/* * Copyright (C) 2003-2004 the ffmpeg project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * On2 VP3 Video Decoder * * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) * For more information about the VP3 coding process, visit: * http://wiki.multimedia.cx/index.php?title=On2_VP3 * * Theora decoder by Alex Beregszaszi */ #include #include #include #include "libavutil/imgutils.h" #include "avcodec.h" #include "internal.h" #include "dsputil.h" #include "get_bits.h" #include "videodsp.h" #include "vp3data.h" #include "vp3dsp.h" #include "xiph.h" #include "thread.h" #define FRAGMENT_PIXELS 8 //FIXME split things out into their own arrays typedef struct Vp3Fragment { int16_t dc; uint8_t coding_method; uint8_t qpi; } Vp3Fragment; #define SB_NOT_CODED 0 #define SB_PARTIALLY_CODED 1 #define SB_FULLY_CODED 2 // This is the maximum length of a single long bit run that can be encoded // for superblock coding or block qps. Theora special-cases this to read a // bit instead of flipping the current bit to allow for runs longer than 4129. #define MAXIMUM_LONG_BIT_RUN 4129 #define MODE_INTER_NO_MV 0 #define MODE_INTRA 1 #define MODE_INTER_PLUS_MV 2 #define MODE_INTER_LAST_MV 3 #define MODE_INTER_PRIOR_LAST 4 #define MODE_USING_GOLDEN 5 #define MODE_GOLDEN_MV 6 #define MODE_INTER_FOURMV 7 #define CODING_MODE_COUNT 8 /* special internal mode */ #define MODE_COPY 8 /* There are 6 preset schemes, plus a free-form scheme */ static const int ModeAlphabet[6][CODING_MODE_COUNT] = { /* scheme 1: Last motion vector dominates */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 2 */ { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 3 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 4 */ { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 5: No motion vector dominates */ { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_USING_GOLDEN, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, /* scheme 6 */ { MODE_INTER_NO_MV, MODE_USING_GOLDEN, MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, MODE_INTRA, MODE_GOLDEN_MV, MODE_INTER_FOURMV }, }; static const uint8_t hilbert_offset[16][2] = { {0,0}, {1,0}, {1,1}, {0,1}, {0,2}, {0,3}, {1,3}, {1,2}, {2,2}, {2,3}, {3,3}, {3,2}, {3,1}, {2,1}, {2,0}, {3,0} }; #define MIN_DEQUANT_VAL 2 typedef struct Vp3DecodeContext { AVCodecContext *avctx; int theora, theora_tables; int version; int width, height; int chroma_x_shift, chroma_y_shift; AVFrame golden_frame; AVFrame last_frame; AVFrame current_frame; int keyframe; DSPContext dsp; VideoDSPContext vdsp; VP3DSPContext vp3dsp; DECLARE_ALIGNED(16, DCTELEM, block)[64]; int flipped_image; int last_slice_end; int skip_loop_filter; int qps[3]; int nqps; int last_qps[3]; int superblock_count; int y_superblock_width; int y_superblock_height; int y_superblock_count; int c_superblock_width; int c_superblock_height; int c_superblock_count; int u_superblock_start; int v_superblock_start; unsigned char *superblock_coding; int macroblock_count; int macroblock_width; int macroblock_height; int fragment_count; int fragment_width[2]; int fragment_height[2]; Vp3Fragment *all_fragments; int fragment_start[3]; int data_offset[3]; int8_t (*motion_val[2])[2]; ScanTable scantable; /* tables */ uint16_t coded_dc_scale_factor[64]; uint32_t coded_ac_scale_factor[64]; uint8_t base_matrix[384][64]; uint8_t qr_count[2][3]; uint8_t qr_size [2][3][64]; uint16_t qr_base[2][3][64]; /** * This is a list of all tokens in bitstream order. Reordering takes place * by pulling from each level during IDCT. As a consequence, IDCT must be * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 * otherwise. The 32 different tokens with up to 12 bits of extradata are * collapsed into 3 types, packed as follows: * (from the low to high bits) * * 2 bits: type (0,1,2) * 0: EOB run, 14 bits for run length (12 needed) * 1: zero run, 7 bits for run length * 7 bits for the next coefficient (3 needed) * 2: coefficient, 14 bits (11 needed) * * Coefficients are signed, so are packed in the highest bits for automatic * sign extension. */ int16_t *dct_tokens[3][64]; int16_t *dct_tokens_base; #define TOKEN_EOB(eob_run) ((eob_run) << 2) #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1) #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2) /** * number of blocks that contain DCT coefficients at the given level or higher */ int num_coded_frags[3][64]; int total_num_coded_frags; /* this is a list of indexes into the all_fragments array indicating * which of the fragments are coded */ int *coded_fragment_list[3]; VLC dc_vlc[16]; VLC ac_vlc_1[16]; VLC ac_vlc_2[16]; VLC ac_vlc_3[16]; VLC ac_vlc_4[16]; VLC superblock_run_length_vlc; VLC fragment_run_length_vlc; VLC mode_code_vlc; VLC motion_vector_vlc; /* these arrays need to be on 16-byte boundaries since SSE2 operations * index into them */ DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] /* This table contains superblock_count * 16 entries. Each set of 16 * numbers corresponds to the fragment indexes 0..15 of the superblock. * An entry will be -1 to indicate that no entry corresponds to that * index. */ int *superblock_fragments; /* This is an array that indicates how a particular macroblock * is coded. */ unsigned char *macroblock_coding; uint8_t *edge_emu_buffer; /* Huffman decode */ int hti; unsigned int hbits; int entries; int huff_code_size; uint32_t huffman_table[80][32][2]; uint8_t filter_limit_values[64]; DECLARE_ALIGNED(8, int, bounding_values_array)[256+2]; } Vp3DecodeContext; /************************************************************************ * VP3 specific functions ************************************************************************/ static void vp3_decode_flush(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; if (s->golden_frame.data[0]) { if (s->golden_frame.data[0] == s->last_frame.data[0]) memset(&s->last_frame, 0, sizeof(AVFrame)); if (s->current_frame.data[0] == s->golden_frame.data[0]) memset(&s->current_frame, 0, sizeof(AVFrame)); ff_thread_release_buffer(avctx, &s->golden_frame); } if (s->last_frame.data[0]) { if (s->current_frame.data[0] == s->last_frame.data[0]) memset(&s->current_frame, 0, sizeof(AVFrame)); ff_thread_release_buffer(avctx, &s->last_frame); } if (s->current_frame.data[0]) ff_thread_release_buffer(avctx, &s->current_frame); } static av_cold int vp3_decode_end(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int i; av_freep(&s->superblock_coding); av_freep(&s->all_fragments); av_freep(&s->coded_fragment_list[0]); av_freep(&s->dct_tokens_base); av_freep(&s->superblock_fragments); av_freep(&s->macroblock_coding); av_freep(&s->motion_val[0]); av_freep(&s->motion_val[1]); av_freep(&s->edge_emu_buffer); if (avctx->internal->is_copy) return 0; for (i = 0; i < 16; i++) { ff_free_vlc(&s->dc_vlc[i]); ff_free_vlc(&s->ac_vlc_1[i]); ff_free_vlc(&s->ac_vlc_2[i]); ff_free_vlc(&s->ac_vlc_3[i]); ff_free_vlc(&s->ac_vlc_4[i]); } ff_free_vlc(&s->superblock_run_length_vlc); ff_free_vlc(&s->fragment_run_length_vlc); ff_free_vlc(&s->mode_code_vlc); ff_free_vlc(&s->motion_vector_vlc); /* release all frames */ vp3_decode_flush(avctx); return 0; } /** * This function sets up all of the various blocks mappings: * superblocks <-> fragments, macroblocks <-> fragments, * superblocks <-> macroblocks * * @return 0 is successful; returns 1 if *anything* went wrong. */ static int init_block_mapping(Vp3DecodeContext *s) { int