; XVID MPEG-4 VIDEO CODEC ; ; Conversion from gcc syntax to x264asm syntax with modifications ; by Christophe Gisquet ; ; =========== SSE2 inverse discrete cosine transform =========== ; ; Copyright(C) 2003 Pascal Massimino ; ; Conversion to gcc syntax with modifications ; by Alexander Strange ; ; Originally from dct/x86_asm/fdct_sse2_skal.asm in Xvid. ; ; Vertical pass is an implementation of the scheme: ; Loeffler C., Ligtenberg A., and Moschytz C.S.: ; Practical Fast 1D DCT Algorithm with Eleven Multiplications, ; Proc. ICASSP 1989, 988-991. ; ; Horizontal pass is a double 4x4 vector/matrix multiplication, ; (see also Intel's Application Note 922: ; http://developer.intel.com/vtune/cbts/strmsimd/922down.htm ; Copyright (C) 1999 Intel Corporation) ; ; More details at http://skal.planet-d.net/coding/dct.html ; ; ======= MMX and XMM forward discrete cosine transform ======= ; ; Copyright(C) 2001 Peter Ross ; ; Originally provided by Intel at AP-922 ; http://developer.intel.com/vtune/cbts/strmsimd/922down.htm ; (See more app notes at http://developer.intel.com/vtune/cbts/strmsimd/appnotes.htm) ; but in a limited edition. ; New macro implements a column part for precise iDCT ; The routine precision now satisfies IEEE standard 1180-1990. ; ; Copyright(C) 2000-2001 Peter Gubanov ; Rounding trick Copyright(C) 2000 Michel Lespinasse ; ; http://www.elecard.com/peter/idct.html ; http://www.linuxvideo.org/mpeg2dec/ ; ; These examples contain code fragments for first stage iDCT 8x8 ; (for rows) and first stage DCT 8x8 (for columns) ; ; conversion to gcc syntax by Michael Niedermayer ; ; ====================================================================== ; ; This file is part of FFmpeg. ; ; FFmpeg is free software; you can redistribute it and/or ; modify it under the terms of the GNU Lesser General Public ; License as published by the Free Software Foundation; either ; version 2.1 of the License, or (at your option) any later version. ; ; FFmpeg is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ; Lesser General Public License for more details. ; ; You should have received a copy of the GNU Lesser General Public License ; along with FFmpeg; if not, write to the Free Software Foundation, ; Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA %include "libavutil/x86/x86util.asm" SECTION_RODATA ; Similar to tg_1_16 in MMX code tan1: times 8 dw 13036 tan2: times 8 dw 27146 tan3: times 8 dw 43790 sqrt2: times 8 dw 23170 ; SSE2 tables iTab1: dw 0x4000, 0x539f, 0xc000, 0xac61, 0x4000, 0xdd5d, 0x4000, 0xdd5d dw 0x4000, 0x22a3, 0x4000, 0x22a3, 0xc000, 0x539f, 0x4000, 0xac61 dw 0x3249, 0x11a8, 0x4b42, 0xee58, 0x11a8, 0x4b42, 0x11a8, 0xcdb7 dw 0x58c5, 0x4b42, 0xa73b, 0xcdb7, 0x3249, 0xa73b, 0x4b42, 0xa73b iTab2: dw 0x58c5, 0x73fc, 0xa73b, 0x8c04, 0x58c5, 0xcff5, 0x58c5, 0xcff5 dw 0x58c5, 0x300b, 0x58c5, 0x300b, 0xa73b, 0x73fc, 0x58c5, 0x8c04 dw 0x45bf, 0x187e, 0x6862, 0xe782, 0x187e, 0x6862, 0x187e, 0xba41 dw 0x7b21, 0x6862, 0x84df, 0xba41, 0x45bf, 0x84df, 0x6862, 0x84df iTab3: dw 0x539f, 0x6d41, 0xac61, 0x92bf, 0x539f, 0xd2bf, 0x539f, 0xd2bf dw 0x539f, 0x2d41, 0x539f, 0x2d41, 0xac61, 0x6d41, 