/* * Copyright (c) 2012 Pavel Koshevoy * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * tempo scaling audio filter -- an implementation of WSOLA algorithm * * Based on MIT licensed yaeAudioTempoFilter.h and yaeAudioFragment.h * from Apprentice Video player by Pavel Koshevoy. * https://sourceforge.net/projects/apprenticevideo/ * * An explanation of SOLA algorithm is available at * http://www.surina.net/article/time-and-pitch-scaling.html * * WSOLA is very similar to SOLA, only one major difference exists between * these algorithms. SOLA shifts audio fragments along the output stream, * where as WSOLA shifts audio fragments along the input stream. * * The advantage of WSOLA algorithm is that the overlap region size is * always the same, therefore the blending function is constant and * can be precomputed. */ #include #include "libavcodec/avfft.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/eval.h" #include "libavutil/opt.h" #include "libavutil/samplefmt.h" #include "avfilter.h" #include "audio.h" #include "internal.h" /** * A fragment of audio waveform */ typedef struct { // index of the first sample of this fragment in the overall waveform; // 0: input sample position // 1: output sample position int64_t position[2]; // original packed multi-channel samples: uint8_t *data; // number of samples in this fragment: int nsamples; // rDFT transform of the down-mixed mono fragment, used for // fast waveform alignment via correlation in frequency domain: FFTSample *xdat; } AudioFragment; /** * Filter state machine states */ typedef enum { YAE_LOAD_FRAGMENT, YAE_ADJUST_POSITION, YAE_RELOAD_FRAGMENT, YAE_OUTPUT_OVERLAP_ADD, YAE_FLUSH_OUTPUT, } FilterState; /** * Filter state machine */ typedef struct { const AVClass *class; // ring-buffer of input samples, necessary because some times // input fragment position may be adjusted backwards: uint8_t *buffer; // ring-buffer maximum capacity, expressed in sample rate time base: int ring; // ring-buffer house keeping: int size; int head; int tail; // 0: input sample position corresponding to the ring buffer tail // 1: output sample position int64_t position[2]; // sample format: enum AVSampleFormat format; // number of channels: int channels; // row of bytes to skip from one sample to next, across multple channels; // stride = (number-of-channels * bits-per-sample-per-channel) / 8 int stride; // fragment window size, power-of-two integer: int window; // Hann window coefficients, for feathering // (blending) the overlapping fragment region: float *hann; // tempo scaling factor: double tempo; // cumulative alignment drift: int drift; // current/previous fragment ring-buffer: AudioFragment frag[2]; // current fragment index: uint64_t nfrag; // current state: FilterState state; // for fast correlation calculation in frequency domain: RDFTContext *real_to_complex; RDFTContext *complex_to_real; FFTSample *correlation; // for managing AVFilterPad.request_frame and AVFilterPad.filter_frame AVFrame *dst_buffer; uint8_t *dst; uint8_t *dst_end; uint64_t nsamples_in; uint64_t nsamples_out; } ATempoContext; #define OFFSET(x) offsetof(ATempoContext, x) static const AVOption atempo_options[] = { { "tempo", "set tempo scale factor", OFFSET(tempo), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 0.5, 2.0, AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM }, { NULL } }; AVFILTER_DEFINE_CLASS(atempo); /** * Reset filter to initial state, do not deallocate existing local buffers. */ static void yae_clear(ATempoContext *atempo) { atempo->size = 0; atempo->head = 0; atempo->tail = 0; atempo->drift = 0; atempo->nfrag = 0; atempo->state = YAE_LOAD_FRAGMENT; atempo->position[0] = 0; atempo->position[1] = 0; atempo->frag[0].position[0] = 0; atempo->frag[0].position[1] = 0; atempo->frag[0].nsamples = 0; atempo->frag[1].position[0] = 