sb_x, sb_y, plane; int x, y, i, j = 0; for (plane = 0; plane < 3; plane++) { int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; int frag_width = s->fragment_width[!!plane]; int frag_height = s->fragment_height[!!plane]; for (sb_y = 0; sb_y < sb_height; sb_y++) for (sb_x = 0; sb_x < sb_width; sb_x++) for (i = 0; i < 16; i++) { x = 4*sb_x + hilbert_offset[i][0]; y = 4*sb_y + hilbert_offset[i][1]; if (x < frag_width && y < frag_height) s->superblock_fragments[j++] = s->fragment_start[plane] + y*frag_width + x; else s->superblock_fragments[j++] = -1; } } return 0; /* successful path out */ } /* * This function sets up the dequantization tables used for a particular * frame. */ static void init_dequantizer(Vp3DecodeContext *s, int qpi) { int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]]; int i, plane, inter, qri, bmi, bmj, qistart; for(inter=0; inter<2; inter++){ for(plane=0; plane<3; plane++){ int sum=0; for(qri=0; qriqr_count[inter][plane]; qri++){ sum+= s->qr_size[inter][plane][qri]; if(s->qps[qpi] <= sum) break; } qistart= sum - s->qr_size[inter][plane][qri]; bmi= s->qr_base[inter][plane][qri ]; bmj= s->qr_base[inter][plane][qri+1]; for(i=0; i<64; i++){ int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i] - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i] + s->qr_size[inter][plane][qri]) / (2*s->qr_size[inter][plane][qri]); int qmin= 8<<(inter + !i); int qscale= i ? ac_scale_factor : dc_scale_factor; s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); } // all DC coefficients use the same quant so as not to interfere with DC prediction s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; } } } /* * This function initializes the loop filter boundary limits if the frame's * quality index is different from the previous frame's. * * The filter_limit_values may not be larger than 127. */ static void init_loop_filter(Vp3DecodeContext *s) { int *bounding_values= s->bounding_values_array+127; int filter_limit; int x; int value; filter_limit = s->filter_limit_values[s->qps[0]]; av_assert0(filter_limit < 128U); /* set up the bounding values */ memset(s->bounding_values_array, 0, 256 * sizeof(int)); for (x = 0; x < filter_limit; x++) { bounding_values[-x] = -x; bounding_values[x] = x; } for (x = value = filter_limit; x < 128 && value; x++, value--) { bounding_values[ x] = value; bounding_values[-x] = -value; } if (value) bounding_values[128] = value; bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202; } /* * This function unpacks all of the superblock/macroblock/fragment coding * information from the bitstream. */ static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) { int superblock_starts[3] = { 0, s->u_superblock_start, s->v_superblock_start }; int bit = 0; int current_superblock = 0; int current_run = 0; int num_partial_superblocks = 0; int i, j; int current_fragment; int plane; if (s->keyframe) { memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); } else { /* unpack the list of partially-coded superblocks */ bit = get_bits1(gb) ^ 1; current_run = 0; while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; if (current_run == 34) current_run += get_bits(gb, 12); if (current_superblock + current_run > s->superblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partially coded superblock run length\n"); return -1; } memset(s->superblock_coding + current_superblock, bit, current_run); current_superblock += current_run; if (bit) num_partial_superblocks += current_run; } /* unpack the list of fully coded superblocks if any of the blocks were * not marked as partially coded in the previous step */ if (num_partial_superblocks < s->superblock_count) { int superblocks_decoded = 0; current_superblock = 0; bit = get_bits1(gb) ^ 1; current_run = 0; while (superblocks_decoded < s->superblock_count - num_partial_superblocks && get_bits_left(gb) > 0) { if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; if (current_run == 34) current_run += get_bits(gb, 12); for (j = 0; j < current_run; current_superblock++) { if (current_superblock >= s->superblock_count) { av_log(s->avctx, AV_LOG_ERROR, "Invalid fully coded superblock run length\n"); return -1; } /* skip any superblocks already marked as partially coded */ if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { s->superblock_coding[current_superblock] = 2*bit; j++; } } superblocks_decoded += current_run; } } /* if there were partial blocks, initialize bitstream for * unpacking fragment codings */ if (num_partial_superblocks) { current_run = 0; bit = get_bits1(gb); /* toggle the bit because as soon as the first run length is * fetched the bit will be toggled again */ bit ^= 1; } } /* figure out which fragments are coded; iterate through each * superblock (all planes) */ s->total_num_coded_frags = 0; memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); for (plane = 0; plane < 3; plane++) { int sb_start = superblock_starts[plane]; int sb_end = sb_start + (plane ? s->c_superblock_count : s->y_superblock_count); int num_coded_frags = 0; for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { /* iterate through all 16 fragments in a superblock */ for (j = 0; j < 16; j++) { /* if the fragment is in bounds, check its coding status */ current_fragment = s->superblock_fragments[i * 16 + j]; if (current_fragment != -1) { int coded = s->superblock_coding[i]; if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { /* fragment may or may not be coded; this is the case * that cares about the fragment coding runs */ if (current_run-- == 0) { bit ^= 1; current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); } coded = bit; } if (coded) { /* default mode; actual mode will be decoded in * the next phase */ s->all_fragments[current_fragment].coding_method = MODE_INTER_NO_MV; s->coded_fragment_list[plane][num_coded_frags++] = current_fragment; } else { /* not coded; copy this fragment from the prior frame */ s->all_fragments[current_fragment].coding_method = MODE_COPY; } } } } s->total_num_coded_frags += num_coded_frags; for (i = 0; i < 64; i++) s->num_coded_frags[plane][i] = num_coded_frags; if (plane < 2) s->coded_fragment_list[plane+1] = s->coded_fragment_list[plane] + num_coded_frags; } return 0; } /* * This function unpacks all the coding mode data for individual macroblocks * from the bitstream. */ static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) { int i, j, k, sb_x, sb_y; int scheme; int current_macroblock; int current_fragment; int coding_mode; int custom_mode_alphabet[CODING_MODE_COUNT]; const int *alphabet; Vp3Fragment *frag; if (s->keyframe) { for (i = 0; i < s->fragment_count; i++) s->all_fragments[i].coding_method = MODE_INTRA; } else { /* fetch the mode coding scheme for this frame */ scheme = get_bits(gb, 3); /* is it a custom coding scheme? */ if (scheme == 0) { for (i = 0; i < 8; i++) custom_mode_alphabet[i] = MODE_INTER_NO_MV; for (i = 0; i < 8; i++) custom_mode_alphabet[get_bits(gb, 3)] = i; alphabet = custom_mode_alphabet; } else alphabet = ModeAlphabet[scheme-1]; /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { if (get_bits_left(gb) <= 0) return -1; for (j = 0; j < 4; j++) { int mb_x = 2*sb_x + (j>>1); int mb_y = 2*sb_y + (((j>>1)+j)&1); current_macroblock = mb_y * s->macroblock_width + mb_x; if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height) continue; #define BLOCK_X (2*mb_x + (k&1)) #define BLOCK_Y (2*mb_y + (k>>1)) /* coding modes are only stored if the macroblock has at least one * luma block coded, otherwise it must be INTER_NO_MV */ for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; if (s->all_fragments[current_fragment].coding_method != MODE_COPY) break; } if (k == 4) { s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; continue; } /* mode 7 means get 3 bits for each coding mode */ if (scheme == 7) coding_mode = get_bits(gb, 3); else coding_mode = alphabet [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; s->macroblock_coding[current_macroblock] = coding_mode; for (k = 0; k < 4; k++) { frag = s->all_fragments + BLOCK_Y*s->fragment_width[0] + BLOCK_X; if (frag->coding_method != MODE_COPY) frag->coding_method = coding_mode; } #define SET_CHROMA_MODES \ if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ frag[s->fragment_start[1]].coding_method = coding_mode;\ if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ frag[s->fragment_start[2]].coding_method = coding_mode; if (s->chroma_y_shift) { frag = s->all_fragments + mb_y*s->fragment_width[1] + mb_x; SET_CHROMA_MODES } else if (s->chroma_x_shift) { frag = s->all_fragments + 2*mb_y*s->fragment_width[1] + mb_x; for (k = 0; k < 2; k++) { SET_CHROMA_MODES frag += s->fragment_width[1]; } } else { for (k = 0; k < 4; k++) { frag = s->all_fragments + BLOCK_Y*s->fragment_width[1] + BLOCK_X; SET_CHROMA_MODES } } } } } } return 0; } /* * This function unpacks all the motion vectors for the individual * macroblocks from the bitstream. */ static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) { int j, k, sb_x, sb_y; int coding_mode; int motion_x[4]; int motion_y[4]; int last_motion_x = 0; int last_motion_y = 0; int prior_last_motion_x = 0; int prior_last_motion_y = 0; int current_macroblock; int current_fragment; int frag; if (s->keyframe) return 0; /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */ coding_mode = get_bits1(gb); /* iterate through all of the macroblocks that contain 1 or more * coded fragments */ for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { if (get_bits_left(gb) <= 0) return -1; for (j = 0; j < 4; j++) { int mb_x = 2*sb_x + (j>>1); int mb_y = 2*sb_y + (((j>>1)+j)&1); current_macroblock = mb_y * s->macroblock_width + mb_x; if (mb_x >= s->macroblock_width || mb_y >= s->macroblock_height || (s->macroblock_coding[current_macroblock] == MODE_COPY)) continue; switch (s->macroblock_coding[current_macroblock]) { case MODE_INTER_PLUS_MV: case MODE_GOLDEN_MV: /* all 6 fragments use the same motion vector */ if (coding_mode == 0) { motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; } /* vector maintenance, only on MODE_INTER_PLUS_MV */ if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; } break; case MODE_INTER_FOURMV: /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; /* fetch 4 vectors from the bitstream, one for each * Y fragment, then average for the C fragment vectors */ for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { if (coding_mode == 0) { motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; } else { motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; } last_motion_x = motion_x[k]; last_motion_y = motion_y[k]; } else { motion_x[k] = 0; motion_y[k] = 0; } } break; case MODE_INTER_LAST_MV: /* all 6 fragments use the last motion vector */ motion_x[0] = last_motion_x; motion_y[0] = last_motion_y; /* no vector maintenance (last vector remains the * last vector) */ break; case MODE_INTER_PRIOR_LAST: /* all 6 fragments use the motion vector prior to the * last motion vector */ motion_x[0] = prior_last_motion_x; motion_y[0] = prior_last_motion_y; /* vector maintenance */ prior_last_motion_x = last_motion_x; prior_last_motion_y = last_motion_y; last_motion_x = motion_x[0]; last_motion_y = motion_y[0]; break; default: /* covers intra, inter without MV, golden without MV */ motion_x[0] = 0; motion_y[0] = 0; /* no vector maintenance */ break; } /* assign the motion vectors to the correct fragments */ for (k = 0; k < 4; k++) { current_fragment = BLOCK_Y*s->fragment_width[0] + BLOCK_X; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->motion_val[0][current_fragment][0] = motion_x[k]; s->motion_val[0][current_fragment][1] = motion_y[k]; } else { s->motion_val[0][current_fragment][0] = motion_x[0]; s->motion_val[0][current_fragment][1] = motion_y[0]; } } if (s->chroma_y_shift) { if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + motion_x[2] + motion_x[3], 2); motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + motion_y[2] + motion_y[3], 2); } motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); motion_y[0] = (motion_y[0]>>1) | (motion_y[0]&1); frag = mb_y*s->fragment_width[1] + mb_x; s->motion_val[1][frag][0] = motion_x[0]; s->motion_val[1][frag][1] = motion_y[0]; } else if (s->chroma_x_shift) { if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); } else { motion_x[1] = motion_x[0]; motion_y[1] = motion_y[0]; } motion_x[0] = (motion_x[0]>>1) | (motion_x[0]&1); motion_x[1] = (motion_x[1]>>1) | (motion_x[1]&1); frag = 2*mb_y*s->fragment_width[1] + mb_x; for (k = 0; k < 2; k++) { s->motion_val[1][frag][0] = motion_x[k]; s->motion_val[1][frag][1] = motion_y[k]; frag += s->fragment_width[1]; } } else { for (k = 0; k < 4; k++) { frag = BLOCK_Y*s->fragment_width[1] + BLOCK_X; if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { s->motion_val[1][frag][0] = motion_x[k]; s->motion_val[1][frag][1] = motion_y[k]; } else { s->motion_val[1][frag][0] = motion_x[0]; s->motion_val[1][frag][1] = motion_y[0]; } } } } } } return 0; } static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) { int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; int num_blocks = s->total_num_coded_frags; for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) { i = blocks_decoded = num_blocks_at_qpi = 0; bit = get_bits1(gb) ^ 1; run_length = 0; do { if (run_length == MAXIMUM_LONG_BIT_RUN) bit = get_bits1(gb); else bit ^= 1; run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1; if (run_length == 34) run_length += get_bits(gb, 12); blocks_decoded += run_length; if (!bit) num_blocks_at_qpi += run_length; for (j = 0; j < run_length; i++) { if (i >= s->total_num_coded_frags) return -1; if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; j++; } } } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); num_blocks -= num_blocks_at_qpi; } return 0; } /* * This function is called by unpack_dct_coeffs() to extract the VLCs from * the bitstream. The VLCs encode tokens which are used to unpack DCT * data. This function unpacks all the VLCs for either the Y plane or both * C planes, and is called for DC coefficients or different AC coefficient * levels (since different coefficient types require different VLC tables. * * This function returns a residual eob run. E.g, if a particular token gave * instructions to EOB the next 5 fragments and there were only 2 fragments * left in the current fragment range, 3 would be returned so that it could * be passed into the next call to this same function. */ static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run) { int i, j = 0; int token; int zero_run = 0; DCTELEM coeff = 0; int bits_to_get; int blocks_ended; int coeff_i = 0; int num_coeffs = s->num_coded_frags[plane][coeff_index]; int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; /* local references to structure members