0x539f, 0x92bf dw 0x41b3, 0x1712, 0x6254, 0xe8ee, 0x1712, 0x6254, 0x1712, 0xbe4d dw 0x73fc, 0x6254, 0x8c04, 0xbe4d, 0x41b3, 0x8c04, 0x6254, 0x8c04 iTab4: dw 0x4b42, 0x6254, 0xb4be, 0x9dac, 0x4b42, 0xd746, 0x4b42, 0xd746 dw 0x4b42, 0x28ba, 0x4b42, 0x28ba, 0xb4be, 0x6254, 0x4b42, 0x9dac dw 0x3b21, 0x14c3, 0x587e, 0xeb3d, 0x14c3, 0x587e, 0x14c3, 0xc4df dw 0x6862, 0x587e, 0x979e, 0xc4df, 0x3b21, 0x979e, 0x587e, 0x979e %if ARCH_X86_32 ; ----------------------------------------------------------------------------- ; ; The first stage iDCT 8x8 - inverse DCTs of rows ; ; ----------------------------------------------------------------------------- ; The 8-point inverse DCT direct algorithm ; ----------------------------------------------------------------------------- ; ; static const short w[32] = { ; FIX(cos_4_16), FIX(cos_2_16), FIX(cos_4_16), FIX(cos_6_16), ; FIX(cos_4_16), FIX(cos_6_16), -FIX(cos_4_16), -FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_6_16), -FIX(cos_4_16), FIX(cos_2_16), ; FIX(cos_4_16), -FIX(cos_2_16), FIX(cos_4_16), -FIX(cos_6_16), ; FIX(cos_1_16), FIX(cos_3_16), FIX(cos_5_16), FIX(cos_7_16), ; FIX(cos_3_16), -FIX(cos_7_16), -FIX(cos_1_16), -FIX(cos_5_16), ; FIX(cos_5_16), -FIX(cos_1_16), FIX(cos_7_16), FIX(cos_3_16), ; FIX(cos_7_16), -FIX(cos_5_16), FIX(cos_3_16), -FIX(cos_1_16) }; ; ; #define DCT_8_INV_ROW(x, y) ; { ; int a0, a1, a2, a3, b0, b1, b2, b3; ; ; a0 = x[0] * w[0] + x[2] * w[1] + x[4] * w[2] + x[6] * w[3]; ; a1 = x[0] * w[4] + x[2] * w[5] + x[4] * w[6] + x[6] * w[7]; ; a2 = x[0] * w[8] + x[2] * w[9] + x[4] * w[10] + x[6] * w[11]; ; a3 = x[0] * w[12] + x[2] * w[13] + x[4] * w[14] + x[6] * w[15]; ; b0 = x[1] * w[16] + x[3] * w[17] + x[5] * w[18] + x[7] * w[19]; ; b1 = x[1] * w[20] + x[3] * w[21] + x[5] * w[22] + x[7] * w[23]; ; b2 = x[1] * w[24] + x[3] * w[25] + x[5] * w[26] + x[7] * w[27]; ; b3 = x[1] * w[28] + x[3] * w[29] + x[5] * w[30] + x[7] * w[31]; ; ; y[0] = SHIFT_ROUND(a0 + b0); ; y[1] = SHIFT_ROUND(a1 + b1); ; y[2] = SHIFT_ROUND(a2 + b2); ; y[3] = SHIFT_ROUND(a3 + b3); ; y[4] = SHIFT_ROUND(a3 - b3); ; y[5] = SHIFT_ROUND(a2 - b2); ; y[6] = SHIFT_ROUND(a1 - b1); ; y[7] = SHIFT_ROUND(a0 - b0); ; } ; ; ----------------------------------------------------------------------------- ; ; In this implementation the outputs of the iDCT-1D are multiplied ; for rows 0,4 - by cos_4_16, ; for rows 1,7 - by cos_1_16, ; for rows 2,6 - by cos_2_16, ; for rows 3,5 - by cos_3_16 ; and are shifted to the left for better accuracy. ; ; For the constants used, ; FIX(float_const) = (short) (float_const * (1 << 15) + 0.5) ; ; ----------------------------------------------------------------------------- ; ----------------------------------------------------------------------------- ; Tables for mmx processors ; ----------------------------------------------------------------------------- ; Table for rows 0,4 - constants are multiplied by cos_4_16 tab_i_04_mmx: dw 16384, 16384, 16384, -16384 dw 21407, 8867, 8867, -21407 ; w07 w05 w03 w01 dw 16384, -16384, 16384, 16384 ; w14 w12 w10 w08 dw -8867, 21407, -21407, -8867 ; w15 w13 w11 w09 dw 22725, 12873, 19266, -22725 ; w22 