/* * VC-9 and WMV3 decoder * Copyright (c) 2005 Anonymous * Copyright (c) 2005 Alex Beregszaszi * Copyright (c) 2005 Michael Niedermayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /** * @file vc9.c * VC-9 and WMV3 decoder * * TODO: Norm-6 bitplane imode, most AP stuff, optimize, all of MB layer :) * TODO: use MPV_ !! * TODO: export decode012 in bitstream.h ? */ #include "common.h" #include "dsputil.h" #include "avcodec.h" #include "mpegvideo.h" #include "vc9data.h" /* Some inhibiting stuff */ #define HAS_ADVANCED_PROFILE 1 #define TRACE 1 #if TRACE # define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) \ if (init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) < 0) \ { \ av_log(v->avctx, AV_LOG_ERROR, "Error for " # vlc " (%i)\n", i); \ return -1; \ } #else # define INIT_VLC(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) \ init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, \ codes, codes_wrap, codes_size, use_static) #endif #define PROFILE_SIMPLE 0 #define PROFILE_MAIN 1 #define PROFILE_ADVANCED 3 #define QUANT_FRAME_IMPLICIT 0 #define QUANT_FRAME_EXPLICIT 1 #define QUANT_NON_UNIFORM 2 #define QUANT_UNIFORM 3 /* Where quant can be changed */ #define DQPROFILE_FOUR_EDGES 0 #define DQPROFILE_DOUBLE_EDGES 1 #define DQPROFILE_SINGLE_EDGE 2 #define DQPROFILE_ALL_MBS 3 /* Which edge is quantized with ALTPQUANT */ #define DQSINGLE_BEDGE_LEFT 0 #define DQSINGLE_BEDGE_TOP 1 #define DQSINGLE_BEDGE_RIGHT 2 #define DQSINGLE_BEDGE_BOTTOM 3 /* Which pair of edges is quantized with ALTPQUANT */ #define DQDOUBLE_BEDGE_TOPLEFT 0 #define DQDOUBLE_BEDGE_TOPRIGHT 1 #define DQDOUBLE_BEDGE_BOTTOMRIGHT 2 #define DQDOUBLE_BEDGE_BOTTOMLEFT 3 /* MV P modes */ #define MV_PMODE_1MV_HPEL_BILIN 0 #define MV_PMODE_1MV 1 #define MV_PMODE_1MV_HPEL 2 #define MV_PMODE_MIXED_MV 3 #define MV_PMODE_INTENSITY_COMP 4 #define BMV_TYPE_BACKWARD 0 #define BMV_TYPE_FORWARD 1 #define BMV_TYPE_INTERPOLATED 3 /* MV P mode - the 5th element is only used for mode 1 */ static const uint8_t mv_pmode_table[2][5] = { { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV, MV_PMODE_INTENSITY_COMP }, { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_INTENSITY_COMP } }; /* One more frame type */ #define BI_TYPE 7 /* FIXME Worse than ugly */ static const int fps_nr[5] = { 24, 25, 30, 50, 60 }, fps_dr[2] = { 1000, 1001 }; static const uint8_t pquant_table[3][32] = { { /* Implicit quantizer */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31 }, { /* Explicit quantizer, pquantizer uniform */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }, { /* Explicit quantizer, pquantizer non-uniform */ 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31 } }; // FIXME move this into the context #define VC9_BFRACTION_VLC_BITS 7 static VLC vc9_bfraction_vlc; #define VC9_IMODE_VLC_BITS 4 static VLC vc9_imode_vlc; #define VC9_NORM2_VLC_BITS 3 static VLC vc9_norm2_vlc; #define VC9_NORM6_VLC_BITS 9 static VLC vc9_norm6_vlc; /* Could be optimized, one table only needs 8 bits */ #define VC9_TTMB_VLC_BITS 9 //12 static VLC vc9_ttmb_vlc[3]; #define VC9_MV_DIFF_VLC_BITS 9 //15 static VLC vc9_mv_diff_vlc[4]; #define VC9_CBPCY_I_VLC_BITS 9 //13 static VLC vc9_cbpcy_i_vlc; #define VC9_CBPCY_P_VLC_BITS 9 //14 static VLC vc9_cbpcy_p_vlc[4]; #define VC9_4MV_BLOCK_PATTERN_VLC_BITS 6 static VLC vc9_4mv_block_pattern_vlc[4]; #define VC9_LUMA_DC_VLC_BITS 9 static VLC vc9_luma_dc_vlc[2]; #define VC9_CHROMA_DC_VLC_BITS 9 static VLC vc9_chroma_dc_vlc[2]; //We mainly need data and is_raw, so this struct could be avoided //to save a level of indirection; feel free to modify typedef struct BitPlane { uint8_t *data; int width, stride; int height; uint8_t is_raw; } BitPlane; typedef struct VC9Context{ /* No MpegEnc context, might be good to use it */ GetBitContext gb; AVCodecContext *avctx; /***************************/ /* Sequence Header */ /***************************/ /* Simple/Main Profile */ int res_sm; //reserved, 2b int res_x8; //reserved int multires; //frame-level RESPIC syntax element present int res_fasttx; //always 1 int res_transtab; //always 0 int syncmarker; //Sync markers presents int rangered; //RANGEREDFRM (range reduction) syntax element present int res_rtm_flag; //reserved, set to 1 int reserved; //duh #if HAS_ADVANCED_PROFILE /* Advanced Profile */ int level; //3 int chromaformat; //2 int postprocflag; //frame-based processing use int broadcast; //TFF/RFF present int interlace; //Progressive/interlaced (RPTFTM syntax element) int tfcntrflag; //TFCNTR present int panscanflag; //NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} presents int extended_dmv; int color_prim; //8 int transfer_char; //8 int matrix_coef; //8 int hrd_param_flag; #endif /* All Profiles */ /* TODO: move all int to flags */ int profile; //2 int frmrtq_postproc; //3 int bitrtq_postproc; //5 int loopfilter; int fastuvmc; //Rounding of qpel vector to hpel ? (not in Simple) int extended_mv; //Ext MV in P/B (not in Simple) int dquant; //Q varies with MBs, 2bits (not in Simple) int vstransform; //variable-size transform46 int overlap; //overlapped transforms in use int quantizer_mode; //2, quantizer mode used for sequence, see QUANT_* int finterpflag; //INTERPFRM present /*****************************/ /* Frame decoding */ /*****************************/ /* All profiles */ uint8_t mv_mode, mv_mode2; /* MV coding mode */ uint8_t pict_type; /* Picture type, mapped on MPEG types */ uint8_t pq, altpq; /* Quantizers */ uint8_t dquantfrm, dqprofile, dqsbedge, dqbilevel; /* pquant parameters */ int width_mb, height_mb; int tile; /* 3x2 if (width_mb%3) else 2x3 */ VLC *luma_ac_vlc, *chroma_ac_vlc, *luma_dc_vlc, *chroma_dc_vlc; /* transac/dcfrm bits are indexes */ uint8_t ttmbf, ttfrm; /* Transform type */ uint8_t lumscale, lumshift; /* Luma compensation parameters */ int16_t bfraction; /* Relative position % anchors=> how to scale MVs */ uint8_t halfpq; /* Uniform quant over image and qp+.5 */ uint8_t respic; /* Ranges: * 0 -> [-64n 63.f] x [-32, 31.f] * 1 -> [-128, 127.f] x [-64, 