to avoid repeated deferences */ int *coded_fragment_list = s->coded_fragment_list[plane]; Vp3Fragment *all_fragments = s->all_fragments; VLC_TYPE (*vlc_table)[2] = table->table; if (num_coeffs < 0) av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coefficents at level %d\n", coeff_index); if (eob_run > num_coeffs) { coeff_i = blocks_ended = num_coeffs; eob_run -= num_coeffs; } else { coeff_i = blocks_ended = eob_run; eob_run = 0; } // insert fake EOB token to cover the split between planes or zzi if (blocks_ended) dct_tokens[j++] = blocks_ended << 2; while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { /* decode a VLC into a token */ token = get_vlc2(gb, vlc_table, 11, 3); /* use the token to get a zero run, a coefficient, and an eob run */ if ((unsigned) token <= 6U) { eob_run = eob_run_base[token]; if (eob_run_get_bits[token]) eob_run += get_bits(gb, eob_run_get_bits[token]); // record only the number of blocks ended in this plane, // any spill will be recorded in the next plane. if (eob_run > num_coeffs - coeff_i) { dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); blocks_ended += num_coeffs - coeff_i; eob_run -= num_coeffs - coeff_i; coeff_i = num_coeffs; } else { dct_tokens[j++] = TOKEN_EOB(eob_run); blocks_ended += eob_run; coeff_i += eob_run; eob_run = 0; } } else if (token >= 0) { bits_to_get = coeff_get_bits[token]; if (bits_to_get) bits_to_get = get_bits(gb, bits_to_get); coeff = coeff_tables[token][bits_to_get]; zero_run = zero_run_base[token]; if (zero_run_get_bits[token]) zero_run += get_bits(gb, zero_run_get_bits[token]); if (zero_run) { dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); } else { // Save DC into the fragment structure. DC prediction is // done in raster order, so the actual DC can't be in with // other tokens. We still need the token in dct_tokens[] // however, or else the structure collapses on itself. if (!coeff_index) all_fragments[coded_fragment_list[coeff_i]].dc = coeff; dct_tokens[j++] = TOKEN_COEFF(coeff); } if (coeff_index + zero_run > 64) { av_log(s->avctx, AV_LOG_DEBUG, "Invalid zero run of %d with" " %d coeffs left\n", zero_run, 64-coeff_index); zero_run = 64 - coeff_index; } // zero runs code multiple coefficients, // so don't try to decode coeffs for those higher levels for (i = coeff_index+1; i <= coeff_index+zero_run; i++) s->num_coded_frags[plane][i]--; coeff_i++; } else { av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); return -1; } } if (blocks_ended > s->num_coded_frags[plane][coeff_index]) av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); // decrement the number of blocks that have higher coeffecients for each // EOB run at this level if (blocks_ended) for (i = coeff_index+1; i < 64; i++) s->num_coded_frags[plane][i] -= blocks_ended; // setup the next buffer if (plane < 2) s->dct_tokens[plane+1][coeff_index] = dct_tokens + j; else if (coeff_index < 63) s->dct_tokens[0][coeff_index+1] = dct_tokens + j; return eob_run; } static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height); /* * This function unpacks all of the DCT coefficient data from the * bitstream. */ static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) { int i; int dc_y_table; int dc_c_table; int ac_y_table; int ac_c_table; int residual_eob_run = 0; VLC *y_tables[64]; VLC *c_tables[64]; s->dct_tokens[0][0] = s->dct_tokens_base; /* fetch the DC table indexes */ dc_y_table = get_bits(gb, 4); dc_c_table = get_bits(gb, 4); /* unpack the Y plane DC coefficients */ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0, 0, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; /* reverse prediction of the Y-plane DC coefficients */ reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); /* unpack the C plane DC coefficients */ residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, 1, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0, 2, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; /* reverse prediction of the C-plane DC coefficients */ if (!(s->avctx->flags & CODEC_FLAG_GRAY)) { reverse_dc_prediction(s, s->fragment_start[1], s->fragment_width[1], s->fragment_height[1]); reverse_dc_prediction(s, s->fragment_start[2], s->fragment_width[1], s->fragment_height[1]); } /* fetch the AC table indexes */ ac_y_table = get_bits(gb, 4); ac_c_table = get_bits(gb, 4); /* build tables of AC VLC tables */ for (i = 1; i <= 5; i++) { y_tables[i] = &s->ac_vlc_1[ac_y_table]; c_tables[i] = &s->ac_vlc_1[ac_c_table]; } for (i = 6; i <= 14; i++) { y_tables[i] = &s->ac_vlc_2[ac_y_table]; c_tables[i] = &s->ac_vlc_2[ac_c_table]; } for (i = 15; i <= 27; i++) { y_tables[i] = &s->ac_vlc_3[ac_y_table]; c_tables[i] = &s->ac_vlc_3[ac_c_table]; } for (i = 28; i <= 63; i++) { y_tables[i] = &s->ac_vlc_4[ac_y_table]; c_tables[i] = &s->ac_vlc_4[ac_c_table]; } /* decode all AC coefficents */ for (i = 1; i <= 63; i++) { residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, 0, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 1, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 2, residual_eob_run); if (residual_eob_run < 0) return residual_eob_run; } return 0; } /* * This function reverses the DC prediction for each coded fragment in * the frame. Much of this function is adapted directly from the original * VP3 source code. */ #define COMPATIBLE_FRAME(x) \ (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) #define DC_COEFF(u) s->all_fragments[u].dc static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height) { #define PUL 8 #define PU 4 #define PUR 2 #define PL 1 int x, y; int i = first_fragment; int predicted_dc; /* DC values for the left, up-left, up, and up-right fragments */ int vl, vul, vu, vur; /* indexes for the left, up-left, up, and up-right fragments */ int l, ul, u, ur; /* * The 6 fields mean: * 0: up-left multiplier * 1: up multiplier * 2: up-right multiplier * 3: left multiplier */ static const int predictor_transform[16][4] = { { 0, 0, 0, 0}, { 0, 0, 0,128}, // PL { 0, 0,128, 0}, // PUR { 0, 0, 53, 75}, // PUR|PL { 0,128, 0, 0}, // PU { 0, 64, 0, 64}, // PU|PL { 0,128, 0, 0}, // PU|PUR { 0, 0, 53, 75}, // PU|PUR|PL {128, 0, 0, 0}, // PUL { 0, 0, 0,128}, // PUL|PL { 64, 0, 64, 0}, // PUL|PUR { 0, 0, 53, 75}, // PUL|PUR|PL { 0,128, 0, 0}, // PUL|PU {-104,116, 0,116}, // PUL|PU|PL { 24, 80, 24, 0}, // PUL|PU|PUR {-104,116, 0,116} // PUL|PU|PUR|PL }; /* This table shows which types of blocks can use other blocks for * prediction. For example, INTRA is the only mode in this table to * have a frame number of 0. That means INTRA blocks can only predict * from other INTRA blocks. There are 2 golden frame coding types; * blocks encoding in these modes can only predict from other blocks * that were encoded with these 1 of these 2 modes. */ static const unsigned char compatible_frame[9] = { 1, /* MODE_INTER_NO_MV */ 0, /* MODE_INTRA */ 1, /* MODE_INTER_PLUS_MV */ 1, /* MODE_INTER_LAST_MV */ 1, /* MODE_INTER_PRIOR_MV */ 2, /* MODE_USING_GOLDEN */ 2, /* MODE_GOLDEN_MV */ 1, /* MODE_INTER_FOUR_MV */ 3 /* MODE_COPY */ }; int current_frame_type; /* there is a last DC predictor for each of the 3 frame types */ short last_dc[3]; int transform = 0; vul = vu = vur = vl = 0; last_dc[0] = last_dc[1] = last_dc[2] = 0; /* for each fragment row... */ for (y = 0; y < fragment_height; y++) { /* for each fragment in a row... */ for (x = 0; x < fragment_width; x++, i++) { /* reverse prediction if this