w20 w18 w16 dw 19266, 4520, -4520, -12873 ; w23 w21 w19 w17 dw 12873, 4520, 4520, 19266 ; w30 w28 w26 w24 dw -22725, 19266, -12873, -22725 ; w31 w29 w27 w25 ; Table for rows 1,7 - constants are multiplied by cos_1_16 dw 22725, 22725, 22725, -22725 ; movq-> w06 w04 w02 w00 dw 29692, 12299, 12299, -29692 ; w07 w05 w03 w01 dw 22725, -22725, 22725, 22725 ; w14 w12 w10 w08 dw -12299, 29692, -29692, -12299 ; w15 w13 w11 w09 dw 31521, 17855, 26722, -31521 ; w22 w20 w18 w16 dw 26722, 6270, -6270, -17855 ; w23 w21 w19 w17 dw 17855, 6270, 6270, 26722 ; w30 w28 w26 w24 dw -31521, 26722, -17855, -31521 ; w31 w29 w27 w25 ; Table for rows 2,6 - constants are multiplied by cos_2_16 dw 21407, 21407, 21407, -21407 ; movq-> w06 w04 w02 w00 dw 27969, 11585, 11585, -27969 ; w07 w05 w03 w01 dw 21407, -21407, 21407, 21407 ; w14 w12 w10 w08 dw -11585, 27969, -27969, -11585 ; w15 w13 w11 w09 dw 29692, 16819, 25172, -29692 ; w22 w20 w18 w16 dw 25172, 5906, -5906, -16819 ; w23 w21 w19 w17 dw 16819, 5906, 5906, 25172 ; w30 w28 w26 w24 dw -29692, 25172, -16819, -29692 ; w31 w29 w27 w25 ; Table for rows 3,5 - constants are multiplied by cos_3_16 dw 19266, 19266, 19266, -19266 ; movq-> w06 w04 w02 w00 dw 25172, 10426, 10426, -25172 ; w07 w05 w03 w01 dw 19266, -19266, 19266, 19266 ; w14 w12 w10 w08 dw -10426, 25172, -25172, -10426 ; w15 w13 w11 w09 dw 26722, 15137, 22654, -26722 ; w22 w20 w18 w16 dw 22654, 5315, -5315, -15137 ; w23 w21 w19 w17 dw 15137, 5315, 5315, 22654 ; w30 w28 w26 w24 dw -26722, 22654, -15137, -26722 ; w31 w29 w27 w25 ; ----------------------------------------------------------------------------- ; Tables for xmm processors ; ----------------------------------------------------------------------------- ; %3 for rows 0,4 - constants are multiplied by cos_4_16 tab_i_04_xmm: dw 16384, 21407, 16384, 8867 ; movq-> w05 w04 w01 w00 dw 16384, 8867, -16384, -21407 ; w07 w06 w03 w02 dw 16384, -8867, 16384, -21407 ; w13 w12 w09 w08 dw -16384, 21407, 16384, -8867 ; w15 w14 w11 w10 dw 22725, 19266, 19266, -4520 ; w21 w20 w17 w16 dw 12873, 4520, -22725, -12873 ; w23 w22 w19 w18 dw 12873, -22725, 4520, -12873 ; w29 w28 w25 w24 dw 4520, 19266, 19266, -22725 ; w31 w30 w27 w26 ; %3 for rows 1,7 - constants are multiplied by cos_1_16 dw 22725, 29692, 22725, 12299 ; movq-> w05 w04 w01 w00 dw 22725, 12299, -22725, -29692 ; w07 w06 w03 w02 dw 22725, -12299, 22725, -29692 ; w13 w12 w09 w08 dw -22725, 29692, 22725, -12299 ; w15 w14 w11 w10 dw 31521, 26722, 26722, -6270 ; w21 w20 w17 w16 dw 17855, 6270, -31521, -17855 ; w23 w22 w19 w18 dw 17855, -31521, 6270, -17855 ; w29 w28 w25 w24 dw 6270, 26722, 26722, -31521 ; w31 w30 w27 w26 ; %3 for rows 2,6 - constants are multiplied by cos_2_16 dw 21407, 27969, 21407, 11585 ; movq-> w05 w04 w01 w00 dw 21407, 11585, -21407, -27969 ; w07 w06 w03 w02 dw 21407, -11585, 21407, -27969 ; w13 w12 w09 w08 dw -21407, 27969, 21407, -11585 ; w15 w14 w11 w10 dw 29692, 25172, 25172, -5906 ; w21 w20 w17 w16 dw 16819, 5906, -29692, -16819 ; w23 w22 w19 w18 dw 16819, -29692, 5906, -16819 ; w29 w28 w25 w24 dw 5906, 25172, 25172, -29692 ; w31 w30 w27 w26 ; %3 for rows 3,5 - constants are