0; atempo->frag[1].position[1] = 0; atempo->frag[1].nsamples = 0; // shift left position of 1st fragment by half a window // so that no re-normalization would be required for // the left half of the 1st fragment: atempo->frag[0].position[0] = -(int64_t)(atempo->window / 2); atempo->frag[0].position[1] = -(int64_t)(atempo->window / 2); av_frame_free(&atempo->dst_buffer); atempo->dst = NULL; atempo->dst_end = NULL; atempo->nsamples_in = 0; atempo->nsamples_out = 0; } /** * Reset filter to initial state and deallocate all buffers. */ static void yae_release_buffers(ATempoContext *atempo) { yae_clear(atempo); av_freep(&atempo->frag[0].data); av_freep(&atempo->frag[1].data); av_freep(&atempo->frag[0].xdat); av_freep(&atempo->frag[1].xdat); av_freep(&atempo->buffer); av_freep(&atempo->hann); av_freep(&atempo->correlation); av_rdft_end(atempo->real_to_complex); atempo->real_to_complex = NULL; av_rdft_end(atempo->complex_to_real); atempo->complex_to_real = NULL; } /* av_realloc is not aligned enough; fortunately, the data does not need to * be preserved */ #define RE_MALLOC_OR_FAIL(field, field_size) \ do { \ av_freep(&field); \ field = av_malloc(field_size); \ if (!field) { \ yae_release_buffers(atempo); \ return AVERROR(ENOMEM); \ } \ } while (0) /** * Prepare filter for processing audio data of given format, * sample rate and number of channels. */ static int yae_reset(ATempoContext *atempo, enum AVSampleFormat format, int sample_rate, int channels) { const int sample_size = av_get_bytes_per_sample(format); uint32_t nlevels = 0; uint32_t pot; int i; atempo->format = format; atempo->channels = channels; atempo->stride = sample_size * channels; // pick a segment window size: atempo->window = sample_rate / 24; // adjust window size to be a power-of-two integer: nlevels = av_log2(atempo->window); pot = 1 << nlevels; av_assert0(pot <= atempo->window); if (pot < atempo->window) { atempo->window = pot * 2; nlevels++; } // initialize audio fragment buffers: RE_MALLOC_OR_FAIL(atempo->frag[0].data, atempo->window * atempo->stride); RE_MALLOC_OR_FAIL(atempo->frag[1].data, atempo->window * atempo->stride); RE_MALLOC_OR_FAIL(atempo->frag[0].xdat, atempo->window * sizeof(FFTComplex)); RE_MALLOC_OR_FAIL(atempo->frag[1].xdat, atempo->window * sizeof(FFTComplex)); // initialize rDFT contexts: av_rdft_end(atempo->real_to_complex); atempo->real_to_complex = NULL; av_rdft_end(atempo->complex_to_real); atempo->complex_to_real = NULL; atempo->real_to_complex = av_rdft_init(nlevels + 1, DFT_R2C); if (!atempo->real_to_complex) { yae_release_buffers(atempo); return AVERROR(ENOMEM); } atempo->complex_to_real = av_rdft_init(nlevels + 1, IDFT_C2R); if (!atempo->complex_to_real) { yae_release_buffers(atempo); return AVERROR(ENOMEM); } RE_MALLOC_OR_FAIL(atempo->correlation, atempo->window * sizeof(FFTComplex)); atempo->ring = atempo->window * 3; RE_MALLOC_OR_FAIL(atempo->buffer, atempo->ring * atempo->stride); // initialize the Hann window function: RE_MALLOC_OR_FAIL(atempo->hann, atempo->window * sizeof(float)); for (i = 0; i < atempo->window; i++) { double t = (double)i / (double)(atempo->window - 1); double h = 0.5 * (1.0 - cos(2.0 * M_PI * t)); atempo->hann[i] = (float)h; } yae_clear(atempo); return 0; } static int yae_set_tempo(AVFilterContext *ctx, const char *arg_tempo) { ATempoContext *atempo = ctx->priv; char *tail = NULL; double tempo = av_strtod(arg_tempo, &tail); if (tail && *tail) { av_log(ctx, AV_LOG_ERROR, "Invalid tempo value '%s'\n", arg_tempo); return AVERROR(EINVAL); } if (tempo < 0.5 || tempo > 2.0) { av_log(ctx, AV_LOG_ERROR, "Tempo value %f exceeds [0.5, 2.0] range\n", tempo); return AVERROR(EINVAL); } atempo->tempo = tempo; return 0; } inline static AudioFragment *yae_curr_frag(ATempoContext *atempo) { return &atempo->frag[atempo->nfrag % 2]; } inline static AudioFragment *yae_prev_frag(ATempoContext *atempo) { return &atempo->frag[(atempo->nfrag + 1) % 2]; } /** * A helper macro for initializing complex data buffer with scalar data * of a given type. */ #define yae_init_xdat(scalar_type, scalar_max) \ do { \ const uint8_t *src_end = src + \ frag->nsamples * atempo->channels * sizeof(scalar_type); \ \ FFTSample *xdat = frag->xdat; \ scalar_type tmp; \ \ if (atempo->channels == 1) { \ for (; src < src_end; xdat++) { \ tmp = *(const scalar_type *)src; \ src += sizeof(scalar_type); \ \ *xdat = (FFTSample)tmp; \ } \ } else { \ FFTSample s, max, ti, si; \ int i; \ \ for (; src < src_end; xdat++) { \ tmp = *(const scalar_type *)src; \ src += sizeof(scalar_type); \ \ max = (FFTSample)tmp; \ s = FFMIN((FFTSample)scalar_max, \ (FFTSample)fabsf(max)); \ \ for (i = 1; i < atempo->channels; i++) { \ tmp = *(const scalar_type *)src; \ src += sizeof(scalar_type); \ \ ti = (FFTSample)tmp; \ si = FFMIN((FFTSample)scalar_max, \ (FFTSample)fabsf(ti)); \ \ if (s < si) { \ s = si; \ max = ti; \ } \ } \ \ *xdat = max; \ } \ } \ } while (0) /** * Initialize complex data buffer of a given audio fragment * with down-mixed mono data of appropriate scalar type. */ static void yae_downmix(ATempoContext *atempo, AudioFragment *frag) { // shortcuts: const uint8_t *src = frag->data; // init complex data buffer used for FFT and Correlation: memset(frag->xdat, 0, sizeof(FFTComplex) * atempo->window); if (atempo->format == AV_SAMPLE_FMT_U8) { yae_init_xdat(uint8_t, 127); } else if (atempo->format == AV_SAMPLE_FMT_S16) { yae_init_xdat(int16_t, 32767); } else if (atempo->format == AV_SAMPLE_FMT_S32) { yae_init_xdat(int, 2147483647); } else if (atempo->format == AV_SAMPLE_FMT_FLT) { yae_init_xdat(float, 1); } else if (atempo->format == AV_SAMPLE_FMT_DBL) { yae_init_xdat(double, 1); } } /** * Populate the internal data buffer on as-needed basis. * * @return * 0 if requested data was already available or was successfully loaded, * AVERROR(EAGAIN) if more input data is required. */ static int yae_load_data(ATempoContext *atempo, const uint8_t **src_ref, const uint8_t *src_end, int64_t stop_here) { // shortcut: const uint8_t *src = *src_ref; const int read_size = stop_here - atempo->position[0]; if (stop_here <= atempo->position[0]) { return 0; } // samples are not expected to be skipped: av_assert0(read_size <= atempo->ring); while (atempo->position[0] < stop_here && src < src_end) { int src_samples = (src_end - src) / atempo->stride; // load data piece-wise, in order to avoid complicating the logic: int nsamples = FFMIN(read_size, src_samples); int na; int nb; nsamples = FFMIN(nsamples, atempo->ring); na = FFMIN(nsamples, atempo->ring - atempo->tail); nb = FFMIN(nsamples - na, atempo->ring); if (na) { uint8_t *a = atempo->buffer + atempo->tail * atempo->stride; memcpy(a, src, na * atempo->stride); src += na * atempo->stride; atempo->position[0] += na; atempo->size = FFMIN(atempo->size + na, atempo->ring); atempo->tail = (atempo->tail + na) % atempo->ring; atempo->head = atempo->size < atempo->ring ? atempo->tail - atempo->size : atempo->tail; } if (nb) { uint8_t *b = atempo->buffer; memcpy(b, src, nb * atempo->stride); src += nb * atempo->stride; atempo->position[0] += nb; atempo->size = FFMIN(atempo->size + nb, atempo->ring); atempo->tail = (atempo->tail + nb) % atempo->ring; atempo->head = atempo->size < atempo->ring ? atempo->tail - atempo->size : atempo->tail; } } // pass back the updated source buffer pointer: *src_ref = src; // sanity check: av_assert0(atempo->position[0] <= stop_here); return atempo->position[0] == stop_here ? 