/* * COOK compatible decoder * Copyright (c) 2003 Sascha Sommer * Copyright (c) 2005 Benjamin Larsson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * */ /** * @file cook.c * Cook compatible decoder. * This decoder handles RealNetworks, RealAudio G2 data. * Cook is identified by the codec name cook in RM files. * * To use this decoder, a calling application must supply the extradata * bytes provided from the RM container; 8+ bytes for mono streams and * 16+ for stereo streams (maybe more). * * Codec technicalities (all this assume a buffer length of 1024): * Cook works with several different techniques to achieve its compression. * In the timedomain the buffer is divided into 8 pieces and quantized. If * two neighboring pieces have different quantization index a smooth * quantization curve is used to get a smooth overlap between the different * pieces. * To get to the transformdomain Cook uses a modulated lapped transform. * The transform domain has 50 subbands with 20 elements each. This * means only a maximum of 50*20=1000 coefficients are used out of the 1024 * available. */ #include #include #include #include "avcodec.h" #include "bitstream.h" #include "dsputil.h" #include "common.h" #include "bytestream.h" #include "cookdata.h" /* the different Cook versions */ #define MONO 0x1000001 #define STEREO 0x1000002 #define JOINT_STEREO 0x1000003 #define MC_COOK 0x2000000 //multichannel Cook, not supported #define SUBBAND_SIZE 20 //#define COOKDEBUG typedef struct { int *now; int *previous; } cook_gains; typedef struct { GetBitContext gb; /* stream data */ int nb_channels; int joint_stereo; int bit_rate; int sample_rate; int samples_per_channel; int samples_per_frame; int subbands; int log2_numvector_size; int numvector_size; //1 << log2_numvector_size; int js_subband_start; int total_subbands; int num_vectors; int bits_per_subpacket; int cookversion; /* states */ int random_state; /* transform data */ FFTContext fft_ctx; DECLARE_ALIGNED_16(FFTSample, mlt_tmp[1024]); /* temporary storage for imlt */ float* mlt_window; float* mlt_precos; float* mlt_presin; float* mlt_postcos; int fft_size; int fft_order; int mlt_size; //modulated lapped transform size /* gain buffers */ cook_gains gains1; cook_gains gains2; int gain_1[9]; int gain_2[9]; int gain_3[9]; int gain_4[9]; /* VLC data */ int js_vlc_bits; VLC envelope_quant_index[13]; VLC sqvh[7]; //scalar quantization VLC ccpl; //channel coupling /* generatable tables and related variables */ int gain_size_factor; float gain_table[23]; float pow2tab[127]; float rootpow2tab[127]; /* data buffers */ uint8_t* decoded_bytes_buffer; DECLARE_ALIGNED_16(float,mono_mdct_output[2048]); float mono_previous_buffer1[1024]; float mono_previous_buffer2[1024]; float decode_buffer_1[1024]; float decode_buffer_2[1024]; } COOKContext; /* debug functions */ #ifdef COOKDEBUG static void dump_float_table(float* table, int size, int delimiter) { int i=0; av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); for (i=0 ; ipow2tab[63] = 1.0; for (i=1 ; i<64 ; i++){ q->pow2tab[63+i]=(float)((uint64_t)1<pow2tab[63-i]=1.0/(float)((uint64_t)1<rootpow2tab[63] = 1.0; for (i=1 ; i<64 ; i++){ q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<gain_size_factor = q->samples_per_channel/8; for (i=0 ; i<23 ; i++) { q->gain_table[i] = pow((double)q->pow2tab[i+52] , (1.0/(double)q->gain_size_factor)); } } static int init_cook_vlc_tables(COOKContext *q) { int i, result; result = 0; for (i=0 ; i<13 ; i++) { result &= init_vlc (&q->envelope_quant_index[i], 9, 24, envelope_quant_index_huffbits[i], 1, 1, envelope_quant_index_huffcodes[i], 2, 2, 0); } av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n"); for (i=0 ; i<7 ; i++) { result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], cvh_huffbits[i], 1, 1, cvh_huffcodes[i], 2, 2, 0); } if (q->nb_channels==2 && q->joint_stereo==1){ result &= init_vlc (&q->ccpl, 6, (1<js_vlc_bits)-1, ccpl_huffbits[q->js_vlc_bits-2], 1, 1, ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0); av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n"); } av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n"); return