multiplied by cos_3_16 dw 19266, 25172, 19266, 10426 ; movq-> w05 w04 w01 w00 dw 19266, 10426, -19266, -25172 ; w07 w06 w03 w02 dw 19266, -10426, 19266, -25172 ; w13 w12 w09 w08 dw -19266, 25172, 19266, -10426 ; w15 w14 w11 w10 dw 26722, 22654, 22654, -5315 ; w21 w20 w17 w16 dw 15137, 5315, -26722, -15137 ; w23 w22 w19 w18 dw 15137, -26722, 5315, -15137 ; w29 w28 w25 w24 dw 5315, 22654, 22654, -26722 ; w31 w30 w27 w26 %endif ; ~ARCH_X86_32 ; Similar to rounder_0 in MMX code ; 4 first similar, then: 4*8->6*16 5*8->4*16 6/7*8->5*16 walkenIdctRounders: times 4 dd 65536 times 4 dd 3597 times 4 dd 2260 times 4 dd 1203 times 4 dd 120 times 4 dd 512 times 2 dd 0 pb_127: times 8 db 127 SECTION .text ; Temporary storage before the column pass %define ROW1 xmm6 %define ROW3 xmm4 %define ROW5 xmm5 %define ROW7 xmm7 %macro CLEAR_ODD 1 pxor %1, %1 %endmacro %macro PUT_ODD 1 pshufhw %1, xmm2, 0x1B %endmacro %macro MOV32 2 %if ARCH_X86_32 movdqa %2, %1 %endif %endmacro %macro CLEAR_EVEN 1 %if ARCH_X86_64 CLEAR_ODD %1 %endif %endmacro %macro PUT_EVEN 1 %if ARCH_X86_64 PUT_ODD %1 %else pshufhw xmm2, xmm2, 0x1B movdqa %1, xmm2 %endif %endmacro %if ARCH_X86_64 %define ROW0 xmm8 %define REG0 ROW0 %define ROW2 xmm9 %define REG2 ROW2 %define ROW4 xmm10 %define REG4 ROW4 %define ROW6 xmm11 %define REG6 ROW6 %define XMMS xmm12 %define SREG2 REG2 %define TAN3 xmm13 %define TAN1 xmm14 %else %define ROW0 [BLOCK + 0*16] %define REG0 xmm4 %define ROW2 [BLOCK + 2*16] %define REG2 xmm4 %define ROW4 [BLOCK + 4*16] %define REG4 xmm6 %define ROW6 [BLOCK + 6*16] %define REG6 xmm6 %define XMMS xmm2 %define SREG2 xmm7 %define TAN3 xmm0 %define TAN1 xmm2 %endif %macro JZ 2 test %1, %1 jz .%2 %endmacro %macro JNZ 2 test %1, %1 jnz .%2 %endmacro %macro TEST_ONE_ROW 4 ; src, reg, clear, arg %3 %4 movq mm1, [%1] por mm1, [%1 + 8] paddusb mm1, mm0 pmovmskb %2, mm1 %endmacro ;row1, row2, reg1, reg2, clear1, arg1, clear2, arg2 %macro TEST_TWO_ROWS 8 %5 %6 %7 %8 movq mm1, [%1 + 0] por mm1, [%1 + 8] movq mm2, [%2 + 0] por mm2, [%2 + 8] paddusb mm1, mm0 paddusb mm2, mm0 pmovmskb %3, mm1 pmovmskb %4, mm2 %endmacro ; IDCT pass on rows. %macro iMTX_MULT 4-5 ; src, table, put, arg, rounder movdqa xmm3, [%1] movdqa xmm0, xmm3 pshufd xmm1, xmm3, 0x11 ; 4602 punpcklqdq xmm0, xmm0 ; 0246 pmaddwd xmm0, [%2] pmaddwd xmm1, [%2+16] pshufd xmm2, xmm3, 0xBB ; 5713 punpckhqdq xmm3, xmm3 ; 1357 pmaddwd xmm2, [%2+32] pmaddwd xmm3, [%2+48] paddd xmm0, xmm1 paddd xmm2, xmm3 %if %0 == 5 paddd xmm0, [walkenIdctRounders+%5] %endif movdqa xmm3, xmm2 paddd xmm2, xmm0 psubd xmm0, xmm3 psrad xmm2, 11 psrad xmm0, 11 packssdw xmm2, xmm0 %3 %4 %endmacro %macro iLLM_HEAD 0 movdqa TAN3, [tan3] movdqa TAN1, [tan1] %endmacro %macro FIRST_HALF 2 ; %1=dct %2=type(normal,add,put) psraw xmm5, 6 psraw REG0, 6 psraw TAN3, 6 psraw xmm3, 6 ; dct coeffs must still be written for AC prediction %if %2 == 0 movdqa [%1+1*16], TAN3 movdqa [%1+2*16], xmm3 movdqa [%1+5*16], REG0 movdqa [%1+6*16], xmm5 %else ; Must now load args as gprs are no longer used for masks ; DEST is set to where address of dest was loaded %if ARCH_X86_32 %xdefine DEST r2q ; BLOCK is r0, stride r1 movifnidn