0 : AVERROR(EAGAIN); } /** * Populate current audio fragment data buffer. * * @return * 0 when the fragment is ready, * AVERROR(EAGAIN) if more input data is required. */ static int yae_load_frag(ATempoContext *atempo, const uint8_t **src_ref, const uint8_t *src_end) { // shortcuts: AudioFragment *frag = yae_curr_frag(atempo); uint8_t *dst; int64_t missing, start, zeros; uint32_t nsamples; const uint8_t *a, *b; int i0, i1, n0, n1, na, nb; int64_t stop_here = frag->position[0] + atempo->window; if (src_ref && yae_load_data(atempo, src_ref, src_end, stop_here) != 0) { return AVERROR(EAGAIN); } // calculate the number of samples we don't have: missing = stop_here > atempo->position[0] ? stop_here - atempo->position[0] : 0; nsamples = missing < (int64_t)atempo->window ? (uint32_t)(atempo->window - missing) : 0; // setup the output buffer: frag->nsamples = nsamples; dst = frag->data; start = atempo->position[0] - atempo->size; zeros = 0; if (frag->position[0] < start) { // what we don't have we substitute with zeros: zeros = FFMIN(start - frag->position[0], (int64_t)nsamples); av_assert0(zeros != nsamples); memset(dst, 0, zeros * atempo->stride); dst += zeros * atempo->stride; } if (zeros == nsamples) { return 0; } // get the remaining data from the ring buffer: na = (atempo->head < atempo->tail ? atempo->tail - atempo->head : atempo->ring - atempo->head); nb = atempo->head < atempo->tail ? 0 : atempo->tail; // sanity check: av_assert0(nsamples <= zeros + na + nb); a = atempo->buffer + atempo->head * atempo->stride; b = atempo->buffer; i0 = frag->position[0] + zeros - start; i1 = i0 < na ? 0 : i0 - na; n0 = i0 < na ? FFMIN(na - i0, (int)(nsamples - zeros)) : 0; n1 = nsamples - zeros - n0; if (n0) { memcpy(dst, a + i0 * atempo->stride, n0 * atempo->stride); dst += n0 * atempo->stride; } if (n1) { memcpy(dst, b + i1 * atempo->stride, n1 * atempo->stride); } return 0; } /** * Prepare for loading next audio fragment. */ static void yae_advance_to_next_frag(ATempoContext *atempo) { const double fragment_step = atempo->tempo * (double)(atempo->window / 2); const AudioFragment *prev; AudioFragment *frag; atempo->nfrag++; prev = yae_prev_frag(atempo); frag = yae_curr_frag(atempo); frag->position[0] = prev->position[0] + (int64_t)fragment_step; frag->position[1] = prev->position[1] + atempo->window / 2; frag->nsamples = 0; } /** * Calculate cross-correlation via rDFT. * * Multiply two vectors of complex numbers (result of real_to_complex rDFT) * and transform back via complex_to_real rDFT. */ static void yae_xcorr_via_rdft(FFTSample *xcorr, RDFTContext *complex_to_real, const FFTComplex *xa, const FFTComplex *xb, const int window) { FFTComplex *xc = (FFTComplex *)xcorr; int i; // NOTE: first element requires special care -- Given Y = rDFT(X), // Im(Y[0]) and Im(Y[N/2]) are always zero, therefore av_rdft_calc // stores Re(Y[N/2]) in place of Im(Y[0]). xc->re = xa->re * xb->re; xc->im = xa->im * xb->im; xa++; xb++; xc++; for (i = 1; i < window; i++, xa++, xb++, xc++) { xc->re = (xa->re * xb->re + xa->im * xb->im); xc->im = (xa->im * xb->re - xa->re * xb->im); } // apply inverse rDFT: av_rdft_calc(complex_to_real, xcorr); } /** * Calculate alignment offset for given fragment * relative to the previous fragment. * * @return alignment offset of current fragment relative to previous. */ static int yae_align(AudioFragment *frag, const AudioFragment *prev, const int window, const int delta_max, const int drift, FFTSample *correlation, RDFTContext *complex_to_real) { int best_offset = -drift; FFTSample best_metric = -FLT_MAX; FFTSample *xcorr; int i0; int i1; int i; yae_xcorr_via_rdft(correlation, complex_to_real, (const FFTComplex *)prev->xdat, (const FFTComplex *)frag->xdat, window); // identify search window boundaries: i0 = FFMAX(window / 2 - delta_max - drift, 0); i0 = FFMIN(i0, window); i1 = FFMIN(window / 2 + delta_max - drift, window - window / 16); i1 = FFMAX(i1, 0); // identify cross-correlation peaks within search window: xcorr = correlation + i0; for (i = i0; i < i1; i++, xcorr++) { FFTSample metric = *xcorr; // normalize: FFTSample drifti = (FFTSample)(drift + i); metric *= drifti * (FFTSample)(i - i0) * (FFTSample)(i1 - i); if (metric > best_metric) { best_metric = metric; best_offset = i - window / 2; } } return best_offset; } /** * Adjust current fragment position for better alignment * with previous fragment. * * @return alignment correction. */ static int yae_adjust_position(ATempoContext *atempo) { const AudioFragment *prev = yae_prev_frag(atempo); AudioFragment *frag = yae_curr_frag(atempo); const int delta_max = atempo->window / 2; const int correction = yae_align(frag, prev, atempo->window, delta_max, atempo->drift, atempo->correlation, atempo->complex_to_real); if (correction) { // adjust fragment position: frag->position[0] -= correction; // clear so that the fragment can be reloaded: frag->nsamples = 0; // update cumulative correction drift counter: atempo->drift += correction; } return correction; } /** * A helper macro for blending the overlap region of previous * and current audio fragment. */ #define yae_blend(scalar_type) \ do { \ const scalar_type *aaa = (const scalar_type *)a; \ const scalar_type *bbb = (const scalar_type *)b; \ \ scalar_type *out = (scalar_type *)dst; \ scalar_type *out_end = (scalar_type *)dst_end; \ int64_t i; \ \ for (i = 0; i < overlap && out < out_end; \ i++, atempo->position[1]++, wa++, wb++) { \ float w0 = *wa; \ float w1 = *wb; \ int j; \ \ for (j = 0; j < atempo->channels; \ j++, aaa++, bbb++, out++) { \ float t0 = (float)*aaa; \ float t1 = (float)*bbb; \ \ *out = \ frag->position[0] + i < 0 ? \ *aaa : \ (scalar_type)(t0 * w0 + t1 * w1); \ } \ } \ dst = (uint8_t *)out; \ } while (0) /** * Blend the overlap region of previous and current audio fragment * and output the results to the given destination buffer. * * @return * 0 if the overlap region was completely stored in the dst buffer, * AVERROR(EAGAIN) if more destination buffer space is required. */ static int yae_overlap_add(ATempoContext *atempo, uint8_t **dst_ref, uint8_t *dst_end) { // shortcuts: const AudioFragment *prev = yae_prev_frag(atempo); const AudioFragment *frag = yae_curr_frag(atempo); const int64_t start_here = FFMAX(atempo->position[1], frag->position[1]); const int64_t stop_here = FFMIN(prev->position[1] + prev->nsamples, frag->position[1] + frag->nsamples); const int64_t overlap = stop_here - start_here; const int64_t ia = start_here - prev->position[1]; const int64_t ib = start_here - frag->position[1]; const float *wa = atempo->hann + ia; const float *wb = atempo->hann + ib; const uint8_t *a = prev->data + ia * atempo->stride; const uint8_t *b = frag->data + ib * atempo->stride; uint8_t *dst = *dst_ref; av_assert0(start_here <= stop_here && frag->position[1] <= start_here && overlap <= frag->nsamples); if (atempo->format == AV_SAMPLE_FMT_U8) { yae_blend(uint8_t); } else if (atempo->format == AV_SAMPLE_FMT_S16) { yae_blend(int16_t); } else if (atempo->format == AV_SAMPLE_FMT_S32) { yae_blend(int); } else if (atempo->format == AV_SAMPLE_FMT_FLT) { yae_blend(float); } else if (atempo->format == AV_SAMPLE_FMT_DBL) { yae_blend(double); } // pass-back the updated destination buffer pointer: *dst_ref = dst; return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN); } /** * Feed as much data to the filter as it is able to consume * and receive as much processed data in the destination buffer * as it is able to produce or store. */ static void yae_apply(ATempoContext *atempo, const uint8_t **src_ref, const uint8_t *src_end, uint8_t **dst_ref, uint8_t *dst_end) { while (1) { if (atempo->state == YAE_LOAD_FRAGMENT) { // load additional data for the current fragment: if (yae_load_frag(atempo, src_ref, src_end) != 0) { break; } // down-mix to mono: yae_downmix(atempo, yae_curr_frag(atempo)); // apply rDFT: av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat); // must load the second