63.f] * 2 -> [-512, 511.f] x [-128, 127.f] * 3 -> [-1024, 1023.f] x [-256, 255.f] */ uint8_t mvrange; uint8_t pquantizer; uint8_t *previous_line_cbpcy; /* To use for predicted CBPCY */ VLC *cbpcy_vlc /* Current CBPCY VLC table */, *mv_diff_vlc /* Current MV Diff VLC table */, *ttmb_vlc /* Current MB Transform Type VLC table */; BitPlane mv_type_mb_plane; /* bitplane for mv_type == (4MV) */ BitPlane skip_mb_plane, /* bitplane for skipped MBs */ direct_mb_plane; /* bitplane for "direct" MBs */ /* S/M only ? */ uint8_t rangeredfrm; /* out_sample = CLIP((in_sample-128)*2+128) */ uint8_t interpfrm; #if HAS_ADVANCED_PROFILE /* Advanced */ uint8_t fcm; //0->Progressive, 2->Frame-Interlace, 3->Field-Interlace uint8_t numpanscanwin; uint8_t tfcntr; uint8_t rptfrm, tff, rff; uint8_t topleftx; uint8_t toplefty; uint8_t bottomrightx; uint8_t bottomrighty; uint8_t rndctrl; uint8_t uvsamp; uint8_t postproc; int hrd_num_leaky_buckets; uint8_t bit_rate_exponent; uint8_t buffer_size_exponent; BitPlane ac_pred_plane; //AC prediction flags bitplane BitPlane over_flags_plane; //Overflags bitplane uint8_t condover; uint16_t *hrd_rate, *hrd_buffer; VLC *luma_ac2_vlc, *chroma_ac2_vlc; #endif } VC9Context; /* FIXME Slow and ugly */ static int get_prefix(GetBitContext *gb, int stop, int len) { #if 1 int i = 0, tmp = !stop; while (i != len && tmp != stop) { tmp = get_bits(gb, 1); i++; } return i; #else unsigned int buf; int log; OPEN_READER(re, gb); UPDATE_CACHE(re, gb); buf=GET_CACHE(re, gb); //Still not sure if (stop) buf = ~buf; log= av_log2(-buf); //FIXME: -? if (log < limit){ LAST_SKIP_BITS(re, gb, log+1); CLOSE_READER(re, gb); return log; } LAST_SKIP_BITS(re, gb, limit); CLOSE_READER(re, gb); return limit; #endif } static int decode012(GetBitContext *gb) { int n; n = get_bits1(gb); if (n == 0) return 0; else return get_bits1(gb) + 1; } static int init_common(VC9Context *v) { static int done = 0; int i; /* Set the bit planes */ /* FIXME memset better ? (16bytes) */ v->mv_type_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->direct_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->skip_mb_plane = (struct BitPlane) { NULL, 0, 0, 0 }; #if HAS_ADVANCED_PROFILE v->ac_pred_plane = v->over_flags_plane = (struct BitPlane) { NULL, 0, 0, 0 }; v->hrd_rate = v->hrd_buffer = NULL; #endif /* VLC tables */ #if 0 // spec -> actual tables converter for(i=0; i<64; i++){ int code= (vc9_norm6_spec[i][1] << vc9_norm6_spec[i][4]) + vc9_norm6_spec[i][3]; av_log(NULL, AV_LOG_DEBUG, "0x%03X, ", code); if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n"); } for(i=0; i<64; i++){ int code= vc9_norm6_spec[i][2] + vc9_norm6_spec[i][4]; av_log(NULL, AV_LOG_DEBUG, "%2d, ", code); if(i%16==15) av_log(NULL, AV_LOG_DEBUG, "\n"); } #endif if(!done) { done = 1; INIT_VLC(&vc9_bfraction_vlc, VC9_BFRACTION_VLC_BITS, 23, vc9_bfraction_bits, 1, 1, vc9_bfraction_codes, 1, 1, 1); INIT_VLC(&vc9_norm2_vlc, VC9_NORM2_VLC_BITS, 4, vc9_norm2_bits, 1, 1, vc9_norm2_codes, 1, 1, 1); INIT_VLC(&vc9_norm6_vlc, VC9_NORM6_VLC_BITS, 64, vc9_norm6_bits, 1, 1, vc9_norm6_codes, 2, 2, 1); INIT_VLC(&vc9_cbpcy_i_vlc, VC9_CBPCY_I_VLC_BITS, 64, vc9_cbpcy_i_bits, 1, 1, vc9_cbpcy_i_codes, 2, 2, 1); INIT_VLC(&vc9_imode_vlc, VC9_IMODE_VLC_BITS, 7, vc9_imode_bits, 1, 1, vc9_imode_codes, 1, 1, 1); for (i=0; i<2; i++) { INIT_VLC(&vc9_luma_dc_vlc[i], VC9_LUMA_DC_VLC_BITS, 26, vc9_luma_dc_bits[i], 1, 1, vc9_luma_dc_codes[i], 4, 4, 1); INIT_VLC(&vc9_chroma_dc_vlc[i], VC9_CHROMA_DC_VLC_BITS, 26, vc9_chroma_dc_bits[i], 1, 1, vc9_chroma_dc_codes[i], 4, 4, 1); } for (i=0; i<3; i++) { INIT_VLC(&vc9_ttmb_vlc[i], VC9_TTMB_VLC_BITS, 16, vc9_ttmb_bits[i], 1, 1, vc9_ttmb_codes[i], 2, 2, 1); } for(i=0; i<4; i++) { INIT_VLC(&vc9_4mv_block_pattern_vlc[i], VC9_4MV_BLOCK_PATTERN_VLC_BITS, 16, vc9_4mv_block_pattern_bits[i], 1, 1, vc9_4mv_block_pattern_codes[i], 1, 1, 1); INIT_VLC(&vc9_cbpcy_p_vlc[i], VC9_CBPCY_P_VLC_BITS, 64, vc9_cbpcy_p_bits[i], 1, 1, vc9_cbpcy_p_codes[i], 2, 2, 1); INIT_VLC(&vc9_mv_diff_vlc[i], VC9_MV_DIFF_VLC_BITS, 73, vc9_mv_diff_bits[i], 1, 1, vc9_mv_diff_codes[i], 2, 2, 1); } } /* Other defaults */ v->pq = -1; v->mvrange = 0; /* 7.1.1.18, p80 */ return 0; } #if HAS_ADVANCED_PROFILE /* 6.2.1, p32 */ static int decode_hrd(VC9Context *v, GetBitContext *gb) { int i, num; num = get_bits(gb, 5); if (v->hrd_rate || num != v->hrd_num_leaky_buckets) { av_freep(&v->hrd_rate); } if (!v->hrd_rate) v->hrd_rate = av_malloc(num*sizeof(uint16_t)); if (!v->hrd_rate) return -1; if (v->hrd_buffer || num != v->hrd_num_leaky_buckets) { av_freep(&v->hrd_buffer); } if (!v->hrd_buffer) v->hrd_buffer = av_malloc(num*sizeof(uint16_t)); if (!v->hrd_buffer) return -1; v->hrd_num_leaky_buckets = num; //exponent in base-2 for rate v->bit_rate_exponent = get_bits(gb, 4); //exponent in base-2 for buffer_size v->buffer_size_exponent = get_bits(gb, 4); for (i=0; ihrd_rate[i] = get_bits(gb, 16); if (i && v->hrd_rate[i-1]>=v->hrd_rate[i]) { av_log(v, AV_LOG_ERROR, "HDR Rates aren't strictly increasing:" "%i vs %i\n", v->hrd_rate[i-1], v->hrd_rate[i]); return -1; } v->hrd_buffer[i] = get_bits(gb, 16); if (i && v->hrd_buffer[i-1]hrd_buffer[i]) { av_log(v, AV_LOG_ERROR, "HDR Buffers aren't decreasing:" "%i vs %i\n", v->hrd_buffer[i-1], v->hrd_buffer[i]); return -1; } } return 0; } /* Table 2, p18 */ static int decode_advanced_sequence_header(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; int nr, dr, aspect_ratio; v->postprocflag = get_bits(gb, 1); v->broadcast = get_bits(gb, 1); v->interlace = get_bits(gb, 1); v->tfcntrflag = get_bits(gb, 1); v->finterpflag = get_bits(gb, 1); //common v->panscanflag = get_bits(gb, 1); v->reserved = get_bits(gb, 1); if (v->reserved) { av_log(avctx, AV_LOG_ERROR, "RESERVED should be 0 (is %i)\n", v->reserved); return -1; } if (v->extended_mv) v->extended_dmv = get_bits(gb, 1); /* 6.1.7, p21 */ if (get_bits(gb, 1) /* pic_size_flag */) { avctx->coded_width = get_bits(gb, 12); avctx->coded_height = get_bits(gb, 12); if ( get_bits(gb, 1) /* disp_size_flag */) { avctx->width = get_bits(gb, 14); avctx->height = get_bits(gb, 14); } /* 6.1.7.4, p22 */ if ( get_bits(gb, 1) /* aspect_ratio_flag */) { aspect_ratio = get_bits(gb, 4); //SAR if (aspect_ratio == 0x0F) //FF_ASPECT_EXTENDED { avctx->sample_aspect_ratio.num = get_bits(gb, 8); avctx->sample_aspect_ratio.den = get_bits(gb, 8); } else if (aspect_ratio == 0x0E) { av_log(avctx, AV_LOG_DEBUG, "Reserved AR found\n"); } else { avctx->sample_aspect_ratio = vc9_pixel_aspect[aspect_ratio]; } } } else { avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; } /* 6.1.8, p23 */ if ( get_bits(gb, 1) /* framerateflag */) { if ( get_bits(gb, 1) /* framerateind */) { nr = get_bits(gb, 8); dr = get_bits(gb, 4); if (nr<1) { av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATENR\n"); return -1; } if (nr>5) { av_log(avctx, AV_LOG_ERROR, "Reserved FRAMERATENR %i not handled\n", nr); } if (dr<1) { av_log(avctx, AV_LOG_ERROR, "0 is forbidden for FRAMERATEDR\n"); } if (dr>2) { av_log(avctx, AV_LOG_ERROR, "Reserved FRAMERATEDR %i not handled\n", dr); } avctx->frame_rate_base = fps_nr[dr]; avctx->frame_rate = fps_nr[nr]; } else { nr = get_bits(gb, 16); // 0.03125->2048Hz / 0.03125Hz avctx->frame_rate = 1000000; avctx->frame_rate_base = 31250*(1+nr); } } /* 6.1.9, p25 */ if ( get_bits(gb, 1) /* color_format_flag */) { //Chromacity coordinates of color primaries //like ITU-R BT.709-2, BT.470-2, ... v->color_prim = get_bits(gb, 8); if (v->color_prim<1) { av_log(avctx, AV_LOG_ERROR, "0 for COLOR_PRIM is reserved\n"); return -1; } if (v->color_prim == 3 || v->color_prim>6) { av_log(avctx, AV_LOG_DEBUG, "Reserved COLOR_PRIM %i found\n", v->color_prim); return -1; } //Opto-electronic transfer characteristics v->transfer_char = get_bits(gb, 8); if (v->transfer_char == 3 || v->transfer_char>8) { av_log(avctx, AV_LOG_DEBUG, "Reserved TRANSFERT_CHAR %i found\n", v->color_prim); return -1; } //Matrix coefficient for primariev->YCbCr v->matrix_coef = get_bits(gb, 8); if (v->matrix_coef < 1) return -1; //forbidden if ((v->matrix_coef>3 && v->matrix_coef<6) || v->matrix_coef>7) { av_log(avctx, AV_LOG_DEBUG, "Reserved MATRIX_COEF %i found\n", v->color_prim); return -1; } } //Hypothetical reference decoder indicator flag v->hrd_param_flag = get_bits(gb, 1); if (v->hrd_param_flag) { if (decode_hrd(v, gb) < 0) return -1; } av_log(avctx, AV_LOG_DEBUG, "Advanced profile not supported yet\n"); return -1; } #endif /* Figure 7-8, p16-17 */ static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; v->profile = get_bits(gb, 2); av_log(avctx, AV_LOG_DEBUG, "Profile: %i\n", v->profile); #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { v->level = get_bits(gb, 3); v->chromaformat = get_bits(gb, 2); if (v->chromaformat != 1) { av_log(avctx, AV_LOG_ERROR, "Only 4:2:0 chroma format supported\n"); return -1; } } else #endif { v->res_sm = get_bits(gb, 2); //reserved if (v->res_sm) { av_log(avctx, AV_LOG_ERROR, "Reserved RES_SM=%i is forbidden\n", v->res_sm); //return -1; } } // (fps-2)/4 (->30) v->frmrtq_postproc = get_bits(gb, 3); //common // (bitrate-32kbps)/64kbps v->bitrtq_postproc = get_bits(gb, 5); //common v->loopfilter = get_bits(gb, 1); //common #if HAS_ADVANCED_PROFILE if (v->profile <= PROFILE_MAIN) #endif { v->res_x8 = get_bits(gb, 1); //reserved if (v->res_x8) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_X8 is forbidden\n"); return -1; } v->multires = get_bits(gb, 1); v->res_fasttx = get_bits(gb, 1); if (!v->res_fasttx) { av_log(avctx, AV_LOG_ERROR, "0 for reserved RES_FASTTX is forbidden\n"); //return -1; } } v->fastuvmc = get_bits(gb, 1); //common if (!v->profile && !v->fastuvmc) { av_log(avctx, AV_LOG_ERROR, "FASTUVMC unavailable in Simple Profile\n"); return -1; } v->extended_mv = get_bits(gb, 1); //common if (!v->profile && v->extended_mv) { av_log(avctx, AV_LOG_ERROR, "Extended MVs unavailable in Simple Profile\n"); return -1; } v->dquant = get_bits(gb, 2); //common v->vstransform = get_bits(gb, 1); //common #if HAS_ADVANCED_PROFILE if (v->profile <= PROFILE_MAIN) #endif { v->res_transtab = get_bits(gb, 1); if (v->res_transtab) { av_log(avctx, AV_LOG_ERROR, "1 for reserved RES_TRANSTAB is forbidden\n"); return -1; } } v->overlap = get_bits(gb, 1); //common #if HAS_ADVANCED_PROFILE if (v->profile <= PROFILE_MAIN) #endif { v->syncmarker = get_bits(gb, 1); v->rangered = get_bits(gb, 1); } avctx->max_b_frames = get_bits(gb, 3); //common v->quantizer_mode = get_bits(gb, 2); //common #if HAS_ADVANCED_PROFILE if (v->profile <= PROFILE_MAIN) #endif { v->finterpflag = get_bits(gb, 1); //common v->res_rtm_flag = get_bits(gb, 1); //reserved if (!v->res_rtm_flag) { av_log(avctx, AV_LOG_ERROR, "0 for reserved RES_RTM_FLAG is forbidden\n"); //return -1; } #if TRACE av_log(avctx, AV_LOG_INFO, "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n" "LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n" "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n" "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n", v->profile, v->frmrtq_postproc, v->bitrtq_postproc, v->loopfilter, v->multires, v->fastuvmc, v->extended_mv, v->rangered, v->vstransform, v->overlap, v->syncmarker, v->dquant, v->quantizer_mode, avctx->max_b_frames ); return 0; #endif } #if HAS_ADVANCED_PROFILE else return decode_advanced_sequence_header(avctx, gb); #endif } #if HAS_ADVANCED_PROFILE /*****************************************************************************/ /* Entry point decoding (Advanced Profile) */ /*****************************************************************************/ static int advanced_entry_point_process(AVCodecContext *avctx, GetBitContext *gb) { VC9Context *v = avctx->priv_data; int range_mapy_flag, range_mapuv_flag, i; if (v->profile != PROFILE_ADVANCED) { av_log(avctx, AV_LOG_ERROR, "Entry point are only defined in Advanced Profile!