result; } static int init_cook_mlt(COOKContext *q) { int j; float alpha; /* Allocate the buffers, could be replaced with a static [512] array if needed. */ q->mlt_size = q->samples_per_channel; q->mlt_window = av_malloc(sizeof(float)*q->mlt_size); q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2); q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2); q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2); /* Initialize the MLT window: simple sine window. */ alpha = M_PI / (2.0 * (float)q->mlt_size); for(j=0 ; jmlt_size ; j++) { q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha); } /* pre/post twiddle factors */ for (j=0 ; jmlt_size/2 ; j++){ q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size); q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size); q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor } /* Initialize the FFT. */ ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0); av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n", av_log2(q->samples_per_channel)-1); return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos); } /*************** init functions end ***********/ /** * Cook indata decoding, every 32 bits are XORed with 0x37c511f2. * Why? No idea, some checksum/error detection method maybe. * * Out buffer size: extra bytes are needed to cope with * padding/missalignment. * Subpackets passed to the decoder can contain two, consecutive * half-subpackets, of identical but arbitrary size. * 1234 1234 1234 1234 extraA extraB * Case 1: AAAA BBBB 0 0 * Case 2: AAAA ABBB BB-- 3 3 * Case 3: AAAA AABB BBBB 2 2 * Case 4: AAAA AAAB BBBB BB-- 1 5 * * Nice way to waste CPU cycles. * * @param inbuffer pointer to byte array of indata * @param out pointer to byte array of outdata * @param bytes number of bytes */ #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4) #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){ int i, off; uint32_t c; uint32_t* buf; uint32_t* obuf = (uint32_t*) out; /* FIXME: 64 bit platforms would be able to do 64 bits at a time. * I'm too lazy though, should be something like * for(i=0 ; i> (off*8)) | (0x37c511f2 << (32-(off*8)))); bytes += 3 + off; for (i = 0; i < bytes/4; i++) obuf[i] = c ^ buf[i]; return off; } /** * Cook uninit */ static int cook_decode_close(AVCodecContext *avctx) { int i; COOKContext *q = avctx->priv_data; av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n"); /* Free allocated memory buffers. */ av_free(q->mlt_window); av_free(q->mlt_precos); av_free(q->mlt_presin); av_free(q->mlt_postcos); av_free(q->decoded_bytes_buffer); /* Free the transform. */ ff_fft_end(&q->fft_ctx); /* Free the VLC tables. */ for (i=0 ; i<13 ; i++) { free_vlc(&q->envelope_quant_index[i]); } for (i=0 ; i<7 ; i++) { free_vlc(&q->sqvh[i]); } if(q->nb_channels==2 && q->joint_stereo==1 ){ free_vlc(&q->ccpl); } av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n"); return 0; } /** * Fill the gain array for the timedomain quantization. * * @param q pointer to the COOKContext * @param gaininfo[9] array of gain indices */ static void decode_gain_info(GetBitContext *gb, int *gaininfo) { int i, n; while (get_bits1(gb)) {} n = get_bits_count(gb) - 1; //amount of elements*2 to update i = 0; while (n--) { int index = get_bits(gb, 3); int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1; while (i <= index) gaininfo[i++] = gain; } while (i <= 8) gaininfo[i++] = 0; } /** * Create the quant index table needed for the envelope. * * @param q pointer to the COOKContext * @param quant_index_table pointer to the array */ static void decode_envelope(COOKContext *q, int* quant_index_table) { int i,j, vlc_index; int bitbias; bitbias = get_bits_count(&q->gb); quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize for (i=1 ; i < q->total_subbands ; i++){ vlc_index=i; if (i >= q->js_subband_start * 2) { vlc_index-=q->js_subband_start; } else { vlc_index/=2; if(vlc_index < 1) vlc_index = 