block was coded */ if (s->all_fragments[i].coding_method != MODE_COPY) { current_frame_type = compatible_frame[s->all_fragments[i].coding_method]; transform= 0; if(x){ l= i-1; vl = DC_COEFF(l); if(COMPATIBLE_FRAME(l)) transform |= PL; } if(y){ u= i-fragment_width; vu = DC_COEFF(u); if(COMPATIBLE_FRAME(u)) transform |= PU; if(x){ ul= i-fragment_width-1; vul = DC_COEFF(ul); if(COMPATIBLE_FRAME(ul)) transform |= PUL; } if(x + 1 < fragment_width){ ur= i-fragment_width+1; vur = DC_COEFF(ur); if(COMPATIBLE_FRAME(ur)) transform |= PUR; } } if (transform == 0) { /* if there were no fragments to predict from, use last * DC saved */ predicted_dc = last_dc[current_frame_type]; } else { /* apply the appropriate predictor transform */ predicted_dc = (predictor_transform[transform][0] * vul) + (predictor_transform[transform][1] * vu) + (predictor_transform[transform][2] * vur) + (predictor_transform[transform][3] * vl); predicted_dc /= 128; /* check for outranging on the [ul u l] and * [ul u ur l] predictors */ if ((transform == 15) || (transform == 13)) { if (FFABS(predicted_dc - vu) > 128) predicted_dc = vu; else if (FFABS(predicted_dc - vl) > 128) predicted_dc = vl; else if (FFABS(predicted_dc - vul) > 128) predicted_dc = vul; } } /* at long last, apply the predictor */ DC_COEFF(i) += predicted_dc; /* save the DC */ last_dc[current_frame_type] = DC_COEFF(i); } } } } static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend) { int x, y; int *bounding_values= s->bounding_values_array+127; int width = s->fragment_width[!!plane]; int height = s->fragment_height[!!plane]; int fragment = s->fragment_start [plane] + ystart * width; int stride = s->current_frame.linesize[plane]; uint8_t *plane_data = s->current_frame.data [plane]; if (!s->flipped_image) stride = -stride; plane_data += s->data_offset[plane] + 8*ystart*stride; for (y = ystart; y < yend; y++) { for (x = 0; x < width; x++) { /* This code basically just deblocks on the edges of coded blocks. * However, it has to be much more complicated because of the * braindamaged deblock ordering used in VP3/Theora. Order matters * because some pixels get filtered twice. */ if( s->all_fragments[fragment].coding_method != MODE_COPY ) { /* do not perform left edge filter for left columns frags */ if (x > 0) { s->vp3dsp.h_loop_filter( plane_data + 8*x, stride, bounding_values); } /* do not perform top edge filter for top row fragments */ if (y > 0) { s->vp3dsp.v_loop_filter( plane_data + 8*x, stride, bounding_values); } /* do not perform right edge filter for right column * fragments or if right fragment neighbor is also coded * in this frame (it will be filtered in next iteration) */ if ((x < width - 1) && (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { s->vp3dsp.h_loop_filter( plane_data + 8*x + 8, stride, bounding_values); } /* do not perform bottom edge filter for bottom row * fragments or if bottom fragment neighbor is also coded * in this frame (it will be filtered in the next row) */ if ((y < height - 1) && (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { s->vp3dsp.v_loop_filter( plane_data + 8*x + 8*stride, stride, bounding_values); } } fragment++; } plane_data += 8*stride; } } /** * Pull DCT tokens from the 64 levels to decode and dequant the coefficients * for the next block in coding order */ static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, DCTELEM block[64]) { int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; uint8_t *perm = s->scantable.permutated; int i = 0; do { int token = *s->dct_tokens[plane][i]; switch (token & 3) { case 0: // EOB if (--token < 4) // 0-3 are token types, so the EOB run must now be 0 s->dct_tokens[plane][i]++; else *s->dct_tokens[plane][i] = token & ~3; goto end; case 1: // zero run s->dct_tokens[plane][i]++; i += (token >> 2) & 0x7f; if (i > 63) { av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); return i; } block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; i++; break; case 2: // coeff block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; s->dct_tokens[plane][i++]++; break; default: // shouldn't happen return i; } } while (i < 64); // return value is expected to be a valid level i--; end: // the actual DC+prediction is in the fragment structure block[0] = frag->dc * s->qmat[0][inter][plane][0]; return i; } /** * called when all pixels up to row y are complete */ static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) { int h, cy, i; int offset[AV_NUM_DATA_POINTERS]; if (HAVE_THREADS && s->avctx->active_thread_type&FF_THREAD_FRAME) { int y_flipped = s->flipped_image ? s->avctx->height-y : y; // At the end of the frame, report INT_MAX instead of the height of the frame. // This makes the other threads' ff_thread_await_progress() calls cheaper, because // they don't have to clip their values. ff_thread_report_progress(&s->current_frame, y_flipped==s->avctx->height ? INT_MAX : y_flipped-1, 0); } if(s->avctx->draw_horiz_band==NULL) return; h= y - s->last_slice_end; s->last_slice_end= y; y -= h; if (!s->flipped_image) { y = s->avctx->height - y - h; } cy = y >> s->chroma_y_shift; offset[0] = s->current_frame.linesize[0]*y; offset[1] = s->current_frame.linesize[1]*cy; offset[2] = s->current_frame.linesize[2]*cy; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); s->avctx->draw_horiz_band(s->avctx, &s->current_frame, offset, y, 3, h); } /** * Wait for the reference frame of the current fragment. * The progress value is in luma pixel rows. */ static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y) { AVFrame *ref_frame; int ref_row; int border = motion_y&1; if (fragment->coding_method == MODE_USING_GOLDEN || fragment->coding_method == MODE_GOLDEN_MV) ref_frame = &s->golden_frame; else ref_frame = &s->last_frame; ref_row = y + (motion_y>>1); ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); ff_thread_await_progress(ref_frame, ref_row, 0); } /* * Perform the final rendering for a particular slice of data. * The slice number ranges from 0..(c_superblock_height - 1). */ static void render_slice(Vp3DecodeContext *s, int slice) { int x, y, i, j, fragment; DCTELEM *block = s->block; int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; int motion_halfpel_index; uint8_t *motion_source; int plane, first_pixel; if (slice >= s->c_superblock_height) return; for (plane = 0; plane < 3; plane++) { uint8_t *output_plane = s->current_frame.data [plane] + s->data_offset[plane]; uint8_t * last_plane = s-> last_frame.data [plane] + s->data_offset[plane]; uint8_t *golden_plane = s-> golden_frame.data [plane] + s->data_offset[plane]; int stride = s->current_frame.linesize[plane]; int plane_width = s->width >> (plane && s->chroma_x_shift); int plane_height = s->height >> (plane && s->chroma_y_shift); int8_t (*motion_val)[2] = s->motion_val[!!plane]; int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); int slice_width = plane ? s->c_superblock_width : s->y_superblock_width; int fragment_width = s->fragment_width[!!plane]; int fragment_height = s->fragment_height[!!plane]; int fragment_start = s->fragment_start[plane]; int do_await = !plane && HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_FRAME); if (!s->flipped_image) stride = -stride; if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY)) continue; /* for each superblock row in the slice (both of them)... */ for (; sb_y < slice_height; sb_y++) { /* for each