCoder * const c= &f->slice_context[0]->c; AVFrame *pict = data; AVFrame * const p= &f->picture; int used_count= 0; uint8_t keystate=128; uint8_t *buf_p; int i; ff_init_range_encoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); *p = *pict; p->pict_type= AV_PICTURE_TYPE_I; if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){ put_rac(c, &keystate, 1); p->key_frame= 1; f->gob_count++; write_header(f); clear_state(f); }else{ put_rac(c, &keystate, 0); p->key_frame= 0; } if(!f->ac){ used_count += ff_rac_terminate(c); //printf("pos=%d\n", used_count); init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count); }else if (f->ac>1){ int i; for(i=1; i<256; i++){ c->one_state[i]= f->state_transition[i]; c->zero_state[256-i]= 256-c->one_state[i]; } } for(i=1; islice_count; i++){ FFV1Context *fs= f->slice_context[i]; uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count; int len= buf_size/f->slice_count; if(fs->ac){ ff_init_range_encoder(&fs->c, start, len); }else{ init_put_bits(&fs->pb, start, len); } } avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*)); buf_p=buf; for(i=0; islice_count; i++){ FFV1Context *fs= f->slice_context[i]; int bytes; if(fs->ac){ uint8_t state=128; put_rac(&fs->c, &state, 0); bytes= ff_rac_terminate(&fs->c); }else{ flush_put_bits(&fs->pb); //nicer padding FIXME bytes= used_count + (put_bits_count(&fs->pb)+7)/8; used_count= 0; } if(i>0){ av_assert0(bytes < buf_size/f->slice_count); memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes); av_assert0(bytes < (1<<24)); AV_WB24(buf_p+bytes, bytes); bytes+=3; } buf_p += bytes; } if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){ int j, k, m; char *p= avctx->stats_out; char *end= p + STATS_OUT_SIZE; memset(f->rc_stat, 0, sizeof(f->rc_stat)); for(i=0; iquant_table_count; i++) memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i])); for(j=0; jslice_count; j++){ FFV1Context *fs= f->slice_context[j]; for(i=0; i<256; i++){ f->rc_stat[i][0] += fs->rc_stat[i][0]; f->rc_stat[i][1] += fs->rc_stat[i][1]; } for(i=0; iquant_table_count; i++){ for(k=0; kcontext_count[i]; k++){ for(m=0; m<32; m++){ f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0]; f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1]; } } } } for(j=0; j<256; j++){ snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]); p+= strlen(p); } snprintf(p, end-p, "\n"); for(i=0; iquant_table_count; i++){ for(j=0; jcontext_count[i]; j++){ for(m=0; m<32; m++){ snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]); p+= strlen(p); } } } snprintf(p, end-p, "%d\n", f->gob_count); } else if(avctx->flags&CODEC_FLAG_PASS1) avctx->stats_out[0] = '\0'; f->picture_number++; return buf_p-buf; } #endif /* CONFIG_FFV1_ENCODER */ static av_cold int common_end(AVCodecContext *avctx){ FFV1Context *s = avctx->priv_data; int i, j; if (avctx->codec->decode && s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); for(j=0; jslice_count; j++){ FFV1Context *fs= s->slice_context[j]; for(i=0; iplane_count; i++){ PlaneContext *p= &fs->plane[i]; av_freep(&p->state); av_freep(&p->vlc_state); } av_freep(&fs->sample_buffer); } av_freep(&avctx->stats_out); for(j=0; jquant_table_count; j++){ av_freep(&s->initial_states[j]); for(i=0; islice_count; i++){ FFV1Context *sf= s->slice_context[i]; av_freep(&sf->rc_stat2[j]); } av_freep(&s->rc_stat2[j]); } for(i=0; islice_count; i++){ av_freep(&s->slice_context[i]); } return 0; } static av_always_inline void decode_line(FFV1Context *s, int w, int16_t *sample[2], int plane_index, int bits) { PlaneContext * const p= &s->plane[plane_index]; RangeCoder * const c= &s->c; int x; int run_count=0; int run_mode=0; int run_index= s->run_index; for(x=0; xcontext_count); if(s->ac){ diff= get_symbol_inline(c, p->state[context], 1); }else{ if(context == 0 && run_mode==0) run_mode=1; if(run_mode){ if(run_count==0 && run_mode==1){ if(get_bits1(&s->gb)){ run_count = 1<gb, ff_log2_run[run_index]); else run_count=0; if(run_index) run_index--; run_mode=2; } } run_count--; if(run_count < 0){ run_mode=0; run_count=0; diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); if(diff>=0) diff++; }else diff=0; }else diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits); // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb)); } if(sign) diff= -diff; sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<run_index= run_index; } static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){ int x, y; int16_t *sample[2]; sample[0]=s->sample_buffer +3; sample[1]=s->sample_buffer+w+6+3; s->run_index=0; memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer)); for(y=0; yavctx->bits_per_raw_sample <= 8){ decode_line(s, w, sample, plane_index, 8); for(x=0; xavctx->bits_per_raw_sample); if(s->packed_at_lsb){ for(x=0; xavctx->bits_per_raw_sample); } } } //STOP_TIMER("decode-line")} } } static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){ int x, y, p; int16_t *sample[4][2]; for(x=0; x<4; x++){ sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3; sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3; } s->run_index=0; memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer)); for(y=0; ytransparency; p++){ int16_t *temp = sample[p][0]; //FIXME try a normal buffer sample[p][0]= sample[p][1]; sample[p][1]= temp; sample[p][1][-1]= sample[p][0][0 ]; sample[p][0][ w]= sample[p][0][w-1]; decode_line(s, w, sample[p], (p+1)/2, 9); } for(x=0; x=0 && b>=0 && r>=0); // assert(g<256 && b<512 && r<512); b -= 0x100; r -= 0x100; g -= (b + r)>>2; b += g; r += g; src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24); } } } static int decode_slice(AVCodecContext *c, void *arg){ FFV1Context *fs= *(void**)arg; FFV1Context *f= fs->avctx->priv_data; int width = fs->slice_width; int height= fs->slice_height; int x= fs->slice_x; int y= fs->slice_y; const int ps= (c->bits_per_raw_sample>8)+1; AVFrame * const p= &f->picture; av_assert1(width && height); if(f->colorspace==0){ const int chroma_width = -((-width )>>f->chroma_h_shift); const int chroma_height= -((-height)>>f->chroma_v_shift); const int cx= x>>f->chroma_h_shift; const int cy= y>>f->chroma_v_shift; decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0); if (f->chroma_planes){ decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1); decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1); } if (fs->transparency) decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2); }else{ decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4); } emms_c(); return 0; } static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){ int v; int i=0; uint8_t state[CONTEXT_SIZE]; memset(state, 128, sizeof(state)); for(v=0; i<128 ; v++){ int len= get_symbol(c, state, 0) + 1; if(len + i > 128) return -1; while(len--){ quant_table[i] = scale*v; i++; //printf("%2d ",v); //if(i%16==0) printf("\n"); } } for(i=1; i<128; i++){ quant_table[256-i]= -quant_table[i]; } quant_table[128]= -quant_table[127]; return 2*v - 1; } static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){ int i; int context_count=1; for(i=0; i<5; i++){ context_count*= read_quant_table(c, quant_table[i], context_count); if(context_count > 32768U){ return -1; } } return (context_count+1)/2; } static int read_extra_header(FFV1Context *f){ RangeCoder * const c= &f->c; uint8_t state[CONTEXT_SIZE]; int i, j, k; uint8_t state2[32][CONTEXT_SIZE]; memset(state2, 128, sizeof(state2)); memset(state, 128, sizeof(state)); ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); f->version= get_symbol(c, state, 0); f->ac= f->avctx->coder_type= get_symbol(c, state, 0); if(f->ac>1){ for(i=1; i<256; i++){ f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i]; } } f->colorspace= get_symbol(c, state, 0); //YUV cs type f->avctx->bits_per_raw_sample= get_symbol(c, state, 0); get_rac(c, state); //no chroma = false f->chroma_h_shift= get_symbol(c, state, 0); f->chroma_v_shift= get_symbol(c, state, 0); f->transparency= get_rac(c, state); f->plane_count= 2 + f->transparency; f->num_h_slices= 1 + get_symbol(c, state, 0); f->num_v_slices= 1 + get_symbol(c, state, 0); if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){ av_log(f->avctx, AV_LOG_ERROR, "too many slices\n"); return -1; } f->quant_table_count= get_symbol(c, state, 0); if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES) return -1; for(i=0; iquant_table_count; i++){ if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){ av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return -1; } } if(allocate_initial_states(f) < 0) return AVERROR(ENOMEM); for(i=0; iquant_table_count; i++){ if(get_rac(c, state)){ for(j=0; jcontext_count[i]; j++){ for(k=0; kinitial_states[i][j-1][k] : 128; f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF; } } } } return 0; } static int read_header(FFV1Context *f){ uint8_t state[CONTEXT_SIZE]; int i, j, context_count; RangeCoder * const c= &f->slice_context[0]->c; memset(state, 128, sizeof(state)); if(f->version < 2){ f->version= get_symbol(c, state, 0); f->ac= f->avctx->coder_type= get_symbol(c, state, 0); if(f->ac>1){ for(i=1; i<256; i++){ f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i]; } } f->colorspace= get_symbol(c, state, 0); //YUV cs type if(f->version>0) f->avctx->bits_per_raw_sample= get_symbol(c, state, 0); f->chroma_planes= get_rac(c, state); f->chroma_h_shift= get_symbol(c, state, 0); f->chroma_v_shift= get_symbol(c, state, 0); f->transparency= get_rac(c, state); f->plane_count= 2 + f->transparency; } if(f->colorspace==0){ if(f->avctx->bits_per_raw_sample>8 && !f->transparency && !f->chroma_planes){ f->avctx->pix_fmt= PIX_FMT_GRAY16; }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){ switch(16*f->chroma_h_shift + f->chroma_v_shift){ case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break; case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break; case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break; case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break; case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break; case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){ switch(16*f->chroma_h_shift + f->chroma_v_shift){ case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break; case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } }else if(f->avctx->bits_per_raw_sample==9) { switch(16*f->chroma_h_shift + f->chroma_v_shift){ case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break; case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9 ; f->packed_at_lsb=1; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } }else if(f->avctx->bits_per_raw_sample==10) { switch(16*f->chroma_h_shift + f->chroma_v_shift){ case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; f->packed_at_lsb=1; break; case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; f->packed_at_lsb=1; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } }else { switch(16*f->chroma_h_shift + f->chroma_v_shift){ case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break; case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break; case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break; default: av_log(f->avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } } }else if(f->colorspace==1){ if(f->chroma_h_shift || f->chroma_v_shift){ av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n"); return -1; } if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32; else f->avctx->pix_fmt= PIX_FMT_0RGB32; }else{ av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n"); return -1; } //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt); if(f->version < 2){ context_count= read_quant_tables(c, f->quant_table); if(context_count < 0){ av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n"); return -1; } }else{ f->slice_count= get_symbol(c, state, 0); if(f->slice_count > (unsigned)MAX_SLICES) return -1; } for(j=0; jslice_count; j++){ FFV1Context *fs= f->slice_context[j]; fs->ac= f->ac; fs->packed_at_lsb= f->packed_at_lsb; if(f->version >= 2){ fs->slice_x = get_symbol(c, state, 0) *f->width ; fs->slice_y = get_symbol(c, state, 0) *f->height; fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x; fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y; fs->slice_x /= f->num_h_slices; fs->slice_y /= f->num_v_slices; fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x; fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y; if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height) return -1; if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height) return -1; } for(i=0; iplane_count; i++){ PlaneContext * const p= &fs->plane[i]; if(f->version >= 2){ int idx=get_symbol(c, state, 0); if(idx > (unsigned)f->quant_table_count){ av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n"); return -1; } p->quant_table_index= idx; memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table)); context_count= f->context_count[idx]; }else{ memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table)); } if(p->context_count < context_count){ av_freep(&p->state); av_freep(&p->vlc_state); } p->context_count= context_count; } } return 0; } static av_cold int decode_init(AVCodecContext *avctx) { FFV1Context *f = avctx->priv_data; common_init(avctx); if(avctx->extradata && read_extra_header(f) < 0) return -1; if(init_slice_contexts(f) < 0) return -1; return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){ const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; FFV1Context *f = avctx->priv_data; RangeCoder * const c= &f->slice_context[0]->c; AVFrame * const p= &f->picture; int bytes_read, i; uint8_t keystate= 128; const uint8_t *buf_p; AVFrame *picture = data; /* release previously stored data */ if (p->data[0]) avctx->release_buffer(avctx, p); ff_init_range_decoder(c, buf, buf_size); ff_build_rac_states(c, 0.05*(1LL<<32), 256-8); p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P if(get_rac(c, &keystate)){ p->key_frame= 1; if(read_header(f) < 0) return -1; if(init_slice_state(f) < 0) return -1; clear_state(f); }else{ p->key_frame= 0; } if(f->ac>1){ int i; for(i=1; i<256; i++){ c->one_state[i]= f->state_transition[i]; c->zero_state[256-i]= 256-c->one_state[i]; } } p->reference= 0; if(avctx->get_buffer(avctx, p) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if(avctx->debug&FF_DEBUG_PICT_INFO) av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac); if(!f->ac){ bytes_read = c->bytestream - c->bytestream_start - 1; if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME //printf("pos=%d\n", bytes_read); init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8); } else { bytes_read = 0; /* avoid warning */ } buf_p= buf + buf_size; for(i=f->slice_count-1; i>0; i--){ FFV1Context *fs= f->slice_context[i]; int v= AV_RB24(buf_p-3)+3; if(buf_p - buf <= v){ av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n"); return -1; } buf_p -= v; if(fs->ac){ ff_init_range_decoder(&fs->c, buf_p, v); }else{ init_get_bits(&fs->gb, buf_p, v * 8); } } avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*)); f->picture_number++; *picture= *p; *data_size = sizeof(AVFrame); return buf_size; } AVCodec ff_ffv1_decoder = { .name = "ffv1", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = decode_init, .close = common_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS, .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"), }; #if CONFIG_FFV1_ENCODER AVCodec ff_ffv1_encoder = { .name = "ffv1", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_FFV1, .priv_data_size = sizeof(FFV1Context), .init = encode_init, .encode = encode_frame, .close = common_end, .capabilities = CODEC_CAP_SLICE_THREADS, .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUV444P, PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_GRAY16, PIX_FMT_NONE}, .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"), }; #endif