1; } if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table, q->envelope_quant_index[vlc_index-1].bits,2); quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding } } /** * Create the quant value table. * * @param q pointer to the COOKContext * @param quant_value_table pointer to the array */ static void inline dequant_envelope(COOKContext *q, int* quant_index_table, float* quant_value_table){ int i; for(i=0 ; i < q->total_subbands ; i++){ quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63]; } } /** * Calculate the category and category_index vector. * * @param q pointer to the COOKContext * @param quant_index_table pointer to the array * @param category pointer to the category array * @param category_index pointer to the category_index array */ static void categorize(COOKContext *q, int* quant_index_table, int* category, int* category_index){ int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j; int exp_index2[102]; int exp_index1[102]; int tmp_categorize_array1[128]; int tmp_categorize_array1_idx=0; int tmp_categorize_array2[128]; int tmp_categorize_array2_idx=0; int category_index_size=0; bits_left = q->bits_per_subpacket - get_bits_count(&q->gb); if(bits_left > q->samples_per_channel) { bits_left = q->samples_per_channel + ((bits_left - q->samples_per_channel)*5)/8; //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left); } memset(&exp_index1,0,102*sizeof(int)); memset(&exp_index2,0,102*sizeof(int)); memset(&tmp_categorize_array1,0,128*sizeof(int)); memset(&tmp_categorize_array2,0,128*sizeof(int)); bias=-32; /* Estimate bias. */ for (i=32 ; i>0 ; i=i/2){ num_bits = 0; index = 0; for (j=q->total_subbands ; j>0 ; j--){ exp_idx = (i - quant_index_table[index] + bias) / 2; if (exp_idx<0){ exp_idx=0; } else if(exp_idx >7) { exp_idx=7; } index++; num_bits+=expbits_tab[exp_idx]; } if(num_bits >= bits_left - 32){ bias+=i; } } /* Calculate total number of bits. */ num_bits=0; for (i=0 ; itotal_subbands ; i++) { exp_idx = (bias - quant_index_table[i]) / 2; if (exp_idx<0) { exp_idx=0; } else if(exp_idx >7) { exp_idx=7; } num_bits += expbits_tab[exp_idx]; exp_index1[i] = exp_idx; exp_index2[i] = exp_idx; } tmpbias = bias = num_bits; for (j = 1 ; j < q->numvector_size ; j++) { if (tmpbias + bias > 2*bits_left) { /* ---> */ int max = -999999; index=-1; for (i=0 ; itotal_subbands ; i++){ if (exp_index1[i] < 7) { v = (-2*exp_index1[i]) - quant_index_table[i] - 32; if ( v >= max) { max = v; index = i; } } } if(index==-1)break; tmp_categorize_array1[tmp_categorize_array1_idx++] = index; tmpbias -= expbits_tab[exp_index1[index]] - expbits_tab[exp_index1[index]+1]; ++exp_index1[index]; } else { /* <--- */ int min = 999999; index=-1; for (i=0 ; itotal_subbands ; i++){ if(exp_index2[i] > 0){ v = (-2*exp_index2[i])-quant_index_table[i]; if ( v < min) { min = v; index = i; } } } if(index == -1)break; tmp_categorize_array2[tmp_categorize_array2_idx++] = index; tmpbias -= expbits_tab[exp_index2[index]] - expbits_tab[exp_index2[index]-1]; --exp_index2[index]; } } for(i=0 ; itotal_subbands ; i++) category[i] = exp_index2[i]; /* Concatenate the two arrays. */ for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--) category_index[category_index_size++] = tmp_categorize_array2[i]; for(i=0;inumvector_size;i++) category_index[i]=0; } /** * Expand the category vector. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param category_index pointer to the category_index array */ static void inline expand_category(COOKContext *q, int* category, int* category_index){ int i; for(i=0 ; inum_vectors ; i++){ ++category[category_index[i]]; } } /** * The real requantization of the mltcoefs * * @param q pointer to the COOKContext * @param index index * @param band current subband * @param quant_value_table pointer to the array * @param subband_coef_index array of indexes to quant_centroid_tab * @param subband_coef_noise use random noise instead of predetermined value * @param mlt_buffer pointer to the mlt buffer */ static void scalar_dequant(COOKContext *q, int index, int band, float* quant_value_table, int* subband_coef_index, int* subband_coef_noise, float* mlt_buffer){ int i; float f1; for(i=0 ; irandom_state = q->random_state * 214013 + 2531011; //typical RNG numbers f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31 } mlt_buffer[band*20+ i] = f1 * quant_value_table[band]; } } /** * Unpack the subband_coef_index and subband_coef_noise vectors. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param subband_coef_index array of indexes to quant_centroid_tab * @param subband_coef_noise use random noise instead of predetermined value */ static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index, int* subband_coef_noise) { int i,j; int vlc, vd ,tmp, result; int ub; int cb; vd = vd_tab[category]; result = 0; for(i=0 ; igb); vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3); cb = get_bits_count(&q->gb); if (q->bits_per_subpacket < get_bits_count(&q->gb)){ vlc = 0; result = 1; } for(j=vd-1 ; j>=0 ; j--){ tmp = (vlc * invradix_tab[category])/0x100000; subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1); vlc = tmp; } for(j=0 ; jgb) < q->bits_per_subpacket){ subband_coef_noise[i*vd+j] = get_bits1(&q->gb); } else { result=1; subband_coef_noise[i*vd+j]=0; } } else { subband_coef_noise[i*vd+j]=0; } } } return result; } /** * Fill the mlt_buffer with mlt coefficients. * * @param q pointer to the COOKContext * @param category pointer to the category array * @param quant_value_table pointer to the array * @param mlt_buffer pointer to mlt coefficients */ static void decode_vectors(COOKContext* q, int* category, float* quant_value_table, float* mlt_buffer){ /* A zero in this table means that the subband coefficient is random noise coded. */ int subband_coef_noise[SUBBAND_SIZE]; /* A zero in this table means that the subband coefficient is a positive multiplicator. */ int subband_coef_index[SUBBAND_SIZE]; int band, j; int index=0; for(band=0 ; bandtotal_subbands ; band++){ index = category[band]; if(category[band] < 7){ if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){ index=7; for(j=0 ; jtotal_subbands ; j++) category[band+j]=7; } } if(index==7) { memset(subband_coef_index, 0, sizeof(subband_coef_index)); memset(subband_coef_noise, 0, sizeof(subband_coef_noise)); } scalar_dequant(q, index, band, quant_value_table, subband_coef_index, subband_coef_noise, mlt_buffer); } if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){ return; } } /** * function for decoding mono data * * @param q pointer to the COOKContext * @param mlt_buffer1 pointer to left channel mlt coefficients * @param mlt_buffer2 pointer to right channel mlt coefficients */ static void mono_decode(COOKContext *q, float* mlt_buffer) { int category_index[128]; float quant_value_table[102]; int quant_index_table[102]; int category[128]; memset(&category, 0, 128*sizeof(int)); memset(&quant_value_table, 0, 102*sizeof(int)); memset(&category_index, 0, 128*sizeof(int)); decode_envelope(q, quant_index_table); q->num_vectors = get_bits(&q->gb,q->log2_numvector_size); dequant_envelope(q, quant_index_table, quant_value_table); categorize(q, quant_index_table, category, category_index); expand_category(q, category, category_index); decode_vectors(q, category, quant_value_table, mlt_buffer); } /** * The modulated lapped transform, this takes transform coefficients * and transforms them into timedomain samples. This is done through * an FFT-based algorithm with pre- and postrotation steps. * A window and reorder step is also included. * * @param q pointer to the COOKContext * @param inbuffer pointer to the mltcoefficients * @param outbuffer pointer to the timedomain buffer * @param mlt_tmp pointer to temporary storage space */ static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer, float* mlt_tmp){ int i; /* prerotation */ for(i=0 ; imlt_size ; i+=2){ outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) + (q->mlt_precos[i/2] * inbuffer[i]); outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) - (q->mlt_presin[i/2] * inbuffer[i]); } /* FFT */ ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer); ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer); /* postrotation */ for(i=0 ; imlt_size ; i+=2){ mlt_tmp[i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) + (q->mlt_postcos[i/2] * outbuffer[i]); mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) - (q->mlt_postcos[i/2] * outbuffer[i+1]); } /* window and reorder */ for(i=0 ; imlt_size/2 ; i++){ outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i]; outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[q->mlt_size-1-i]; outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] * q->mlt_window[q->mlt_size-1-i]; outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] * q->mlt_window[i]); } } /** * the actual requantization of the timedomain samples * * @param q pointer to the COOKContext * @param buffer pointer to the timedomain buffer * @param gain_index index for the block multiplier * @param gain_index_next index for the next block multiplier */ static void interpolate(COOKContext *q, float* buffer, int gain_index, int gain_index_next){ int i; float fc1, fc2; fc1 = q->pow2tab[gain_index+63]; if(gain_index == gain_index_next){ //static gain for(i=0 ; igain_size_factor ; i++){ buffer[i]*=fc1; } return; } else { //smooth gain fc2 = q->gain_table[11 + (gain_index_next-gain_index)]; for(i=0 ; igain_size_factor ; i++){ buffer[i]*=fc1; fc1*=fc2; } return; } } /** * mlt overlapping and buffer management * * @param q pointer to the COOKContext * @param gains_ptr current and previous gains * @param previous_buffer pointer to the previous buffer to be used for overlapping */ static void gain_compensate(COOKContext *q, cook_gains *gains_ptr, float* previous_buffer) { const float fc = q->pow2tab[gains_ptr->previous[0] + 63]; float *buffer = q->mono_mdct_output; int i; /* Overlap with the previous block. */ for(i=0 ; isamples_per_channel ; i++) { buffer[i] *= fc; buffer[i] += previous_buffer[i]; } /* Apply gain profile */ for (i = 0; i < 8; i++) { if (gains_ptr->now[i] || gains_ptr->now[i + 1]) interpolate(q, &buffer[q->gain_size_factor * i], gains_ptr->now[i], gains_ptr->now[i + 1]); } /* Save away the current to be previous block. */ memcpy(previous_buffer, buffer+q->samples_per_channel, sizeof(float)*q->samples_per_channel); } /** * function for getting the jointstereo coupling information * * @param q pointer to the COOKContext * @param decouple_tab decoupling array * */ static void decouple_info(COOKContext *q, int* decouple_tab){ int length, i; if(get_bits1(&q->gb)) { if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; for (i=0 ; ijs_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2); } return; } if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return; length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1; for (i=0 ; ijs_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits); } return; } /** * function for decoding joint stereo data * * @param q pointer to the COOKContext * @param mlt_buffer1 pointer to left channel mlt coefficients * @param mlt_buffer2 pointer to right channel mlt coefficients */ static void joint_decode(COOKContext *q, float* mlt_buffer1, float* mlt_buffer2) { int i,j; int decouple_tab[SUBBAND_SIZE]; float decode_buffer[1060]; int idx, cpl_tmp,tmp_idx; float f1,f2; float* cplscale; memset(decouple_tab, 0, sizeof(decouple_tab)); memset(decode_buffer, 0, sizeof(decode_buffer)); /* Make sure the buffers are zeroed out. */ memset(mlt_buffer1,0, 1024*sizeof(float)); memset(mlt_buffer2,0, 1024*sizeof(float)); decouple_info(q, decouple_tab); mono_decode(q, decode_buffer); /* The two channels are stored interleaved in decode_buffer. */ for (i=0 ; ijs_subband_start ; i++) { for (j=0 ; jjs_vlc_bits) - 1; for (i=q->js_subband_start ; isubbands ; i++) { cpl_tmp = cplband[i]; idx -=decouple_tab[cpl_tmp]; cplscale = (float*)cplscales[q->js_vlc_bits-2]; //choose decoupler table f1 = cplscale[decouple_tab[cpl_tmp]]; f2 = cplscale[idx-1]; for (j=0 ; jjs_subband_start + i)*20)+j; mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx]; mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx]; } idx = (1 << q->js_vlc_bits) - 1; } } /** * First part of subpacket decoding: * decode raw stream