superblock in a row... */ for (sb_x = 0; sb_x < slice_width; sb_x++) { /* for each block in a superblock... */ for (j = 0; j < 16; j++) { x = 4*sb_x + hilbert_offset[j][0]; y = 4*sb_y + hilbert_offset[j][1]; fragment = y*fragment_width + x; i = fragment_start + fragment; // bounds check if (x >= fragment_width || y >= fragment_height) continue; first_pixel = 8*y*stride + 8*x; if (do_await && s->all_fragments[i].coding_method != MODE_INTRA) await_reference_row(s, &s->all_fragments[i], motion_val[fragment][1], (16*y) >> s->chroma_y_shift); /* transform if this block was coded */ if (s->all_fragments[i].coding_method != MODE_COPY) { if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) motion_source= golden_plane; else motion_source= last_plane; motion_source += first_pixel; motion_halfpel_index = 0; /* sort out the motion vector if this fragment is coded * using a motion vector method */ if ((s->all_fragments[i].coding_method > MODE_INTRA) && (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { int src_x, src_y; motion_x = motion_val[fragment][0]; motion_y = motion_val[fragment][1]; src_x= (motion_x>>1) + 8*x; src_y= (motion_y>>1) + 8*y; motion_halfpel_index = motion_x & 0x01; motion_source += (motion_x >> 1); motion_halfpel_index |= (motion_y & 0x01) << 1; motion_source += ((motion_y >> 1) * stride); if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ uint8_t *temp= s->edge_emu_buffer; if(stride<0) temp -= 8*stride; s->vdsp.emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); motion_source= temp; } } /* first, take care of copying a block from either the * previous or the golden frame */ if (s->all_fragments[i].coding_method != MODE_INTRA) { /* Note, it is possible to implement all MC cases with put_no_rnd_pixels_l2 which would look more like the VP3 source but this would be slower as put_no_rnd_pixels_tab is better optimzed */ if(motion_halfpel_index != 3){ s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( output_plane + first_pixel, motion_source, stride, 8); }else{ int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 s->dsp.put_no_rnd_pixels_l2[1]( output_plane + first_pixel, motion_source - d, motion_source + stride + 1 + d, stride, 8); } } /* invert DCT and place (or add) in final output */ if (s->all_fragments[i].coding_method == MODE_INTRA) { vp3_dequant(s, s->all_fragments + i, plane, 0, block); s->vp3dsp.idct_put( output_plane + first_pixel, stride, block); } else { if (vp3_dequant(s, s->all_fragments + i, plane, 1, block)) { s->vp3dsp.idct_add( output_plane + first_pixel, stride, block); } else { s->vp3dsp.idct_dc_add(output_plane + first_pixel, stride, block); } } } else { /* copy directly from the previous frame */ s->dsp.put_pixels_tab[1][0]( output_plane + first_pixel, last_plane + first_pixel, stride, 8); } } } // Filter up to the last row in the superblock row if (!s->skip_loop_filter) apply_loop_filter(s, plane, 4*sb_y - !!sb_y, FFMIN(4*sb_y+3, fragment_height-1)); } } /* this looks like a good place for slice dispatch... */ /* algorithm: * if (slice == s->macroblock_height - 1) * dispatch (both last slice & 2nd-to-last slice); * else if (slice > 0) * dispatch (slice - 1); */ vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) -16, s->height-16)); } /// Allocate tables for per-frame data in Vp3DecodeContext static av_cold int allocate_tables(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int y_fragment_count, c_fragment_count; y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; s->superblock_coding = av_malloc(s->superblock_count); s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment)); s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int)); s->dct_tokens_base = av_malloc(64*s->fragment_count * sizeof(*s->dct_tokens_base)); s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0])); s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1])); /* work out the block mapping tables */ s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); s->macroblock_coding = av_malloc(s->macroblock_count + 1); if (!s->superblock_coding || !s->all_fragments || !s->dct_tokens_base || !s->coded_fragment_list[0] || !s->superblock_fragments || !s->macroblock_coding || !s->motion_val[0] || !s->motion_val[1]) { vp3_decode_end(avctx); return -1; } init_block_mapping(s); return 0; } static av_cold int vp3_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; int i, inter, plane; int c_width; int c_height; int y_fragment_count, c_fragment_count; if (avctx->codec_tag == MKTAG('V','P','3','0')) s->version = 0; else s->version = 1; s->avctx = avctx; s->width = FFALIGN(avctx->width, 16); s->height = FFALIGN(avctx->height, 16); if (avctx->codec_id != AV_CODEC_ID_THEORA) avctx->pix_fmt = AV_PIX_FMT_YUV420P; avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; ff_dsputil_init(&s->dsp, avctx); ff_videodsp_init(&s->vdsp, 8); ff_vp3dsp_init(&s->vp3dsp, avctx->flags); ff_init_scantable_permutation(s->dsp.idct_permutation, s->vp3dsp.idct_perm); ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct); /* initialize to an impossible value which will force a recalculation * in the first frame decode */ for (i = 0; i < 3; i++) s->qps[i] = -1; avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); s->y_superblock_width = (s->width + 31) / 32; s->y_superblock_height = (s->height + 31) / 32; s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; /* work out the dimensions for the C planes */ c_width = s->width >> s->chroma_x_shift; c_height = s->height >> s->chroma_y_shift; s->c_superblock_width = (c_width + 31) / 32; s->c_superblock_height = (c_height + 31) / 32; s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); s->u_superblock_start = s->y_superblock_count; s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; s->macroblock_width = (s->width + 15) / 16; s->macroblock_height = (s->height + 15) / 16; s->macroblock_count = s->macroblock_width * s->macroblock_height; s->fragment_width[0] = s->width / FRAGMENT_PIXELS; s->fragment_height[0] = s->height / FRAGMENT_PIXELS; s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; /* fragment count covers all 8x8 blocks for all 3 planes */ y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; s->fragment_count = y_fragment_count + 2*c_fragment_count; s->fragment_start[1] = y_fragment_count; s->fragment_start[2] = y_fragment_count + c_fragment_count; if (!s->theora_tables) { for (i = 0; i < 64; i++) { s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; s->base_matrix[0][i] = vp31_intra_y_dequant[i]; s->base_matrix[1][i] = vp31_intra_c_dequant[i]; s->base_matrix[2][i] = vp31_inter_dequant[i]; s->filter_limit_values[i] = vp31_filter_limit_values[i]; } for(inter=0; inter<2; inter++){ for(plane=0; plane<3; plane++){ s->qr_count[inter][plane]= 1; s->qr_size [inter][plane][0]= 63; s->qr_base [inter][plane][0]= s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; } } /* init VLC tables */ for (i = 0; i < 16; i++) { /* DC histograms */ init_vlc(&s->dc_vlc[i], 11, 32, &dc_bias[i][0][1], 4, 2, &dc_bias[i][0][0], 4, 2, 0); /* group 1 AC histograms */ init_vlc(&s->ac_vlc_1[i], 11, 32, &ac_bias_0[i][0][1], 4, 2, &ac_bias_0[i][0][0], 4, 2, 0); /* group 2 AC histograms */ init_vlc(&s->ac_vlc_2[i], 11, 32, &ac_bias_1[i][0][1], 4, 2, &ac_bias_1[i][0][0], 4, 2, 0); /* group 3 AC histograms */ init_vlc(&s->ac_vlc_3[i], 11, 32, &ac_bias_2[i][0][1], 4, 2, &ac_bias_2[i][0][0], 4, 2, 