/** * @file dct-test.c * DCT test. (c) 2001 Fabrice Bellard. * Started from sample code by Juan J. Sierralta P. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #include <unistd.h> #include "dsputil.h" #include "i386/mmx.h" #include "simple_idct.h" #include "faandct.h" #ifndef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #endif /* reference fdct/idct */ extern void fdct(DCTELEM *block); extern void idct(DCTELEM *block); extern void init_fdct(); extern void j_rev_dct(DCTELEM *data); extern void ff_mmx_idct(DCTELEM *data); extern void ff_mmxext_idct(DCTELEM *data); extern void odivx_idct_c (short *block); #define AANSCALE_BITS 12 static const unsigned short aanscales[64] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; uint8_t cropTbl[256 + 2 * MAX_NEG_CROP]; int64_t gettime(void) { struct timeval tv; gettimeofday(&tv,NULL); return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec; } #define NB_ITS 20000 #define NB_ITS_SPEED 50000 static short idct_mmx_perm[64]; static short idct_simple_mmx_perm[64]={ 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D, 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D, 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D, 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F, 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F, 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D, 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F, 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F, }; void idct_mmx_init(void) { int i; /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */ for (i = 0; i < 64; i++) { idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2); // idct_simple_mmx_perm[i] = simple_block_permute_op(i); } } static DCTELEM block[64] __attribute__ ((aligned (8))); static DCTELEM block1[64] __attribute__ ((aligned (8))); static DCTELEM block_org[64] __attribute__ ((aligned (8))); void dct_error(const char *name, int is_idct, void (*fdct_func)(DCTELEM *block), void (*fdct_ref)(DCTELEM *block), int test) { int it, i, scale; int err_inf, v; int64_t err2, ti, ti1, it1; int64_t sysErr[64], sysErrMax=0; int maxout=0; int blockSumErrMax=0, blockSumErr; srandom(0); err_inf = 0; err2 = 0; for(i=0; i<64; i++) sysErr[i]=0; for(it=0;it<NB_ITS;it++) { for(i=0;i<64;i++) block1[i] = 0; switch(test){ case 0: for(i=0;i<64;i++) block1[i] = (random() % 512) -256; if (is_idct){ fdct(block1); for(i=0;i<64;i++) block1[i]>>=3; } break; case 1:{ int num= (random()%10)+1; for(i=0;i<num;i++) block1[random()%64] = (random() % 512) -256; }break; case 2: block1[0]= (random()%4096)-2048; block1[63]= (block1[0]&1)^1; break; } #if 0 // simulate mismatch control { int sum=0; for(i=0;i<64;i++) sum+=block1[i]; if((sum&1)==0) block1[63]^=1; } #endif for(i=0; i<64; i++) block_org[i]= block1[i]; if (fdct_func == ff_mmx_idct || fdct_func == j_rev_dct || fdct_func == ff_mmxext_idct) { for(i=0;i<64;i++) block[idct_mmx_perm[i]] = block1[i]; } else if(fdct_func == ff_simple_idct_mmx ) { for(i=0;i<64;i++) block[idct_simple_mmx_perm[i]] = block1[i]; } else { for(i=0; i<64; i++) block[i]= block1[i]; } #if 0 // simulate mismatch control for tested IDCT but not the ref { int sum=0; for(i=0;i<64;i++) sum+=block[i]; if((sum&1)==0) block[63]^=1; } #endif fdct_func(block); emms(); /* for ff_mmx_idct */ if (fdct_func == fdct_ifast #ifndef FAAN_POSTSCALE || fdct_func == ff_faandct #endif ) { for(i=0; i<64; i++) { scale = 8*(1 << (AANSCALE_BITS + 11)) / aanscales[i]; block[i] = (block[i] * scale /*+ (1<<(AANSCALE_BITS-1))*/) >> AANSCALE_BITS; } } fdct_ref(block1); blockSumErr=0; for(i=0;i<64;i++) { v = abs(block[i] - block1[i]); if (v > err_inf) err_inf = v; err2 += v * v; sysErr[i] += block[i] - block1[i]; blockSumErr += v; if( abs(block[i])>maxout) maxout=abs(block[i]); } if(blockSumErrMax < blockSumErr) blockSumErrMax= blockSumErr; #if 0 // print different matrix pairs if(blockSumErr){ printf("\n"); for(i=0; i<64; i++){ if((i&7)==0) printf("\n"); printf("%4d ", block_org[i]); } for(i=0; i<64; i++){ if((i&7)==0) printf("\n"); printf("%4d ", block[i] - block1[i]); } } #endif } for(i=0; i<64; i++) sysErrMax= MAX(sysErrMax, ABS(sysErr[i])); #if 1 // dump systematic errors for(i=0; i<64; i++){ if(i%8==0) printf("\n"); printf("%5d ", (int)sysErr[i]); } printf("\n"); #endif printf("%s %s: err_inf=%d err2=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n", is_idct ? "IDCT" : "DCT", name, err_inf, (double)err2 / NB_ITS / 64.0, (double)sysErrMax / NB_ITS, maxout, blockSumErrMax); #if 1 //Speed test /* speed test */ for(i=0;i<64;i++) block1[i] = 0; switch(test){ case 0: for(i=0;i<64;i++) block1[i] = (random() % 512) -256; if (is_idct){ fdct(block1); for(i=0;i<64;i++) block1[i]>>=3; } break; case 1:{ case 2: block1[0] = (random() % 512) -256; block1[1] = (random() % 512) -256; block1[2] = (random() % 512) -256; block1[3] = (random() % 512) -256; }break; } if (fdct_func == ff_mmx_idct || fdct_func == j_rev_dct || fdct_func == ff_mmxext_idct) { for(i=0;i<64;i++) block[idct_mmx_perm[i]] = block1[i]; } else if(fdct_func == ff_simple_idct_mmx ) { for(i=0;i<64;i++) block[idct_simple_mmx_perm[i]] = block1[i]; } else { for(i=0; i<64; i++) block[i]= block1[i]; } ti = gettime(); it1 = 0; do { for(it=0;it<NB_ITS_SPEED;it++) { for(i=0; i<64; i++) block[i]= block1[i]; // memcpy(block, block1, sizeof(DCTELEM) * 64); // dont memcpy especially not fastmemcpy because it does movntq !!! fdct_func(block); } it1 += NB_ITS_SPEED; ti1 = gettime() - ti; } while (ti1 < 1000000); emms(); printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", name, (double)it1 * 1000.0 / (double)ti1); #endif } static uint8_t img_dest[64] __attribute__ ((aligned (8))); static uint8_t img_dest1[64] __attribute__ ((aligned (8))); void idct248_ref(uint8_t *dest, int linesize, int16_t *block) { static int init; static double c8[8][8]; static double c4[4][4]; double block1[64], block2[64], block3[64]; double s, sum, v; int i, j, k; if (!init) { init = 1; for(i=0;i<8;i++) { sum = 0; for(j=0;j<8;j++) { s = (i==0) ? sqrt(1.0/8.0) : sqrt(1.0/4.0); c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0); sum += c8[i][j] * c8[i][j]; } } for(i=0;i<4;i++) { sum = 0; for(j=0;j<4;j++) { s = (i==0) ? sqrt(1.0/4.0) : sqrt(1.0/2.0); c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0); sum += c4[i][j] * c4[i][j]; } } } /* butterfly */ s = 0.5 * sqrt(2.0); for(i=0;i<4;i++) { for(j=0;j<8;j++) { block1[8*(2*i)+j] = (block[8*(2*i)+j] + block[8*(2*i+1)+j]) * s; block1[8*(2*i+1)+j] = (block[8*(2*i)+j] - block[8*(2*i+1)+j]) * s; } } /* idct8 on lines */ for(i=0;i<8;i++) { for(j=0;j<8;j++) { sum = 0; for(k=0;k<8;k++) sum += c8[k][j] * block1[8*i+k]; block2[8*i+j] = sum; } } /* idct4 */ for(i=0;i<8;i++) { for(j=0;j<4;j++) { /* top */ sum = 0; for(k=0;k<4;k++) sum += c4[k][j] * block2[8*(2*k)+i]; block3[8*(2*j)+i] = sum; /* bottom */ sum = 0; for(k=0;k<4;k++) sum += c4[k][j] * block2[8*(2*k+1)+i]; block3[8*(2*j+1)+i] = sum; } } /* clamp and store the result */ for(i=0;i<8;i++) { for(j=0;j<8;j++) { v = block3[8*i+j]; if (v < 0) v = 0; else