bytes and read gain info. * * @param q pointer to the COOKContext * @param inbuffer pointer to raw stream data * @param gain_ptr array of current/prev gain pointers */ static inline void decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer, cook_gains *gains_ptr) { int offset; offset = decode_bytes(inbuffer, q->decoded_bytes_buffer, q->bits_per_subpacket/8); init_get_bits(&q->gb, q->decoded_bytes_buffer + offset, q->bits_per_subpacket); decode_gain_info(&q->gb, gains_ptr->now); /* Swap current and previous gains */ FFSWAP(int *, gains_ptr->now, gains_ptr->previous); } /** * Final part of subpacket decoding: * Apply modulated lapped transform, gain compensation, * clip and convert to integer. * * @param q pointer to the COOKContext * @param decode_buffer pointer to the mlt coefficients * @param gain_ptr array of current/prev gain pointers * @param previous_buffer pointer to the previous buffer to be used for overlapping * @param out pointer to the output buffer * @param chan 0: left or single channel, 1: right channel */ static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer, cook_gains *gains, float *previous_buffer, int16_t *out, int chan) { int j; cook_imlt(q, decode_buffer, q->mono_mdct_output, q->mlt_tmp); gain_compensate(q, gains, previous_buffer); /* Clip and convert floats to 16 bits. */ for (j = 0; j < q->samples_per_channel; j++) { out[chan + q->nb_channels * j] = av_clip(lrintf(q->mono_mdct_output[j]), -32768, 32767); } } /** * Cook subpacket decoding. This function returns one decoded subpacket, * usually 1024 samples per channel. * * @param q pointer to the COOKContext * @param inbuffer pointer to the inbuffer * @param sub_packet_size subpacket size * @param outbuffer pointer to the outbuffer */ static int decode_subpacket(COOKContext *q, uint8_t *inbuffer, int sub_packet_size, int16_t *outbuffer) { /* packet dump */ // for (i=0 ; igains1); if (q->joint_stereo) { joint_decode(q, q->decode_buffer_1, q->decode_buffer_2); } else { mono_decode(q, q->decode_buffer_1); if (q->nb_channels == 2) { decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2); mono_decode(q, q->decode_buffer_2); } } mlt_compensate_output(q, q->decode_buffer_1, &q->gains1, q->mono_previous_buffer1, outbuffer, 0); if (q->nb_channels == 2) { if (q->joint_stereo) { mlt_compensate_output(q, q->decode_buffer_2, &q->gains1, q->mono_previous_buffer2, outbuffer, 1); } else { mlt_compensate_output(q, q->decode_buffer_2, &q->gains2, q->mono_previous_buffer2, outbuffer, 1); } } return q->samples_per_frame * sizeof(int16_t); } /** * Cook frame decoding * * @param avctx pointer to the AVCodecContext */ static int cook_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { COOKContext *q = avctx->priv_data; if (buf_size < avctx->block_align) return buf_size; *data_size = decode_subpacket(q, buf, avctx->block_align, data); /* Discard the first two frames: no valid audio. */ if (avctx->frame_number < 2) *data_size = 0; return avctx->block_align; } #ifdef COOKDEBUG static void dump_cook_context(COOKContext *q) { //int i=0; #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b); av_log(NULL,AV_LOG_ERROR,"COOKextradata\n"); av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion); if (q->cookversion > STEREO) { PRINT("js_subband_start",q->js_subband_start); PRINT("js_vlc_bits",q->js_vlc_bits); } av_log(NULL,AV_LOG_ERROR,"COOKContext\n"); PRINT("nb_channels",q->nb_channels); PRINT("bit_rate",q->bit_rate); PRINT("sample_rate",q->sample_rate); PRINT("samples_per_channel",q->samples_per_channel); PRINT("samples_per_frame",q->samples_per_frame); PRINT("subbands",q->subbands); PRINT("random_state",q->random_state); PRINT("mlt_size",q->mlt_size); PRINT("js_subband_start",q->js_subband_start); PRINT("log2_numvector_size",q->log2_numvector_size); PRINT("numvector_size",q->numvector_size); PRINT("total_subbands",q->total_subbands); } #endif /** * Cook initialization * * @param avctx pointer to the AVCodecContext */ static int cook_decode_init(AVCodecContext *avctx) { COOKContext *q = avctx->priv_data; uint8_t *edata_ptr = avctx->extradata; /* Take care of the codec specific extradata. */ if (avctx->extradata_size <= 0) { av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n"); return -1; } else { /* 8 for mono, 16 for stereo, ? for multichannel Swap to right endianness so we don't need to care later on. */ av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size); if (avctx->extradata_size >= 8){ q->cookversion = bytestream_get_be32(&edata_ptr); q->samples_per_frame = bytestream_get_be16(&edata_ptr); q->subbands = bytestream_get_be16(&edata_ptr); } if (avctx->extradata_size >= 16){ bytestream_get_be32(&edata_ptr); //Unknown unused q->js_subband_start = bytestream_get_be16(&edata_ptr); q->js_vlc_bits = bytestream_get_be16(&edata_ptr); } } /* Take data from the AVCodecContext (RM container). */ q->sample_rate = avctx->sample_rate; q->nb_channels = avctx->channels; q->bit_rate = avctx->bit_rate; /* Initialize state. */ q->random_state = 1; /* Initialize extradata related variables. */ q->samples_per_channel = q->samples_per_frame / q->nb_channels; q->bits_per_subpacket = avctx->block_align * 8; /* Initialize default data states. */ q->log2_numvector_size = 5; q->total_subbands = q->subbands; /* Initialize version-dependent variables */ av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion); q->joint_stereo = 0; switch (q->cookversion) { case MONO: if (q->nb_channels != 1) { av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n"); return -1; } av_log(avctx,AV_LOG_DEBUG,"MONO\n"); break; case STEREO: if (q->nb_channels != 1) { q->bits_per_subpacket = q->bits_per_subpacket/2; } av_log(avctx,AV_LOG_DEBUG,"STEREO\n"); break; case JOINT_STEREO: if (q->nb_channels != 2) { av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n"); return -1; } av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n"); if (avctx->extradata_size >= 16){ q->total_subbands = q->subbands + q->js_subband_start; q->joint_stereo = 1; } if (q->samples_per_channel > 256) { q->log2_numvector_size = 6; } if (q->samples_per_channel > 512) { q->log2_numvector_size = 7; } break; case MC_COOK: av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n"); return -1; break; default: av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n"); return -1; break; } /* Initialize variable relations */ q->mlt_size = q->samples_per_channel; q->numvector_size = (1 << q->log2_numvector_size); /* Generate tables */ init_rootpow2table(q); init_pow2table(q); init_gain_table(q); if (init_cook_vlc_tables(q) != 0) return -1; if(avctx->block_align >= UINT_MAX/2) return -1; /* Pad the databuffer with: DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(), FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */ if (q->nb_channels==2 && q->joint_stereo==0) { q->decoded_bytes_buffer = av_mallocz(avctx->block_align/2 + DECODE_BYTES_PAD2(avctx->block_align/2) + FF_INPUT_BUFFER_PADDING_SIZE); } else { q->decoded_bytes_buffer = av_mallocz(avctx->block_align + DECODE_BYTES_PAD1(avctx->block_align) + FF_INPUT_BUFFER_PADDING_SIZE); } if (q->decoded_bytes_buffer == NULL) return -1; q->gains1.now = q->gain_1; q->gains1.previous = q->gain_2; q->gains2.now = q->gain_3; q->gains2.previous = q->gain_4; /* Initialize transform. */ if ( init_cook_mlt(q) == 0 ) return -1; /* Try to catch some obviously faulty streams, othervise it might be exploitable */ if (q->total_subbands > 53) { av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n"); return -1; } if (q->subbands > 50) { av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n"); return -1; } if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) { } else { av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel); return -1; } if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) { av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits); return -1; } #ifdef COOKDEBUG dump_cook_context(q); #endif return 0; } AVCodec cook_decoder = { .name = "cook", .type = CODEC_TYPE_AUDIO, .id = CODEC_ID_COOK, .priv_data_size = sizeof(COOKContext), .init = cook_decode_init, .close = cook_decode_close, .decode = cook_decode_frame, };