fragment before alignment can start: if (!atempo->nfrag) { yae_advance_to_next_frag(atempo); continue; } atempo->state = YAE_ADJUST_POSITION; } if (atempo->state == YAE_ADJUST_POSITION) { // adjust position for better alignment: if (yae_adjust_position(atempo)) { // reload the fragment at the corrected position, so that the // Hann window blending would not require normalization: atempo->state = YAE_RELOAD_FRAGMENT; } else { atempo->state = YAE_OUTPUT_OVERLAP_ADD; } } if (atempo->state == YAE_RELOAD_FRAGMENT) { // load additional data if necessary due to position adjustment: if (yae_load_frag(atempo, src_ref, src_end) != 0) { break; } // down-mix to mono: yae_downmix(atempo, yae_curr_frag(atempo)); // apply rDFT: av_rdft_calc(atempo->real_to_complex, yae_curr_frag(atempo)->xdat); atempo->state = YAE_OUTPUT_OVERLAP_ADD; } if (atempo->state == YAE_OUTPUT_OVERLAP_ADD) { // overlap-add and output the result: if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) { break; } // advance to the next fragment, repeat: yae_advance_to_next_frag(atempo); atempo->state = YAE_LOAD_FRAGMENT; } } } /** * Flush any buffered data from the filter. * * @return * 0 if all data was completely stored in the dst buffer, * AVERROR(EAGAIN) if more destination buffer space is required. */ static int yae_flush(ATempoContext *atempo, uint8_t **dst_ref, uint8_t *dst_end) { AudioFragment *frag = yae_curr_frag(atempo); int64_t overlap_end; int64_t start_here; int64_t stop_here; int64_t offset; const uint8_t *src; uint8_t *dst; int src_size; int dst_size; int nbytes; atempo->state = YAE_FLUSH_OUTPUT; if (atempo->position[0] == frag->position[0] + frag->nsamples && atempo->position[1] == frag->position[1] + frag->nsamples) { // the current fragment is already flushed: return 0; } if (frag->position[0] + frag->nsamples < atempo->position[0]) { // finish loading the current (possibly partial) fragment: yae_load_frag(atempo, NULL, NULL); if (atempo->nfrag) { // down-mix to mono: yae_downmix(atempo, frag); // apply rDFT: av_rdft_calc(atempo->real_to_complex, frag->xdat); // align current fragment to previous fragment: if (yae_adjust_position(atempo)) { // reload the current fragment due to adjusted position: yae_load_frag(atempo, NULL, NULL); } } } // flush the overlap region: overlap_end = frag->position[1] + FFMIN(atempo->window / 2, frag->nsamples); while (atempo->position[1] < overlap_end) { if (yae_overlap_add(atempo, dst_ref, dst_end) != 0) { return AVERROR(EAGAIN); } } // flush the remaininder of the current fragment: start_here = FFMAX(atempo->position[1], overlap_end); stop_here = frag->position[1] + frag->nsamples; offset = start_here - frag->position[1]; av_assert0(start_here <= stop_here && frag->position[1] <= start_here); src = frag->data + offset * atempo->stride; dst = (uint8_t *)*dst_ref; src_size = (int)(stop_here - start_here) * atempo->stride; dst_size = dst_end - dst; nbytes = FFMIN(src_size, dst_size); memcpy(dst, src, nbytes); dst += nbytes; atempo->position[1] += (nbytes / atempo->stride); // pass-back the updated destination buffer pointer: *dst_ref = (uint8_t *)dst; return atempo->position[1] == stop_here ? 0 : AVERROR(EAGAIN); } static av_cold int init(AVFilterContext *ctx, const char *args) { ATempoContext *atempo = ctx->priv; atempo->format = AV_SAMPLE_FMT_NONE; atempo->state = YAE_LOAD_FRAGMENT; return 0; } static av_cold void uninit(AVFilterContext *ctx) { ATempoContext *atempo = ctx->priv; yae_release_buffers(atempo); } static int query_formats(AVFilterContext *ctx) { AVFilterChannelLayouts *layouts = NULL; AVFilterFormats *formats = NULL; // WSOLA necessitates an internal sliding window ring buffer // for incoming audio stream. // // Planar sample formats are too cumbersome to store in a ring buffer, // therefore planar sample formats are not