\n"); return -1; //Only for advanced profile! } if (v->hrd_param_flag) { //Update buffer fullness av_log(avctx, AV_LOG_DEBUG, "Buffer fullness update\n"); for (i=0; ihrd_num_leaky_buckets; i++) skip_bits(gb, 8); } if ((range_mapy_flag = get_bits(gb, 1))) { //RANGE_MAPY av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPY\n"); skip_bits(gb, 3); } if ((range_mapuv_flag = get_bits(gb, 1))) { //RANGE_MAPUV av_log(avctx, AV_LOG_DEBUG, "RANGE_MAPUV\n"); skip_bits(gb, 3); } if (v->panscanflag) { //NUMPANSCANWIN v->numpanscanwin = get_bits(gb, 3); av_log(avctx, AV_LOG_DEBUG, "NUMPANSCANWIN: %u\n", v->numpanscanwin); } return 0; } #endif /******************************************************************************/ /* Bitplane decoding: 8.7, p56 */ /******************************************************************************/ #define IMODE_RAW 0 #define IMODE_NORM2 1 #define IMODE_DIFF2 2 #define IMODE_NORM6 3 #define IMODE_DIFF6 4 #define IMODE_ROWSKIP 5 #define IMODE_COLSKIP 6 int alloc_bitplane(BitPlane *bp, int width, int height) { if (!bp || bp->width<0 || bp->height<0) return -1; bp->data = (uint8_t*)av_malloc(width*height); if (!bp->data) return -1; bp->width = bp->stride = width; //FIXME Needed for aligned data ? bp->height = height; return 0; } static void decode_rowskip(uint8_t* plane, int width, int height, int stride, VC9Context *v){ int x, y; for (y=0; ygb, 1)) //rowskip memset(plane, 0, width); else for (x=0; xgb, 1); plane += stride; } } //FIXME optimize static void decode_colskip(uint8_t* plane, int width, int height, int stride, VC9Context *v){ int x, y; for (x=0; xgb, 1)) //colskip for (y=0; ygb, 1); plane ++; } } //FIXME optimize //FIXME is this supposed to set elements to 0/FF or 0/1? 0/x!=0, not used for // prediction //FIXME Use BitPlane struct or return if table is raw (no bits read here but // later on) static int bitplane_decoding(BitPlane *bp, VC9Context *v) { int imode, x, y, code, use_vertical_tile, tile_w, tile_h; uint8_t invert, *planep = bp->data; invert = get_bits(&v->gb, 1); imode = get_vlc2(&v->gb, vc9_imode_vlc.table, VC9_IMODE_VLC_BITS, 2); bp->is_raw = 0; switch (imode) { case IMODE_RAW: //Data is actually read in the MB layer (same for all tests == "raw") bp->is_raw = 1; //invert ignored return invert; case IMODE_DIFF2: case IMODE_NORM2: if ((bp->height*bp->width) & 1) *(++planep) = get_bits(&v->gb, 1); for(x=0; x<(bp->height*bp->width)>>1; x++){ code = get_vlc2(&v->gb, vc9_norm2_vlc.table, VC9_NORM2_VLC_BITS, 2); *(++planep) = code&1; //lsb => left *(++planep) = code&2; //msb => right - bitplane => only !0 matters //FIXME width->stride } break; case IMODE_DIFF6: case IMODE_NORM6: use_vertical_tile= bp->height%3==0 && bp->width%3!=0; tile_w= use_vertical_tile ? 2 : 3; tile_h= use_vertical_tile ? 3 : 2; for(y= bp->height%tile_h; y< bp->height; y+=tile_h){ for(x= bp->width%tile_w; x< bp->width; x+=tile_w){ code = get_vlc2(&v->gb, vc9_norm6_vlc.table, VC9_NORM6_VLC_BITS, 2); //FIXME following is a pure guess and probably wrong //FIXME A bitplane (0 | !0), so could the shifts be avoided ? planep[x + 0*bp->stride]= (code>>0)&1; planep[x + 1 + 0*bp->stride]= (code>>1)&1; if(use_vertical_tile){ planep[x + 0 + 1*bp->stride]= (code>>2)&1; planep[x + 1 + 1*bp->stride]= (code>>3)&1; planep[x + 0 + 2*bp->stride]= (code>>4)&1; planep[x + 1 + 2*bp->stride]= (code>>5)&1; }else{ planep[x + 2 + 0*bp->stride]= (code>>2)&1; planep[x + 0 + 1*bp->stride]= (code>>3)&1; planep[x + 1 + 1*bp->stride]= (code>>4)&1; planep[x + 2 + 1*bp->stride]= (code>>5)&1; } } } x= bp->width % tile_w; decode_colskip(bp->data , x, bp->height , bp->stride, v); decode_rowskip(bp->data+x, bp->width - x, bp->height % tile_h, bp->stride, v); break; case IMODE_ROWSKIP: decode_rowskip(bp->data, bp->width, bp->height, bp->stride, v); break; case IMODE_COLSKIP: //Teh ugly decode_colskip(bp->data, bp->width, bp->height, bp->stride, v); break; default: break; } /* Applying diff operator */ if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6) { planep = bp->data; planep[0] ^= invert; for (x=1; xwidth; x++) planep[x] ^= planep[x-1]; for (y=1; yheight; y++) { planep += bp->stride; planep[0] ^= planep[-bp->stride]; for (x=1; xwidth; x++) { if (planep[x-1] != planep[x-bp->stride]) planep[x] ^= invert; else planep[x] ^= planep[x-1]; } } } else if (invert) { planep = bp->data; for (x=0; xwidth*bp->height; x++) planep[x] = !planep[x]; //FIXME stride } return (imode<<1) + invert; } /*****************************************************************************/ /* VOP Dquant decoding */ /*****************************************************************************/ static int vop_dquant_decoding(VC9Context *v) { int pqdiff; //variable size if (v->dquant == 2) { pqdiff = get_bits(&v->gb, 3); if (pqdiff == 7) v->altpq = get_bits(&v->gb, 5); else v->altpq = v->pq + pqdiff + 1; } else { v->dquantfrm = get_bits(&v->gb, 1); if ( v->dquantfrm ) { v->dqprofile = get_bits(&v->gb, 2); switch (v->dqprofile) { case DQPROFILE_SINGLE_EDGE: case DQPROFILE_DOUBLE_EDGES: v->dqsbedge = get_bits(&v->gb, 2); break; case DQPROFILE_ALL_MBS: v->dqbilevel = get_bits(&v->gb, 1); default: break; //Forbidden ? } if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS) { pqdiff = get_bits(&v->gb, 3); if (pqdiff == 7) v->altpq = get_bits(&v->gb, 5); else v->altpq = v->pq + pqdiff + 1; } } } return 0; } /*****************************************************************************/ /* All Profiles picture header decoding specific functions */ /* Only pro/epilog differs between Simple/Main and Advanced => check caller */ /*****************************************************************************/ static int decode_bi_picture_header(VC9Context *v) { /* Very particular case: - for S/M Profiles, decode_b_picture_header reads BF, bfraction then determine if this is a BI frame, calling this function afterwards - for A Profile, PTYPE already tells so and we can go directly there */ int pqindex; /* Read the quantization stuff */ pqindex = get_bits(&v->gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(&v->gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(&v->gb, 1); /* Read the MV type/mode */ if (v->extended_mv == 1) v->mvrange = get_prefix(&v->gb, 0, 3); /* FIXME: what table are used in that case ? */ v->mv_diff_vlc = &vc9_mv_diff_vlc[0]; v->cbpcy_vlc = &vc9_cbpcy_i_vlc; av_log(v->avctx, AV_LOG_DEBUG, "B frame, QP=%i\n", v->pq); av_log(v->avctx, AV_LOG_ERROR, "BI_TYPE not supported yet\n"); /* Epilog should be done in caller */ return -1; } /* Tables 11+12, p62-65 */ static int decode_b_picture_header(VC9Context *v) { int pqindex, status; /* Prolog common to all frametypes should be done in caller */ if (v->profile == PROFILE_SIMPLE) { av_log(v, AV_LOG_ERROR, "Found a B frame while in Simple Profile!