DEST, destm movifnidn strideq, stridem %else %xdefine DEST r0q %endif lea r3q, [3*strideq] %if %2 == 1 packuswb TAN3, xmm3 packuswb xmm5, REG0 movq [DEST + strideq], TAN3 movhps [DEST + 2*strideq], TAN3 ; REG0 and TAN3 are now available (and likely used in second half) %else %warning Unimplemented %endif %endif %endmacro %macro SECOND_HALF 6 ; %1=dct %2=type(normal,add,put) 3-6: xmms psraw %3, 6 psraw %4, 6 psraw %5, 6 psraw %6, 6 ; dct coeffs must still be written for AC prediction %if %2 == 0 movdqa [%1+0*16], %3 movdqa [%1+3*16], %5 movdqa [%1+4*16], %6 movdqa [%1+7*16], %4 %elif %2 == 1 packuswb %3, %5 packuswb %6, %4 ; address of dest may have been loaded movq [DEST], %3 movhps [DEST + r3q], %3 lea DEST, [DEST + 4*strideq] movq [DEST], %6 movhps [DEST + r3q], %6 ; and now write remainder of first half movq [DEST + 2*strideq], xmm5 movhps [DEST + strideq], xmm5 %elif %2 == 2 %warning Unimplemented %endif %endmacro ; IDCT pass on columns. %macro iLLM_PASS 2 ; %1=dct %2=type(normal,add,put) movdqa xmm1, TAN3 movdqa xmm3, TAN1 pmulhw TAN3, xmm4 pmulhw xmm1, xmm5 paddsw TAN3, xmm4 paddsw xmm1, xmm5 psubsw TAN3, xmm5 paddsw xmm1, xmm4 pmulhw xmm3, xmm7 pmulhw TAN1, xmm6 paddsw xmm3, xmm6 psubsw TAN1, xmm7 movdqa xmm7, xmm3 movdqa xmm6, TAN1 psubsw xmm3, xmm1 psubsw TAN1, TAN3 paddsw xmm1, xmm7 paddsw TAN3, xmm6 movdqa xmm6, xmm3 psubsw xmm3, TAN3 paddsw TAN3, xmm6 movdqa xmm4, [sqrt2] pmulhw xmm3, xmm4 pmulhw TAN3, xmm4 paddsw TAN3, TAN3 paddsw xmm3, xmm3 movdqa xmm7, [tan2] MOV32 ROW2, REG2 MOV32 ROW6, REG6 movdqa xmm5, xmm7 pmulhw xmm7, REG6 pmulhw xmm5, REG2 paddsw xmm7, REG2 psubsw xmm5, REG6 MOV32 ROW0, REG0 MOV32 ROW4, REG4 MOV32 TAN1, [BLOCK] movdqa XMMS, REG0 psubsw REG0, REG4 paddsw REG4, XMMS movdqa XMMS, REG4 psubsw REG4, xmm7 paddsw xmm7, XMMS movdqa XMMS, REG0 psubsw REG0, xmm5 paddsw xmm5, XMMS movdqa XMMS, xmm5 psubsw xmm5, TAN3 paddsw TAN3, XMMS movdqa XMMS, REG0 psubsw REG0, xmm3 paddsw xmm3, XMMS MOV32 [BLOCK], TAN1 FIRST_HALF %1, %2 movdqa xmm0, xmm7 movdqa xmm4, REG4 psubsw xmm7, xmm1 psubsw REG4, TAN1 paddsw xmm1, xmm0 paddsw TAN1, xmm4 SECOND_HALF %1, %2, xmm1, xmm7, TAN1, REG4 %endmacro ; IDCT pass on columns, assuming rows 4-7 are zero %macro iLLM_PASS_SPARSE 2 ; %1=dct %2=type(normal,put,add) pmulhw TAN3, xmm4 paddsw TAN3, xmm4 movdqa xmm3, xmm6 pmulhw TAN1, xmm6 movdqa xmm1, xmm4 psubsw xmm3, xmm1 paddsw xmm1, xmm6 movdqa xmm6, TAN1 psubsw TAN1, TAN3 paddsw TAN3, xmm6 movdqa xmm6, xmm3 psubsw xmm3, TAN3 paddsw TAN3, xmm6 movdqa xmm4, [sqrt2] pmulhw xmm3, xmm4 pmulhw TAN3, xmm4 paddsw TAN3, TAN3 paddsw xmm3, xmm3 movdqa xmm5, [tan2] MOV32 ROW2, SREG2 pmulhw xmm5, SREG2 MOV32 ROW0, REG0 movdqa xmm6, REG0 psubsw xmm6, SREG2 paddsw SREG2, REG0 MOV32 TAN1, [BLOCK] movdqa XMMS, REG0 psubsw REG0, xmm5 paddsw xmm5, XMMS movdqa XMMS, xmm5 psubsw xmm5, TAN3 paddsw TAN3, XMMS movdqa XMMS, REG0 psubsw REG0, xmm3 paddsw xmm3, XMMS MOV32 [BLOCK], TAN1 FIRST_HALF %1, %2 movdqa xmm0, SREG2 movdqa xmm4, xmm6 psubsw SREG2, xmm1 psubsw xmm6, TAN1 paddsw xmm1, xmm0 paddsw TAN1, xmm4 SECOND_HALF %1, %2, xmm1, SREG2, TAN1, xmm6 %endmacro %macro IDCT_SSE2 1 ; 0=normal 1=put 2=add %if %1 == 0 || ARCH_X86_32 %define GPR0 r1d %define GPR1 r2d %define GPR2 r3d %define GPR3 r4d %define NUM_GPRS 5 %else %define GPR0 r3d %define GPR1 r4d %define GPR2 r5d %define GPR3 r6d %define NUM_GPRS 7 %endif %if %1 == 0 cglobal xvid_idct, 1, NUM_GPRS, 8+7*ARCH_X86_64, block %xdefine BLOCK blockq %else %if %1 == 1 cglobal xvid_idct_put, 0, NUM_GPRS, 8+7*ARCH_X86_64, dest, stride, block %else cglobal xvid_idct_add, 0, NUM_GPRS, 8+7*ARCH_X86_64, dest, stride, block %endif %if ARCH_X86_64 %xdefine BLOCK blockq %else mov r0q, blockm %xdefine BLOCK r0q %endif %endif movq mm0, [pb_127] iMTX_MULT BLOCK + 0*16, iTab1, PUT_EVEN, ROW0, 0*16 iMTX_MULT BLOCK + 1*16, iTab2, PUT_ODD, ROW1, 1*16 iMTX_MULT BLOCK + 2*16, iTab3, PUT_EVEN, ROW2, 2*16 TEST_TWO_ROWS BLOCK + 3*16, BLOCK + 4*16, GPR0, GPR1, CLEAR_ODD, ROW3, CLEAR_EVEN, ROW4 ; a, c JZ GPR0, col1 iMTX_MULT BLOCK + 3*16, iTab4, PUT_ODD, ROW3, 3*16 .col1: TEST_TWO_ROWS BLOCK + 5*16, BLOCK + 6*16, GPR0, GPR2, CLEAR_ODD, ROW5, CLEAR_EVEN, ROW6 ; a, d TEST_ONE_ROW BLOCK + 7*16, GPR3, CLEAR_ODD, ROW7 ; esi iLLM_HEAD JNZ GPR1, 2 JNZ GPR0, 3 JNZ GPR2, 4 JNZ GPR3, 5 iLLM_PASS_SPARSE BLOCK, %1 jmp .6 .2: iMTX_MULT BLOCK + 4*16, iTab1, PUT_EVEN, ROW4 .3: iMTX_MULT BLOCK + 5*16, iTab4, PUT_ODD, ROW5, 4*16 JZ GPR2, col2 .4: iMTX_MULT BLOCK + 6*16, iTab3, PUT_EVEN, ROW6, 5*16 .col2: JZ GPR3, col3 .5: iMTX_MULT BLOCK + 7*16, iTab2, PUT_ODD, ROW7, 5*16 .col3: %if ARCH_X86_32 iLLM_HEAD %endif iLLM_PASS BLOCK, %1 .6: RET %endmacro INIT_XMM sse2 IDCT_SSE2 0 IDCT_SSE2 1 %if ARCH_X86_32 ; %1=offset %2=tab_offset ; %3=rnd_offset where 4*8->6*16 5*8->4*16 6/7*8->5*16 %macro DCT_8_INV_ROW 3 movq mm0, [r0+16*%1+0] ; 0 ; x3 x2 x1 x0 movq mm1, [r0+16*%1+8] ; 1 ; x7 x6 x5 x4 movq mm2, mm0 ; 2 ; x3 x2 x1 x0 movq mm3, [%2+ 0] ; 3 ; w06 w04 w02 w00 %if cpuflag(mmxext) pshufw mm0, mm0, 0x88 ; x2 x0 x2 x0 movq mm4, [%2+ 8] ; 4 ; w07 w06 w03 w02 movq mm5, mm1 ; 5 ; x7 x6 x5 x4 pmaddwd mm3, mm0 ; x2*w05+x0*w04 x2*w01+x0*w00 movq mm6, [%2+32] ; 6 ; w21 w20 w17 w16 pshufw mm1, mm1, 0x88 ; x6 x4 x6 x4 pmaddwd mm4, mm1 ; x6*w07+x4*w06 x6*w03+x4*w02 movq mm7, [%2+40] ; 7; w23 w22 w19 w18 pshufw mm2, mm2, 0xdd ; x3 x1 x3 x1 pmaddwd mm6, mm2 ; x3*w21+x1*w20 x3*w17+x1*w16 pshufw mm5, mm5, 0xdd ; x7 x5 x7 x5 pmaddwd mm7, mm5 ; x7*w23+x5*w22 x7*w19+x5*w18 paddd mm3, [walkenIdctRounders + %3] ; +%3 pmaddwd mm0, [%2+16] ; x2*w13+x0*w12 x2*w09+x0*w08 paddd mm3, mm4 ; 4 ; a1=sum(even1) a0=sum(even0) pmaddwd mm1, [%2+24] ; x6*w15+x4*w14 x6*w11+x4*w10 movq mm4, mm3 ; 4 ; a1 a0 pmaddwd mm2, [%2+48] ; x3*w29+x1*w28 x3*w25+x1*w24 paddd mm6, mm7 ; 7 ; b1=sum(odd1) b0=sum(odd0) pmaddwd mm5, [%2+56] ; x7*w31+x5*w30 x7*w27+x5*w26 paddd mm3, mm6 ; a1+b1 a0+b0 paddd mm0, [walkenIdctRounders + %3] ; +%3 psrad mm3, 11 ; y1=a1+b1 y0=a0+b0 paddd mm0, mm1 ; 1 ; a3=sum(even3) a2=sum(even2) psubd mm4, mm6 ; 6 ; a1-b1 a0-b0 movq mm7, mm0 ; 7 ; a3 a2 paddd mm2, mm5 ; 5 ; b3=sum(odd3) b2=sum(odd2) paddd mm0, mm2 ; a3+b3 a2+b2 psrad mm4, 11 ; y6=a1-b1 y7=a0-b0 psubd mm7, mm2 ; 2 ; a3-b3 a2-b2 psrad mm0, 11 ; y3=a3+b3 y2=a2+b2 psrad mm7, 11 ; y4=a3-b3 y5=a2-b2 packssdw mm3, mm0 ; 0 ; y3 y2 y1 y0 packssdw