supported. // static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE }; layouts = ff_all_channel_layouts(); if (!layouts) { return AVERROR(ENOMEM); } ff_set_common_channel_layouts(ctx, layouts); formats = ff_make_format_list(sample_fmts); if (!formats) { return AVERROR(ENOMEM); } ff_set_common_formats(ctx, formats); formats = ff_all_samplerates(); if (!formats) { return AVERROR(ENOMEM); } ff_set_common_samplerates(ctx, formats); return 0; } static int config_props(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; ATempoContext *atempo = ctx->priv; enum AVSampleFormat format = inlink->format; int sample_rate = (int)inlink->sample_rate; int channels = av_get_channel_layout_nb_channels(inlink->channel_layout); ctx->outputs[0]->flags |= FF_LINK_FLAG_REQUEST_LOOP; return yae_reset(atempo, format, sample_rate, channels); } static int push_samples(ATempoContext *atempo, AVFilterLink *outlink, int n_out) { int ret; atempo->dst_buffer->sample_rate = outlink->sample_rate; atempo->dst_buffer->nb_samples = n_out; // adjust the PTS: atempo->dst_buffer->pts = av_rescale_q(atempo->nsamples_out, (AVRational){ 1, outlink->sample_rate }, outlink->time_base); ret = ff_filter_frame(outlink, atempo->dst_buffer); if (ret < 0) return ret; atempo->dst_buffer = NULL; atempo->dst = NULL; atempo->dst_end = NULL; atempo->nsamples_out += n_out; return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *src_buffer) { AVFilterContext *ctx = inlink->dst; ATempoContext *atempo = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int ret = 0; int n_in = src_buffer->nb_samples; int n_out = (int)(0.5 + ((double)n_in) / atempo->tempo); const uint8_t *src = src_buffer->data[0]; const uint8_t *src_end = src + n_in * atempo->stride; while (src < src_end) { if (!atempo->dst_buffer) { atempo->dst_buffer = ff_get_audio_buffer(outlink, n_out); if (!atempo->dst_buffer) return AVERROR(ENOMEM); av_frame_copy_props(atempo->dst_buffer, src_buffer); atempo->dst = atempo->dst_buffer->data[0]; atempo->dst_end = atempo->dst + n_out * atempo->stride; } yae_apply(atempo, &src, src_end, &atempo->dst, atempo->dst_end); if (atempo->dst == atempo->dst_end) { ret = push_samples(atempo, outlink, n_out); if (ret < 0) goto end; } } atempo->nsamples_in += n_in; end: av_frame_free(&src_buffer); return ret; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ATempoContext *atempo = ctx->priv; int ret; ret = ff_request_frame(ctx->inputs[0]); if (ret == AVERROR_EOF) { // flush the filter: int n_max = atempo->ring; int n_out; int err = AVERROR(EAGAIN); while (err == AVERROR(EAGAIN)) { if (!atempo->dst_buffer) { atempo->dst_buffer = ff_get_audio_buffer(outlink, n_max); if (!atempo->dst_buffer) return AVERROR(ENOMEM); atempo->dst = atempo->dst_buffer->data[0]; atempo->dst_end = atempo->dst + n_max * atempo->stride; } err = yae_flush(atempo, &atempo->dst, atempo->dst_end); n_out = ((atempo->dst - atempo->dst_buffer->data[0]) / atempo->stride); if (n_out) { ret = push_samples(atempo, outlink, n_out); } } av_frame_free(&atempo->dst_buffer); atempo->dst = NULL; atempo->dst_end = NULL; return AVERROR_EOF; } return ret; } static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags) { return !strcmp(cmd, "tempo") ? yae_set_tempo(ctx, arg) : AVERROR(ENOSYS); } static const AVFilterPad atempo_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, .config_props = config_props, }, { NULL } }; static const AVFilterPad atempo_outputs[] = { { .name = "default", .request_frame = request_frame, .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; AVFilter avfilter_af_atempo = { .name = "atempo", .description = NULL_IF_CONFIG_SMALL("Adjust audio tempo."), .init = init, .uninit = uninit, .query_formats = query_formats, .process_command = process_command, .priv_size = sizeof(ATempoContext), .priv_class = &atempo_class, .inputs = atempo_inputs, .outputs = atempo_outputs, };