\n"); return FRAME_SKIPED; } v->bfraction = vc9_bfraction_lut[get_vlc2(&v->gb, vc9_bfraction_vlc.table, VC9_BFRACTION_VLC_BITS, 2)]; if (v->bfraction < -1) { av_log(v, AV_LOG_ERROR, "Invalid BFRaction\n"); return FRAME_SKIPED; } else if (!v->bfraction) { /* We actually have a BI frame */ return decode_bi_picture_header(v); } /* Read the quantization stuff */ pqindex = get_bits(&v->gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(&v->gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(&v->gb, 1); /* Read the MV type/mode */ if (v->extended_mv == 1) v->mvrange = get_prefix(&v->gb, 0, 3); v->mv_mode = get_bits(&v->gb, 1); if (v->pq < 13) { if (!v->mv_mode) { v->mv_mode = get_bits(&v->gb, 2); if (v->mv_mode) av_log(v, AV_LOG_ERROR, "mv_mode for lowquant B frame was %i\n", v->mv_mode); } } else { if (!v->mv_mode) { if (get_bits(&v->gb, 1)) av_log(v, AV_LOG_ERROR, "mv_mode for highquant B frame was %i\n", v->mv_mode); } v->mv_mode = 1-v->mv_mode; //To match (pq < 13) mapping } if (v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(&v->mv_type_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif } //bitplane status = bitplane_decoding(&v->direct_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "MB Direct plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif bitplane_decoding(&v->skip_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "Skip MB plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif /* FIXME: what is actually chosen for B frames ? */ v->mv_diff_vlc = &vc9_mv_diff_vlc[get_bits(&v->gb, 2)]; v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(&v->gb, 2)]; if (v->dquant) { vop_dquant_decoding(v); } if (v->vstransform) { v->ttmbf = get_bits(&v->gb, 1); if (v->ttmbf) { v->ttfrm = get_bits(&v->gb, 2); av_log(v, AV_LOG_INFO, "Transform used: %ix%i\n", (v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8); } } /* Epilog should be done in caller */ return 0; } /* Tables 5+7, p53-54 and 55-57 */ static int decode_i_picture_header(VC9Context *v) { int pqindex, status = 0, ac_pred; /* Prolog common to all frametypes should be done in caller */ //BF = Buffer Fullness if (v->profile <= PROFILE_MAIN && get_bits(&v->gb, 7)) { av_log(v, AV_LOG_DEBUG, "I BufferFullness not 0\n"); } /* Quantizer stuff */ pqindex = get_bits(&v->gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(&v->gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(&v->gb, 1); av_log(v->avctx, AV_LOG_DEBUG, "I frame: QP=%i (+%i/2)\n", v->pq, v->halfpq); #if HAS_ADVANCED_PROFILE if (v->profile <= PROFILE_MAIN) #endif { if (v->extended_mv) v->mvrange = get_prefix(&v->gb, 0, 3); if (v->multires) v->respic = get_bits(&v->gb, 2); } #if HAS_ADVANCED_PROFILE else { ac_pred = get_bits(&v->gb, 1); if (v->postprocflag) v->postproc = get_bits(&v->gb, 1); /* 7.1.1.34 + 8.5.2 */ if (v->overlap && v->pq<9) { v->condover = get_bits(&v->gb, 1); if (v->condover) { v->condover = 2+get_bits(&v->gb, 1); if (v->condover == 3) { status = bitplane_decoding(&v->over_flags_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "Overflags plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif } } } } #endif /* Epilog should be done in caller */ return status; } /* Table 9, p58-60 */ static int decode_p_picture_header(VC9Context *v) { /* INTERFRM, FRMCNT, RANGEREDFRM read in caller */ int lowquant, pqindex, status = 0; pqindex = get_bits(&v->gb, 5); if (v->quantizer_mode == QUANT_FRAME_IMPLICIT) v->pq = pquant_table[0][pqindex]; else { v->pq = pquant_table[v->quantizer_mode-1][pqindex]; } if (pqindex < 9) v->halfpq = get_bits(&v->gb, 1); if (v->quantizer_mode == QUANT_FRAME_EXPLICIT) v->pquantizer = get_bits(&v->gb, 1); av_log(v->avctx, AV_LOG_DEBUG, "P Frame: QP=%i (+%i/2)\n", v->pq, v->halfpq); if (v->extended_mv == 1) v->mvrange = get_prefix(&v->gb, 0, 3); #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { if (v->postprocflag) v->postproc = get_bits(&v->gb, 1); } else #endif if (v->multires) v->respic = get_bits(&v->gb, 2); lowquant = (v->pquantizer>12) ? 0 : 1; v->mv_mode = mv_pmode_table[lowquant][get_prefix(&v->gb, 1, 4)]; if (v->mv_mode == MV_PMODE_INTENSITY_COMP) { v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(&v->gb, 1, 3)]; v->lumscale = get_bits(&v->gb, 6); v->lumshift = get_bits(&v->gb, 6); } if ((v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_MIXED_MV) || v->mv_mode == MV_PMODE_MIXED_MV) { status = bitplane_decoding(&v->mv_type_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif } status = bitplane_decoding(&v->skip_mb_plane, v); if (status < 0) return -1; #if TRACE av_log(v->avctx, AV_LOG_DEBUG, "MB Skip plane encoding: " "Imode: %i, Invert: %i\n", status>>1, status&1); #endif /* Hopefully this is correct for P frames */ v->mv_diff_vlc = &vc9_mv_diff_vlc[get_bits(&v->gb, 2)]; v->cbpcy_vlc = &vc9_cbpcy_p_vlc[get_bits(&v->gb, 2)]; if (v->dquant) { av_log(v->avctx, AV_LOG_INFO, "VOP DQuant info\n"); vop_dquant_decoding(v); } if (v->vstransform) { v->ttmbf = get_bits(&v->gb, 1); if (v->ttmbf) { v->ttfrm = get_bits(&v->gb, 2); av_log(v->avctx, AV_LOG_INFO, "Transform used: %ix%i\n", (v->ttfrm & 2) ? 4 : 8, (v->ttfrm & 1) ? 4 : 8); } } /* Epilog should be done in caller */ return 0; } static int standard_decode_picture_header(VC9Context *v) { int status = 0, index; if (v->finterpflag) v->interpfrm = get_bits(&v->gb, 1); skip_bits(&v->gb, 2); //framecnt unused if (v->rangered) v->rangeredfrm = get_bits(&v->gb, 1); v->pict_type = get_bits(&v->gb, 1); if (v->avctx->max_b_frames && !v->pict_type) { if (get_bits(&v->gb, 1)) v->pict_type = I_TYPE; else v->pict_type = P_TYPE; } else v->pict_type++; //P_TYPE switch (v->pict_type) { case I_TYPE: status = decode_i_picture_header(v); break; case BI_TYPE: status = decode_b_picture_header(v); break; case P_TYPE: status = decode_p_picture_header(v); break; case B_TYPE: status = decode_b_picture_header(v); break; } if (status == FRAME_SKIPED) { av_log(v, AV_LOG_INFO, "Skipping frame...