mm7, mm4 ; 4 ; y6 y7 y4 y5 movq [r0+16*%1+0], mm3 ; 3 ; save y3 y2 y1 y0 pshufw mm7, mm7, 0xb1 ; y7 y6 y5 y4 %else punpcklwd mm0, mm1 ; x5 x1 x4 x0 movq mm5, mm0 ; 5 ; x5 x1 x4 x0 punpckldq mm0, mm0 ; x4 x0 x4 x0 movq mm4, [%2+ 8] ; 4 ; w07 w05 w03 w01 punpckhwd mm2, mm1 ; 1 ; x7 x3 x6 x2 pmaddwd mm3, mm0 ; x4*w06+x0*w04 x4*w02+x0*w00 movq mm6, mm2 ; 6 ; x7 x3 x6 x2 movq mm1, [%2+32] ; 1 ; w22 w20 w18 w16 punpckldq mm2, mm2 ; x6 x2 x6 x2 pmaddwd mm4, mm2 ; x6*w07+x2*w05 x6*w03+x2*w01 punpckhdq mm5, mm5 ; x5 x1 x5 x1 pmaddwd mm0, [%2+16] ; x4*w14+x0*w12 x4*w10+x0*w08 punpckhdq mm6, mm6 ; x7 x3 x7 x3 movq mm7, [%2+40] ; 7 ; w23 w21 w19 w17 pmaddwd mm1, mm5 ; x5*w22+x1*w20 x5*w18+x1*w16 paddd mm3, [walkenIdctRounders + %3] ; +%3 pmaddwd mm7, mm6 ; x7*w23+x3*w21 x7*w19+x3*w17 pmaddwd mm2, [%2+24] ; x6*w15+x2*w13 x6*w11+x2*w09 paddd mm3, mm4 ; 4 ; a1=sum(even1) a0=sum(even0) pmaddwd mm5, [%2+48] ; x5*w30+x1*w28 x5*w26+x1*w24 movq mm4, mm3 ; 4 ; a1 a0 pmaddwd mm6, [%2+56] ; x7*w31+x3*w29 x7*w27+x3*w25 paddd mm1, mm7 ; 7 ; b1=sum(odd1) b0=sum(odd0) paddd mm0, [walkenIdctRounders + %3] ; +%3 psubd mm3, mm1 ; a1-b1 a0-b0 psrad mm3, 11 ; y6=a1-b1 y7=a0-b0 paddd mm1, mm4 ; 4 ; a1+b1 a0+b0 paddd mm0, mm2 ; 2 ; a3=sum(even3) a2=sum(even2) psrad mm1, 11 ; y1=a1+b1 y0=a0+b0 paddd mm5, mm6 ; 6 ; b3=sum(odd3) b2=sum(odd2) movq mm4, mm0 ; 4 ; a3 a2 paddd mm0, mm5 ; a3+b3 a2+b2 psubd mm4, mm5 ; 5 ; a3-b3 a2-b2 psrad mm0, 11 ; y3=a3+b3 y2=a2+b2 psrad mm4, 11 ; y4=a3-b3 y5=a2-b2 packssdw mm1, mm0 ; 0 ; y3 y2 y1 y0 packssdw mm4, mm3 ; 3 ; y6 y7 y4 y5 movq mm7, mm4 ; 7 ; y6 y7 y4 y5 psrld mm4, 16 ; 0 y6 0 y4 pslld mm7, 16 ; y7 0 y5 0 movq [r0+16*%1+0], mm1 ; 1 ; save y3 y2 y1 y0 por mm7, mm4 ; 4 ; y7 y6 y5 y4 %endif movq [r0+16*%1+8], mm7 ; 7 ; save y7 y6 y5 y4 %endmacro ; ----------------------------------------------------------------------------- ; ; The first stage DCT 8x8 - forward DCTs of columns ; ; The %2puts are multiplied ; for rows 0,4 - on cos_4_16, ; for rows 1,7 - on cos_1_16, ; for rows 2,6 - on cos_2_16, ; for rows 3,5 - on cos_3_16 ; and are shifted to the left for rise of accuracy ; ; ----------------------------------------------------------------------------- ; ; The 8-point scaled forward DCT algorithm (26a8m) ; ; ----------------------------------------------------------------------------- ; ;#define DCT_8_FRW_COL(x, y) ; { ; short t0, t1, t2, t3, t4, t5, t6, t7; ; short tp03, tm03, tp12, tm12, tp65, tm65; ; short tp465, tm465, tp765, tm765; ; ; t0 = LEFT_SHIFT(x[0] + x[7]); ; t1 = LEFT_SHIFT(x[1] + x[6]); ; t2 = LEFT_SHIFT(x[2] + x[5]); ; t3 = LEFT_SHIFT(x[3] + x[4]); ; t4 = LEFT_SHIFT(x[3] - x[4]); ; t5 = LEFT_SHIFT(x[2] - x[5]); ; t6 = LEFT_SHIFT(x[1] - x[6]); ; t7 = LEFT_SHIFT(x[0] - x[7]); ; ; tp03 = t0 + t3; ; tm03 = t0 - t3; ; tp12 = t1 + t2; ; tm12 = t1 - t2; ; ; y[0] = tp03 + tp12; ; y[4] = tp03 - tp12; ; ; y[2] = tm03 + tm12 * tg_2_16; ; y[6] = tm03 * tg_2_16 - tm12; ; ; tp65 = (t6 + t5) * cos_4_16; ; tm65 = (t6 - t5) * cos_4_16; ; ; tp765 = t7 + tp65; ; tm765 = t7 - tp65; ; tp465 = t4 + tm65; ; tm465 = t4 - tm65; ; ; y[1] = tp765 + tp465 * tg_1_16; ; y[7] = tp765 * tg_1_16 - tp465; ; y[5] = tm765 * tg_3_16 + tm465; ; y[3] = tm765 - tm465 * tg_3_16; ; } ; ; ----------------------------------------------------------------------------- ; ----------------------------------------------------------------------------- ; DCT_8_INV_COL_4 INP,OUT ; ----------------------------------------------------------------------------- %macro DCT_8_INV_COL 1 movq mm0, [tan3] movq mm3, [%1+16*3] movq mm1, mm0 ; tg_3_16 movq mm5, [%1+16*5] pmulhw mm0, mm3 ; x3*(tg_3_16-1) movq mm4, [tan1] pmulhw mm1, mm5 ; x5*(tg_3_16-1) movq mm7, [%1+16*7] movq mm2, mm4 ; tg_1_16 movq mm6, [%1+16*1] pmulhw mm4, mm7 ; x7*tg_1_16 paddsw mm0, mm3 ; x3*tg_3_16 pmulhw mm2, mm6 ; x1*tg_1_16 paddsw mm1, mm3 ; x3+x5*(tg_3_16-1) psubsw mm0, mm5 ; x3*tg_3_16-x5 = tm35 movq mm3, [sqrt2] paddsw mm1, mm5 ; x3+x5*tg_3_16 = tp35 paddsw mm4, mm6 ; x1+tg_1_16*x7 = tp17 psubsw mm2, mm7 ; x1*tg_1_16-x7 = tm17 movq mm5, mm4 ; tp17 movq mm6, mm2 ; tm17 paddsw mm5, mm1 ; tp17+tp35 = b0 psubsw mm6, mm0 ; tm17-tm35 = b3 psubsw mm4, mm1 ; tp17-tp35 = t1 paddsw mm2, mm0 ; tm17+tm35 = t2 movq mm7, [tan2] movq mm1, mm4 ; t1 movq [%1+3*16], mm5 ; save b0 paddsw mm1, mm2 ; t1+t2 movq [%1+5*16], mm6 ; save b3 psubsw mm4, mm2 ; t1-t2 movq mm5, [%1+2*16] movq mm0, mm7 ; tg_2_16 movq mm6, [%1+6*16] pmulhw mm0, mm5 ; x2*tg_2_16 pmulhw mm7, mm6 ; x6*tg_2_16 pmulhw mm1, mm3 ; ocos_4_16*(t1+t2) = b1/2 movq mm2, [%1+0*16] pmulhw mm4, mm3 ; ocos_4_16*(t1-t2) = b2/2 psubsw mm0, mm6 ; t2*tg_2_16-x6 = tm26 movq mm3, mm2 ; x0 movq mm6, [%1+4*16] paddsw mm7, mm5 ; x2+x6*tg_2_16 = tp26 paddsw mm2, mm6 ; x0+x4 = tp04 psubsw mm3, mm6 ; x0-x4 = tm04 movq mm5, mm2 ; tp04 movq mm6, mm3 ; tm04 psubsw mm2, mm7 ; tp04-tp26 = a3 paddsw mm3, mm0 ; tm04+tm26 = a1 paddsw mm1, mm1 ; b1 paddsw mm4, mm4 ; b2 paddsw mm5, mm7 ; tp04+tp26 = a0 psubsw mm6, mm0 ; tm04-tm26 = a2 movq mm7, mm3 ; a1 movq mm0, mm6 ; a2 paddsw mm3, mm1 ; a1+b1 paddsw mm6, mm4 ; a2+b2 psraw mm3, 6 ; dst1 psubsw mm7, mm1 ; a1-b1 psraw mm6, 6 ; dst2 psubsw mm0, mm4 ; a2-b2 movq mm1, [%1+3*16] ; load b0 psraw mm7, 6 ; dst6 movq mm4, mm5 ; a0 psraw mm0, 6 ; dst5 movq [%1+1*16], mm3 paddsw mm5, mm1 ; a0+b0 movq [%1+2*16], mm6 psubsw mm4, mm1 ; a0-b0 movq mm3, [%1+5*16] ; load b3 psraw mm5, 6 ; dst0 movq mm6, mm2 ; a3 psraw mm4, 6 ; dst7 movq [%1+5*16], mm0 paddsw mm2, mm3 ; a3+b3 movq [%1+6*16], mm7 psubsw mm6, mm3 ; a3-b3 movq [%1+0*16], mm5 psraw mm2, 6 ; dst3 movq [%1+7*16], mm4 psraw mm6, 6 ; dst4 movq [%1+3*16], mm2 movq [%1+4*16], mm6 %endmacro %macro XVID_IDCT_MMX 0 cglobal xvid_idct, 1, 1, 0, block %if cpuflag(mmxext) %define TAB tab_i_04_xmm %else %define TAB tab_i_04_mmx %endif ; Process each row - beware of rounder offset DCT_8_INV_ROW 0, TAB + 64 * 0, 0*16 DCT_8_INV_ROW 1, TAB + 64 * 1, 1*16 DCT_8_INV_ROW 2, TAB + 64 * 2, 2*16 DCT_8_INV_ROW 3, TAB + 64 * 3, 3*16 DCT_8_INV_ROW 4, TAB + 64 * 0, 6*16 DCT_8_INV_ROW 5, TAB + 64 * 3, 4*16 DCT_8_INV_ROW 6, TAB + 64 * 2, 5*16 DCT_8_INV_ROW 7, TAB + 64 * 1, 5*16 ; Process the columns (4 at a time) DCT_8_INV_COL r0+0 DCT_8_INV_COL r0+8 RET %endmacro INIT_MMX mmx XVID_IDCT_MMX INIT_MMX mmxext XVID_IDCT_MMX %endif ; ~ARCH_X86_32