0); /* group 4 AC histograms */ init_vlc(&s->ac_vlc_4[i], 11, 32, &ac_bias_3[i][0][1], 4, 2, &ac_bias_3[i][0][0], 4, 2, 0); } } else { for (i = 0; i < 16; i++) { /* DC histograms */ if (init_vlc(&s->dc_vlc[i], 11, 32, &s->huffman_table[i][0][1], 8, 4, &s->huffman_table[i][0][0], 8, 4, 0) < 0) goto vlc_fail; /* group 1 AC histograms */ if (init_vlc(&s->ac_vlc_1[i], 11, 32, &s->huffman_table[i+16][0][1], 8, 4, &s->huffman_table[i+16][0][0], 8, 4, 0) < 0) goto vlc_fail; /* group 2 AC histograms */ if (init_vlc(&s->ac_vlc_2[i], 11, 32, &s->huffman_table[i+16*2][0][1], 8, 4, &s->huffman_table[i+16*2][0][0], 8, 4, 0) < 0) goto vlc_fail; /* group 3 AC histograms */ if (init_vlc(&s->ac_vlc_3[i], 11, 32, &s->huffman_table[i+16*3][0][1], 8, 4, &s->huffman_table[i+16*3][0][0], 8, 4, 0) < 0) goto vlc_fail; /* group 4 AC histograms */ if (init_vlc(&s->ac_vlc_4[i], 11, 32, &s->huffman_table[i+16*4][0][1], 8, 4, &s->huffman_table[i+16*4][0][0], 8, 4, 0) < 0) goto vlc_fail; } } init_vlc(&s->superblock_run_length_vlc, 6, 34, &superblock_run_length_vlc_table[0][1], 4, 2, &superblock_run_length_vlc_table[0][0], 4, 2, 0); init_vlc(&s->fragment_run_length_vlc, 5, 30, &fragment_run_length_vlc_table[0][1], 4, 2, &fragment_run_length_vlc_table[0][0], 4, 2, 0); init_vlc(&s->mode_code_vlc, 3, 8, &mode_code_vlc_table[0][1], 2, 1, &mode_code_vlc_table[0][0], 2, 1, 0); init_vlc(&s->motion_vector_vlc, 6, 63, &motion_vector_vlc_table[0][1], 2, 1, &motion_vector_vlc_table[0][0], 2, 1, 0); for (i = 0; i < 3; i++) { s->current_frame.data[i] = NULL; s->last_frame.data[i] = NULL; s->golden_frame.data[i] = NULL; } return allocate_tables(avctx); vlc_fail: av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n"); return -1; } /// Release and shuffle frames after decode finishes static void update_frames(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; /* release the last frame, if it is allocated and if it is not the * golden frame */ if (s->last_frame.data[0] && s->last_frame.type != FF_BUFFER_TYPE_COPY) ff_thread_release_buffer(avctx, &s->last_frame); /* shuffle frames (last = current) */ s->last_frame= s->current_frame; if (s->keyframe) { if (s->golden_frame.data[0]) ff_thread_release_buffer(avctx, &s->golden_frame); s->golden_frame = s->current_frame; s->last_frame.type = FF_BUFFER_TYPE_COPY; } s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */ } static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; int qps_changed = 0, i, err; #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field) if (!s1->current_frame.data[0] ||s->width != s1->width ||s->height!= s1->height) { if (s != s1) copy_fields(s, s1, golden_frame, keyframe); return -1; } if (s != s1) { // init tables if the first frame hasn't been decoded if (!s->current_frame.data[0]) { int y_fragment_count, c_fragment_count; s->avctx = dst; err = allocate_tables(dst); if (err) return err; y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; memcpy(s->motion_val[0], s1->motion_val[0], y_fragment_count * sizeof(*s->motion_val[0])); memcpy(s->motion_val[1], s1->motion_val[1], c_fragment_count * sizeof(*s->motion_val[1])); } // copy previous frame data copy_fields(s, s1, golden_frame, dsp); // copy qscale data if necessary for (i = 0; i < 3; i++) { if (s->qps[i] != s1->qps[1]) { qps_changed = 1; memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); } } if (s->qps[0] != s1->qps[0]) memcpy(&s->bounding_values_array, &s1->bounding_values_array, sizeof(s->bounding_values_array)); if (qps_changed) copy_fields(s, s1, qps, superblock_count); #undef copy_fields } update_frames(dst); return 0; } static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; int i; init_get_bits(&gb, buf, buf_size * 8); if (s->theora && get_bits1(&gb)) { av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n"); return -1; } s->keyframe = !get_bits1(&gb); if (!s->theora) skip_bits(&gb, 1); for (i = 0; i < 3; i++) s->last_qps[i] = s->qps[i]; s->nqps=0; do{ s->qps[s->nqps++]= get_bits(&gb, 6); } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb)); for (i = s->nqps; i < 3; i++) s->qps[i] = -1; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", s->keyframe?"key":"", avctx->frame_number+1, s->qps[0]); s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL : AVDISCARD_NONKEY); if (s->qps[0] != s->last_qps[0]) init_loop_filter(s); for (i = 0; i < s->nqps; i++) // reinit all dequantizers if the first one changed, because // the DC of the first quantizer must be used for all matrices if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) init_dequantizer(s, i); if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) return buf_size; s->current_frame.reference = 3; s->current_frame.pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; s->current_frame.key_frame = s->keyframe; if (ff_thread_get_buffer(avctx, &s->current_frame) < 0) { av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); goto error; } if (!s->edge_emu_buffer) s->edge_emu_buffer = av_malloc(9*FFABS(s->current_frame.linesize[0])); if (s->keyframe) { if (!s->theora) { skip_bits(&gb, 4); /* width code */ skip_bits(&gb, 4); /* height code */ if (s->version) { s->version = get_bits(&gb, 5); if (avctx->frame_number == 0) av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version); } } if (s->version || s->theora) { if (get_bits1(&gb)) av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n"); skip_bits(&gb, 2); /* reserved? */ } } else { if (!s->golden_frame.data[0]) { av_log(s->avctx, AV_LOG_WARNING, "vp3: first frame not a keyframe\n"); s->golden_frame.reference = 3; s->golden_frame.pict_type = AV_PICTURE_TYPE_I; if (ff_thread_get_buffer(avctx, &s->golden_frame) < 0) { av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n"); goto error; } s->last_frame = s->golden_frame; s->last_frame.type = FF_BUFFER_TYPE_COPY; ff_thread_report_progress(&s->last_frame, INT_MAX, 0); } } memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); ff_thread_finish_setup(avctx); if (unpack_superblocks(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); goto error; } if (unpack_modes(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); goto error; } if (unpack_vectors(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); goto error; } if (unpack_block_qpis(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); goto error; } if (unpack_dct_coeffs(s, &gb)){ av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); goto error; } for (i = 0; i < 3; i++) { int height = s->height >> (i && s->chroma_y_shift); if (s->flipped_image) s->data_offset[i] = 0; else s->data_offset[i] = (height-1) * s->current_frame.linesize[i]; } s->last_slice_end = 0; for (i = 0; i < s->c_superblock_height; i++) render_slice(s, i); // filter the last row for (i = 0; i < 3; i++) { int row = (s->height >> (3+(i && s->chroma_y_shift))) - 1; apply_loop_filter(s, i, row, row+1); } vp3_draw_horiz_band(s, s->avctx->height); *got_frame = 1; *(AVFrame*)data= s->current_frame; if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) update_frames(avctx); return buf_size; error: ff_thread_report_progress(&s->current_frame, INT_MAX, 0); if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_FRAME)) avctx->release_buffer(avctx, &s->current_frame); return -1; } static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; if (get_bits1(gb)) { int token; if (s->entries >= 32) { /* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } token = get_bits(gb, 5); av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size); s->huffman_table[s->hti][token][0] = s->hbits; s->huffman_table[s->hti][token][1] = s->huff_code_size; s->entries++; } else { if (s->huff_code_size >= 32) {/* overflow */ av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); return -1; } s->huff_code_size++; s->hbits <<= 1; if (read_huffman_tree(avctx, gb)) return -1; s->hbits |= 1; if (read_huffman_tree(avctx, gb)) return -1; s->hbits >>= 1; s->huff_code_size--; } return 0; } static int vp3_init_thread_copy(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; s->superblock_coding = NULL; s->all_fragments = NULL; s->coded_fragment_list[0] = NULL; s->dct_tokens_base = NULL; s->superblock_fragments = NULL; s->macroblock_coding = NULL; s->motion_val[0] = NULL; s->motion_val[1] = NULL; s->edge_emu_buffer = NULL; return 0; } #if CONFIG_THEORA_DECODER static const enum AVPixelFormat theora_pix_fmts[4] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P }; static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int visible_width, visible_height, colorspace; int offset_x = 0, offset_y = 0; AVRational fps, aspect; s->theora = get_bits_long(gb, 24); av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */ /* but previous versions have the image flipped relative to vp3 */ if (s->theora < 0x030200) { s->flipped_image = 1; av_log(avctx, AV_LOG_DEBUG, "Old (width = get_bits(gb, 16) << 4; visible_height = s->height = get_bits(gb, 16) << 4; if(av_image_check_size(s->width, s->height, 0, avctx)){ av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height); s->width= s->height= 0; return -1; } if (s->theora >= 0x030200) { visible_width = get_bits_long(gb, 24); visible_height = get_bits_long(gb, 24); offset_x = get_bits(gb, 8); /* offset x */ offset_y = get_bits(gb, 8); /* offset y, from bottom */ } fps.num = get_bits_long(gb, 32); fps.den = get_bits_long(gb, 32); if (fps.num && fps.den) { av_reduce(&avctx->time_base.num, &avctx->time_base.den, fps.den, fps.num, 1<<30); } aspect.num = get_bits_long(gb, 24); aspect.den = get_bits_long(gb, 24); if (aspect.num && aspect.den) { av_reduce(&avctx->sample_aspect_ratio.num, &avctx->sample_aspect_ratio.den, aspect.num, aspect.den, 1<<30); } if (s->theora < 0x030200) skip_bits(gb, 5); /* keyframe frequency force */ colorspace = get_bits(gb, 8); skip_bits(gb, 24); /* bitrate */ skip_bits(gb, 6); /* quality hint */ if (s->theora >= 0x030200) { skip_bits(gb, 5); /* keyframe frequency force */ avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; if (avctx->pix_fmt == AV_PIX_FMT_NONE) { av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); return AVERROR_INVALIDDATA; } skip_bits(gb, 3); /* reserved */ } // align_get_bits(gb); if ( visible_width <= s->width && visible_width > s->width-16 && visible_height <= s->height && visible_height > s->height-16 && !offset_x && (offset_y == s->height - visible_height)) avcodec_set_dimensions(avctx, visible_width, visible_height); else avcodec_set_dimensions(avctx, s->width, s->height); if (colorspace == 1) { avctx->color_primaries = AVCOL_PRI_BT470M; } else if (colorspace == 2) { avctx->color_primaries = AVCOL_PRI_BT470BG; } if (colorspace == 1 || colorspace == 2) { avctx->colorspace = AVCOL_SPC_BT470BG; avctx->color_trc = AVCOL_TRC_BT709; } return 0; } static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) { Vp3DecodeContext *s = avctx->priv_data; int i, n, matrices, inter, plane; if (s->theora >= 0x030200) { n = get_bits(gb, 3); /* loop filter limit values table */ if (n) for (i = 0; i < 64; i++) s->filter_limit_values[i] = get_bits(gb, n); } if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* quality threshold table */ for (i = 0; i < 64; i++) s->coded_ac_scale_factor[i] = get_bits(gb, n); if (s->theora >= 0x030200) n = get_bits(gb, 4) + 1; else n = 16; /* dc scale factor table */ for (i = 0; i < 64; i++) s->coded_dc_scale_factor[i] = get_bits(gb, n); if (s->theora >= 0x030200) matrices = get_bits(gb, 9) + 1; else matrices = 3; if(matrices > 384){ av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); return -1; } for(n=0; nbase_matrix[n][i]= get_bits(gb, 8); } for (inter = 0; inter <= 1; inter++) { for (plane = 0; plane <= 2; plane++) { int newqr= 1; if (inter || plane > 0) newqr = get_bits1(gb); if (!newqr) { int qtj, plj; if(inter && get_bits1(gb)){ qtj = 0; plj = plane; }else{ qtj= (3*inter + plane - 1) / 3; plj= (plane + 2) % 3; } s->qr_count[inter][plane]= s->qr_count[qtj][plj]; memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); } else { int qri= 0; int qi = 0; for(;;){ i= get_bits(gb, av_log2(matrices-1)+1); if(i>= matrices){ av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n"); return -1; } s->qr_base[inter][plane][qri]= i; if(qi >= 63) break; i = get_bits(gb, av_log2(63-qi)+1) + 1; s->qr_size[inter][plane][qri++]= i; qi += i; } if (qi > 63) { av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); return -1; } s->qr_count[inter][plane]= qri; } } } /* Huffman tables */ for (s->hti = 0; s->hti < 80; s->hti++) { s->entries = 0; s->huff_code_size = 1; if (!get_bits1(gb)) { s->hbits = 0; if(read_huffman_tree(avctx, gb)) return -1; s->hbits = 1; if(read_huffman_tree(avctx, gb)) return -1; } } s->theora_tables = 1; return 0; } static av_cold int theora_decode_init(AVCodecContext *avctx) { Vp3DecodeContext *s = avctx->priv_data; GetBitContext gb; int ptype; uint8_t *header_start[3]; int header_len[3]; int i; avctx->pix_fmt = AV_PIX_FMT_YUV420P; s->theora = 1; if (!avctx->extradata_size) { av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); return -1; } if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, 42, header_start, header_len) < 0) { av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); return -1; } for(i=0;i<3;i++) { if (header_len[i] <= 0) continue; init_get_bits(&gb, header_start[i], header_len[i] * 8); ptype = get_bits(&gb, 8); if (!(ptype & 0x80)) { av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); // return -1; } // FIXME: Check for this as well. skip_bits_long(&gb, 6*8); /* "theora" */ switch(ptype) { case 0x80: if (theora_decode_header(avctx, &gb) < 0) return -1; break; case 0x81: // FIXME: is this needed? it breaks sometimes // theora_decode_comments(avctx, gb); break; case 0x82: if (theora_decode_tables(avctx, &gb)) return -1; break; default: av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); break; } if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb)) av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); if (s->theora < 0x030200) break; } return vp3_decode_init(avctx); } AVCodec ff_theora_decoder = { .name = "theora", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_THEORA, .priv_data_size = sizeof(Vp3DecodeContext), .init = theora_decode_init, .close = vp3_decode_end, .decode = vp3_decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .flush = vp3_decode_flush, .long_name = NULL_IF_CONFIG_SMALL("Theora"), .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context) }; #endif AVCodec ff_vp3_decoder = { .name = "vp3", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_VP3, .priv_data_size = sizeof(Vp3DecodeContext), .init = vp3_decode_init, .close = vp3_decode_end, .decode = vp3_decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .flush = vp3_decode_flush, .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), };