\n"); return status; } /* AC Syntax */ index = decode012(&v->gb); v->luma_ac_vlc = NULL + index; //FIXME Add AC table v->chroma_ac_vlc = NULL + index; if (v->pict_type == I_TYPE || v->pict_type == BI_TYPE) { index = decode012(&v->gb); v->luma_ac2_vlc = NULL + index; //FIXME Add AC2 table v->chroma_ac2_vlc = NULL + index; } /* DC Syntax */ index = decode012(&v->gb); v->luma_dc_vlc = vc9_luma_dc_vlc + index; v->chroma_dc_vlc = vc9_chroma_dc_vlc + index; return 0; } #if HAS_ADVANCED_PROFILE /******************************************************************************/ /* Advanced Profile picture header decoding specific functions */ /******************************************************************************/ static int advanced_decode_picture_header(VC9Context *v) { static const int type_table[4] = { P_TYPE, B_TYPE, I_TYPE, BI_TYPE }; int type, i, index; if (v->interlace) { v->fcm = get_bits(&v->gb, 1); if (v->fcm) v->fcm = 2+get_bits(&v->gb, 1); } type = get_prefix(&v->gb, 0, 4); if (type > 4 || type < 0) return FRAME_SKIPED; v->pict_type = type_table[type]; av_log(v->avctx, AV_LOG_INFO, "AP Frame Type: %i\n", v->pict_type); if (v->tfcntrflag) v->tfcntr = get_bits(&v->gb, 8); if (v->broadcast) { if (!v->interlace) v->rptfrm = get_bits(&v->gb, 2); else { v->tff = get_bits(&v->gb, 1); v->rff = get_bits(&v->gb, 1); } } if (v->panscanflag) { #if 0 for (i=0; inumpanscanwin; i++) { v->topleftx[i] = get_bits(&v->gb, 16); v->toplefty[i] = get_bits(&v->gb, 16); v->bottomrightx[i] = get_bits(&v->gb, 16); v->bottomrighty[i] = get_bits(&v->gb, 16); } #else skip_bits(&v->gb, 16*4*v->numpanscanwin); #endif } v->rndctrl = get_bits(&v->gb, 1); v->uvsamp = get_bits(&v->gb, 1); if (v->finterpflag == 1) v->interpfrm = get_bits(&v->gb, 1); switch(v->pict_type) { case I_TYPE: if (decode_i_picture_header(v) < 0) return -1; case P_TYPE: if (decode_p_picture_header(v) < 0) return -1; case BI_TYPE: case B_TYPE: if (decode_b_picture_header(v) < 0) return FRAME_SKIPED; default: break; } /* AC Syntax */ index = decode012(&v->gb); v->luma_ac_vlc = NULL + index; //FIXME v->chroma_ac_vlc = NULL + index; //FIXME if (v->pict_type == I_TYPE || v->pict_type == BI_TYPE) { index = decode012(&v->gb); //FIXME v->luma_ac2_vlc = NULL + index; v->chroma_ac2_vlc = NULL + index; } /* DC Syntax */ index = decode012(&v->gb); v->luma_dc_vlc = vc9_luma_dc_vlc + index; v->chroma_dc_vlc = vc9_chroma_dc_vlc + index; return 0; } #endif /******************************************************************************/ /* Block decoding functions */ /******************************************************************************/ /* 7.1.4, p91 and 8.1.1.7, p(1)04 */ /* FIXME proper integration (unusable and lots of parameters to send */ int decode_luma_intra_block(VC9Context *v, int mquant) { int dcdiff; dcdiff = get_vlc2(&v->gb, v->luma_dc_vlc->table, VC9_LUMA_DC_VLC_BITS, 2); if (dcdiff) { if (dcdiff == 119 /* ESC index value */) { /* TODO: Optimize */ if (mquant == 1) dcdiff = get_bits(&v->gb, 10); else if (mquant == 2) dcdiff = get_bits(&v->gb, 9); else dcdiff = get_bits(&v->gb, 8); } else { if (mquant == 1) dcdiff = (dcdiff<<2) + get_bits(&v->gb, 2) - 3; else if (mquant == 2) dcdiff = (dcdiff<<1) + get_bits(&v->gb, 1) - 1; } if (get_bits(&v->gb, 1)) dcdiff = -dcdiff; } /* FIXME: 8.1.1.15, p(1)13, coeff scaling for Adv Profile */ return 0; } /******************************************************************************/ /* MacroBlock decoding functions */ /******************************************************************************/ /* 8.1.1.5, p(1)02-(1)03 */ /* We only need to store 3 flags, but math with 4 is easier */ #define GET_CBPCY(table, bits) \ predicted_cbpcy = get_vlc2(&v->gb, table, bits, 2); \ cbpcy[0] = (p_cbpcy[-1] == p_cbpcy[2]) \ ? previous_cbpcy[1] : p_cbpcy[+2]; \ cbpcy[0] ^= ((predicted_cbpcy>>5)&0x01); \ cbpcy[1] = (p_cbpcy[2] == p_cbpcy[3]) ? cbpcy[0] : p_cbpcy[3]; \ cbpcy[1] ^= ((predicted_cbpcy>>4)&0x01); \ cbpcy[2] = (previous_cbpcy[1] == cbpcy[0]) \ ? previous_cbpcy[3] : cbpcy[0]; \ cbpcy[2] ^= ((predicted_cbpcy>>3)&0x01); \ cbpcy[3] = (cbpcy[1] == cbpcy[0]) ? cbpcy[2] : cbpcy[1]; \ cbpcy[3] ^= ((predicted_cbpcy>>2)&0x01); /* 8.1, p100 */ static int standard_decode_i_mbs(VC9Context *v) { int x, y, current_mb = 0; /* MB/Block Position info */ int ac_pred; /* FIXME: better to use a pointer than using (x<<4) */ uint8_t cbpcy[4], previous_cbpcy[4], predicted_cbpcy, *p_cbpcy /* Pointer to skip some math */; /* Reset CBPCY predictors */ memset(v->previous_line_cbpcy, 0, (v->width_mb+1)<<2); /* Select ttmb table depending on pq */ if (v->pq < 5) v->ttmb_vlc = &vc9_ttmb_vlc[0]; else if (v->pq < 13) v->ttmb_vlc = &vc9_ttmb_vlc[1]; else v->ttmb_vlc = &vc9_ttmb_vlc[2]; for (y=0; yheight_mb; y++) { /* Init CBPCY for line */ *((uint32_t*)previous_cbpcy) = 0x00000000; p_cbpcy = v->previous_line_cbpcy+4; for (x=0; xwidth_mb; x++, p_cbpcy += 4) { /* Get CBPCY */ GET_CBPCY(vc9_cbpcy_i_vlc.table, VC9_CBPCY_I_VLC_BITS); ac_pred = get_bits(&v->gb, 1); /* TODO: Decode blocks from that mb wrt cbpcy */ /* Update for next block */ *((uint32_t*)p_cbpcy) = *((uint32_t*)previous_cbpcy); *((uint32_t*)previous_cbpcy) = *((uint32_t*)cbpcy); current_mb++; } } return 0; } #define GET_MQUANT() \ if (v->dquantfrm) \ { \ if (v->dqprofile == DQPROFILE_ALL_MBS) \ { \ if (v->dqbilevel) \ { \ mquant = (get_bits(&v->gb, 1)) ? v->pq : v->altpq; \ } \ else \ { \ mqdiff = get_bits(&v->gb, 3); \ if (mqdiff != 7) mquant = v->pq + mqdiff; \ else mquant = get_bits(&v->gb, 5); \ } \ } \ } /* MVDATA decoding from 8.3.5.2, p(1)20 */ #define GET_MVDATA(_dmv_x, _dmv_y) \ index = 1 + get_vlc2(&v->gb, v->mv_diff_vlc->table, \ VC9_MV_DIFF_VLC_BITS, 2); \ if (index > 36) \ { \ mb_has_coeffs = 1; \ index -= 37; \ } \ else mb_has_coeffs = 0; \ mb_is_intra = 0; \ if (!index) { _dmv_x = _dmv_y = 0; } \ else if (index == 35) \ { \ _dmv_x = get_bits(&v->gb, k_x); \ _dmv_y = get_bits(&v->gb, k_y); \ mb_is_intra = 1; \ } \ else \ { \ index1 = index%6; \ if (hpel_flag && index1 == 5) val = 1; \ else val = 0; \ val = get_bits(&v->gb, size_table[index1] - val); \ sign = 0 - (val&1); \ _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ \ index1 = index/6; \ if (hpel_flag && index1 == 5) val = 1; \ else val = 0; \ val = get_bits(&v->gb, size_table[index1] - val); \ sign = 0 - (val&1); \ _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \ } /* 8.1, p(1)15 */ static int decode_p_mbs(VC9Context *v) { int x, y, current_mb = 0, i; /* MB/Block Position info */ uint8_t cbpcy[4], previous_cbpcy[4], predicted_cbpcy, *p_cbpcy /* Pointer to skip some math */; int hybrid_pred, ac_pred; /* Prediction types */ int mv_mode_bit = 0; int mqdiff, mquant; /* MB quantization */ int ttmb; /* MB Transform type */ static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 1 /* last_flag */, mb_is_intra; int dmv_x, dmv_y; /* Differential MV components */ int k_x, k_y; /* Long MV fixed bitlength */ int hpel_flag; /* Some MB properties */ int index, index1; /* LUT indices */ int val, sign; /* MVDATA temp values */ /* Select ttmb table depending on pq */ if (v->pq < 5) v->ttmb_vlc = &vc9_ttmb_vlc[0]; else if (v->pq < 13) v->ttmb_vlc = &vc9_ttmb_vlc[1]; else v->ttmb_vlc = &vc9_ttmb_vlc[2]; /* Select proper long MV range */ switch (v->mvrange) { case 1: k_x = 10; k_y = 9; break; case 2: k_x = 12; k_y = 10; break; case 3: k_x = 13; k_y = 11; break; default: /*case 0 too */ k_x = 9; k_y = 8; break; } hpel_flag = v->mv_mode & 1; //MV_PMODE is HPEL k_x -= hpel_flag; k_y -= hpel_flag; /* Reset CBPCY predictors */ memset(v->previous_line_cbpcy, 0, (v->width_mb+1)<<2); for (y=0; yheight_mb; y++) { /* Init CBPCY for line */ *((uint32_t*)previous_cbpcy) = 0x00000000; p_cbpcy = v->previous_line_cbpcy+4; for (x=0; xwidth_mb; x++) { if (v->mv_type_mb_plane.is_raw) v->mv_type_mb_plane.data[current_mb] = get_bits(&v->gb, 1); if (v->skip_mb_plane.is_raw) v->skip_mb_plane.data[current_mb] = get_bits(&v->gb, 1); if (!mv_mode_bit) /* 1MV mode */ { if (!v->skip_mb_plane.data[current_mb]) { GET_MVDATA(dmv_x, dmv_y); /* hybrid mv pred, 8.3.5.3.4 */ if (v->mv_mode == MV_PMODE_1MV || v->mv_mode == MV_PMODE_MIXED_MV) hybrid_pred = get_bits(&v->gb, 1); if (mb_is_intra && !mb_has_coeffs) { GET_MQUANT(); ac_pred = get_bits(&v->gb, 1); } else if (mb_has_coeffs) { if (mb_is_intra) ac_pred = get_bits(&v->gb, 1); GET_CBPCY(v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS); GET_MQUANT(); } if (!v->ttmbf) ttmb = get_vlc2(&v->gb, v->ttmb_vlc->table, VC9_TTMB_VLC_BITS, 12); /* TODO: decode blocks from that mb wrt cbpcy */ } else //Skipped { /* hybrid mv pred, 8.3.5.3.4 */ if (v->mv_mode == MV_PMODE_1MV || v->mv_mode == MV_PMODE_MIXED_MV) hybrid_pred = get_bits(&v->gb, 1); } } //1MV mode else //4MV mode { if (!v->skip_mb_plane.data[current_mb] /* unskipped MB */) { /* Get CBPCY */ GET_CBPCY(v->cbpcy_vlc->table, VC9_CBPCY_P_VLC_BITS); for (i=0; i<4; i++) //For all 4 Y blocks { if (cbpcy[i] /* cbpcy set for this block */) { GET_MVDATA(dmv_x, dmv_y); } if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */) hybrid_pred = get_bits(&v->gb, 1); GET_MQUANT(); if (mb_is_intra /* One of the 4 blocks is intra */ && index /* non-zero pred for that block */) ac_pred = get_bits(&v->gb, 1); if (!v->ttmbf) ttmb = get_vlc2(&v->gb, v->ttmb_vlc->table, VC9_TTMB_VLC_BITS, 12); /* TODO: Process blocks wrt cbpcy */ } } else //Skipped MB { for (i=0; i<4; i++) //All 4 Y blocks { if (v->mv_mode == MV_PMODE_MIXED_MV /* Hybrid pred */) hybrid_pred = get_bits(&v->gb, 1); /* TODO: do something */ } } } /* Update for next block */ #if TRACE > 2 av_log(v->avctx, AV_LOG_DEBUG, "Block %4i: p_cbpcy=%i%i%i%i, previous_cbpcy=%i%i%i%i," " cbpcy=%i%i%i%i\n", current_mb, p_cbpcy[0], p_cbpcy[1], p_cbpcy[2], p_cbpcy[3], previous_cbpcy[0], previous_cbpcy[1], previous_cbpcy[2], previous_cbpcy[3], cbpcy[0], cbpcy[1], cbpcy[2], cbpcy[3]); #endif *((uint32_t*)p_cbpcy) = *((uint32_t*)previous_cbpcy); *((uint32_t*)previous_cbpcy) = *((uint32_t*)cbpcy); current_mb++; } } return 0; } static int decode_b_mbs(VC9Context *v) { int x, y, current_mb = 0, i /* MB / B postion information */; int ac_pred; int b_mv_type = BMV_TYPE_BACKWARD; int mquant, mqdiff; /* MB quant stuff */ int ttmb; /* MacroBlock transform type */ static const int size_table[6] = { 0, 2, 3, 4, 5, 8 }, offset_table[6] = { 0, 1, 3, 7, 15, 31 }; int mb_has_coeffs = 1 /* last_flag */, mb_is_intra = 1; int dmv1_x, dmv1_y, dmv2_x, dmv2_y; /* Differential MV components */ int k_x, k_y; /* Long MV fixed bitlength */ int hpel_flag; /* Some MB properties */ int index, index1; /* LUT indices */ int val, sign; /* MVDATA temp values */ /* Select proper long MV range */ switch (v->mvrange) { case 1: k_x = 10; k_y = 9; break; case 2: k_x = 12; k_y = 10; break; case 3: k_x = 13; k_y = 11; break; default: /*case 0 too */ k_x = 9; k_y = 8; break; } hpel_flag = v->mv_mode & 1; //MV_PMODE is HPEL k_x -= hpel_flag; k_y -= hpel_flag; /* Select ttmb table depending on pq */ if (v->pq < 5) v->ttmb_vlc = &vc9_ttmb_vlc[0]; else if (v->pq < 13) v->ttmb_vlc = &vc9_ttmb_vlc[1]; else v->ttmb_vlc = &vc9_ttmb_vlc[2]; for (y=0; yheight_mb; y++) { for (x=0; xwidth_mb; x++) { if (v->direct_mb_plane.is_raw) v->direct_mb_plane.data[current_mb] = get_bits(&v->gb, 1); if (v->skip_mb_plane.is_raw) v->skip_mb_plane.data[current_mb] = get_bits(&v->gb, 1); if (!v->direct_mb_plane.data[current_mb]) { if (v->skip_mb_plane.data[current_mb]) { b_mv_type = decode012(&v->gb); if (v->bfraction > 420 /*1/2*/ && b_mv_type < 3) b_mv_type = 1-b_mv_type; } else { /* FIXME getting tired commenting */ GET_MVDATA(dmv1_x, dmv1_y); if (!mb_is_intra /* b_mv1 tells not intra */) { /* FIXME: actually read it */ b_mv_type = decode012(&v->gb); if (v->bfraction > 420 /*1/2*/ && b_mv_type < 3) b_mv_type = 1-b_mv_type; } } } if (!v->skip_mb_plane.data[current_mb]) { if (mb_has_coeffs /* BMV1 == "last" */) { GET_MQUANT(); if (mb_is_intra /* intra mb */) ac_pred = get_bits(&v->gb, 1); } else { /* if bmv1 tells MVs are interpolated */ if (b_mv_type == BMV_TYPE_INTERPOLATED) { GET_MVDATA(dmv2_x, dmv2_y); } /* GET_MVDATA has reset some stuff */ if (mb_has_coeffs /* b_mv2 == "last" */) { if (mb_is_intra /* intra_mb */) ac_pred = get_bits(&v->gb, 1); GET_MQUANT(); } } } //End1 if (v->ttmbf) ttmb = get_vlc2(&v->gb, v->ttmb_vlc->table, VC9_TTMB_VLC_BITS, 12); //End2 for (i=0; i<6; i++) { /* FIXME: process the block */ } current_mb++; } } return 0; } #if HAS_ADVANCED_PROFILE static int advanced_decode_i_mbs(VC9Context *v) { int x, y, mqdiff, mquant, ac_pred, current_mb = 0, over_flags_mb = 0; for (y=0; yheight_mb; y++) { for (x=0; xwidth_mb; x++) { if (v->ac_pred_plane.data[current_mb]) ac_pred = get_bits(&v->gb, 1); if (v->condover == 3 && v->over_flags_plane.is_raw) over_flags_mb = get_bits(&v->gb, 1); GET_MQUANT(); /* TODO: lots */ } current_mb++; } return 0; } #endif static int vc9_decode_init(AVCodecContext *avctx) { VC9Context *v = avctx->priv_data; GetBitContext gb; if (!avctx->extradata_size || !avctx->extradata) return -1; avctx->pix_fmt = PIX_FMT_YUV420P; v->avctx = avctx; if (init_common(v) < 0) return -1; avctx->coded_width = avctx->width; avctx->coded_height = avctx->height; if (avctx->codec_id == CODEC_ID_WMV3) { int count = 0; // looks like WMV3 has a sequence header stored in the extradata // advanced sequence header may be before the first frame // the last byte of the extradata is a version number, 1 for the // samples we can decode init_get_bits(&gb, avctx->extradata, avctx->extradata_size); decode_sequence_header(avctx, &gb); count = avctx->extradata_size*8 - get_bits_count(&gb); if (count>0) { av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n", count, get_bits(&gb, count)); } else { av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count); } } /* Done with header parsing */ //FIXME I feel like this is wrong v->width_mb = (avctx->coded_width+15)>>4; v->height_mb = (avctx->coded_height+15)>>4; /* Allocate mb bitplanes */ if (alloc_bitplane(&v->mv_type_mb_plane, v->width_mb, v->height_mb) < 0) return -1; if (alloc_bitplane(&v->mv_type_mb_plane, v->width_mb, v->height_mb) < 0) return -1; if (alloc_bitplane(&v->skip_mb_plane, v->width_mb, v->height_mb) < 0) return -1; if (alloc_bitplane(&v->direct_mb_plane, v->width_mb, v->height_mb) < 0) return -1; /* For predictors */ v->previous_line_cbpcy = (uint8_t *)av_malloc((v->width_mb+1)*4); if (!v->previous_line_cbpcy) return -1; #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { if (alloc_bitplane(&v->over_flags_plane, v->width_mb, v->height_mb) < 0) return -1; if (alloc_bitplane(&v->ac_pred_plane, v->width_mb, v->height_mb) < 0) return -1; } #endif return 0; } static int vc9_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { VC9Context *v = avctx->priv_data; int ret = FRAME_SKIPED, len, start_code; AVFrame *pict = data; uint8_t *tmp_buf; v->avctx = avctx; //buf_size = 0 -> last frame if (!buf_size) return 0; len = avpicture_get_size(avctx->pix_fmt, avctx->width, avctx->height); tmp_buf = (uint8_t *)av_mallocz(len); avpicture_fill((AVPicture *)pict, tmp_buf, avctx->pix_fmt, avctx->width, avctx->height); if (avctx->codec_id == CODEC_ID_WMV3) { //No IDU init_get_bits(&v->gb, buf, buf_size*8); #if HAS_ADVANCED_PROFILE if (v->profile > PROFILE_MAIN) { if (advanced_decode_picture_header(v) == FRAME_SKIPED) return buf_size; switch(v->pict_type) { case I_TYPE: ret = advanced_decode_i_mbs(v); break; case P_TYPE: ret = decode_p_mbs(v); break; case B_TYPE: case BI_TYPE: ret = decode_b_mbs(v); break; default: ret = FRAME_SKIPED; } if (ret == FRAME_SKIPED) return buf_size; //We ignore for now failures } else #endif { if (standard_decode_picture_header(v) == FRAME_SKIPED) return buf_size; switch(v->pict_type) { case I_TYPE: ret = standard_decode_i_mbs(v); break; case P_TYPE: ret = decode_p_mbs(v); break; case B_TYPE: case BI_TYPE: ret = decode_b_mbs(v); break; default: ret = FRAME_SKIPED; } if (ret == FRAME_SKIPED) return buf_size; } } else { #if 0 // search for IDU's // FIXME uint32_t scp = 0; int scs = 0, i = 0; while (i < buf_size) { for (; i < buf_size && scp != 0x000001; i++) scp = ((scp<<8)|buf[i])&0xffffff; if (scp != 0x000001) break; // eof ? scs = buf[i++]; init_get_bits(&v->gb, buf+i, (buf_size-i)*8); switch(scs) { case 0x0A: //Sequence End Code return 0; case 0x0B: //Slice Start Code av_log(avctx, AV_LOG_ERROR, "Slice coding not supported\n"); return -1; case 0x0C: //Field start code av_log(avctx, AV_LOG_ERROR, "Interlaced coding not supported\n"); return -1; case 0x0D: //Frame start code break; case 0x0E: //Entry point Start Code if (v->profile <= MAIN_PROFILE) av_log(avctx, AV_LOG_ERROR, "Found an entry point in profile %i\n", v->profile); advanced_entry_point_process(avctx, &v->gb); break; case 0x0F: //Sequence header Start Code decode_sequence_header(avctx, &v->gb); break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported IDU suffix %lX\n", scs); } i += get_bits_count(&v->gb)*8; } #else av_abort(); #endif } av_log(avctx, AV_LOG_DEBUG, "Consumed %i/%i bits\n", get_bits_count(&v->gb), buf_size*8); /* Fake consumption of all data */ *data_size = len; return buf_size; //Number of bytes consumed } static int vc9_decode_end(AVCodecContext *avctx) { VC9Context *v = avctx->priv_data; #if HAS_ADVANCED_PROFILE av_freep(&v->hrd_rate); av_freep(&v->hrd_buffer); #endif av_freep(&v->mv_type_mb_plane); av_freep(&v->skip_mb_plane); av_freep(&v->direct_mb_plane); return 0; } AVCodec vc9_decoder = { "vc9", CODEC_TYPE_VIDEO, CODEC_ID_VC9, sizeof(VC9Context), vc9_decode_init, NULL, vc9_decode_end, vc9_decode_frame, CODEC_CAP_DELAY, NULL }; AVCodec wmv3_decoder = { "wmv3", CODEC_TYPE_VIDEO, CODEC_ID_WMV3, sizeof(VC9Context), vc9_decode_init, NULL, vc9_decode_end, vc9_decode_frame, CODEC_CAP_DELAY, NULL };