if (v > 255) v = 255; dest[i * linesize + j] = (int)rint(v); } } } void idct248_error(const char *name, void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block)) { int it, i, it1, ti, ti1, err_max, v; srandom(0); /* just one test to see if code is correct (precision is less important here) */ err_max = 0; for(it=0;it<NB_ITS;it++) { /* XXX: use forward transform to generate values */ for(i=0;i<64;i++) block1[i] = (random() % 256) - 128; block1[0] += 1024; for(i=0; i<64; i++) block[i]= block1[i]; idct248_ref(img_dest1, 8, block); for(i=0; i<64; i++) block[i]= block1[i]; idct248_put(img_dest, 8, block); for(i=0;i<64;i++) { v = abs((int)img_dest[i] - (int)img_dest1[i]); if (v == 255) printf("%d %d\n", img_dest[i], img_dest1[i]); if (v > err_max) err_max = v; } #if 0 printf("ref=\n"); for(i=0;i<8;i++) { int j; for(j=0;j<8;j++) { printf(" %3d", img_dest1[i*8+j]); } printf("\n"); } printf("out=\n"); for(i=0;i<8;i++) { int j; for(j=0;j<8;j++) { printf(" %3d", img_dest[i*8+j]); } printf("\n"); } #endif } printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max); ti = gettime(); it1 = 0; do { for(it=0;it<NB_ITS_SPEED;it++) { for(i=0; i<64; i++) block[i]= block1[i]; // memcpy(block, block1, sizeof(DCTELEM) * 64); // dont memcpy especially not fastmemcpy because it does movntq !!! idct248_put(img_dest, 8, block); } it1 += NB_ITS_SPEED; ti1 = gettime() - ti; } while (ti1 < 1000000); emms(); printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name, (double)it1 * 1000.0 / (double)ti1); } void help(void) { printf("dct-test [-i] [<test-number>]\n" "test-number 0 -> test with random matrixes\n" " 1 -> test with random sparse matrixes\n" " 2 -> do 3. test from mpeg4 std\n" "-i test IDCT implementations\n" "-4 test IDCT248 implementations\n"); exit(1); } int main(int argc, char **argv) { int test_idct = 0, test_248_dct = 0; int c,i; int test=1; init_fdct(); idct_mmx_init(); for(i=0;i<256;i++) cropTbl[i + MAX_NEG_CROP] = i; for(i=0;i<MAX_NEG_CROP;i++) { cropTbl[i] = 0; cropTbl[i + MAX_NEG_CROP + 256] = 255; } for(;;) { c = getopt(argc, argv, "ih4"); if (c == -1) break; switch(c) { case 'i': test_idct = 1; break; case '4': test_248_dct = 1; break; default : case 'h': help(); break; } } if(optind <argc) test= atoi(argv[optind]); printf("ffmpeg DCT/IDCT test\n"); if (test_248_dct) { idct248_error("SIMPLE-C", simple_idct248_put); } else { if (!test_idct) { dct_error("REF-DBL", 0, fdct, fdct, test); /* only to verify code ! */ dct_error("IJG-AAN-INT", 0, fdct_ifast, fdct, test); dct_error("IJG-LLM-INT", 0, ff_jpeg_fdct_islow, fdct, test); dct_error("MMX", 0, ff_fdct_mmx, fdct, test); dct_error("MMX2", 0, ff_fdct_mmx2, fdct, test); dct_error("FAAN", 0, ff_faandct, fdct, test); } else { dct_error("REF-DBL", 1, idct, idct, test); dct_error("INT", 1, j_rev_dct, idct, test); dct_error("LIBMPEG2-MMX", 1, ff_mmx_idct, idct, test); dct_error("LIBMPEG2-MMXEXT", 1, ff_mmxext_idct, idct, test); dct_error("SIMPLE-C", 1, simple_idct, idct, test); dct_error("SIMPLE-MMX", 1, ff_simple_idct_mmx, idct, test); // dct_error("ODIVX-C", 1, odivx_idct_c, idct); //printf(" test against odivx idct\n"); // dct_error("REF", 1, idct, odivx_idct_c); // dct_error("INT", 1, j_rev_dct, odivx_idct_c); // dct_error("MMX", 1, ff_mmx_idct, odivx_idct_c); // dct_error("MMXEXT", 1, ff_mmxext_idct, odivx_idct_c); // dct_error("SIMPLE-C", 1, simple_idct, odivx_idct_c); // dct_error("SIMPLE-MMX", 1, ff_simple_idct_mmx, odivx_idct_c); // dct_error("ODIVX-C", 1, odivx_idct_c, odivx_idct_c); } } return 0; }