/* * WavPack lossless audio encoder * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #define BITSTREAM_WRITER_LE #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "avcodec.h" #include "internal.h" #include "put_bits.h" #include "bytestream.h" #include "wavpackenc.h" #include "wavpack.h" #define UPDATE_WEIGHT(weight, delta, source, result) \ if ((source) && (result)) { \ int32_t s = (int32_t) ((source) ^ (result)) >> 31; \ weight = ((delta) ^ s) + ((weight) - s); \ } #define APPLY_WEIGHT_F(weight, sample) ((((((sample) & 0xffff) * (weight)) >> 9) + \ ((((sample) & ~0xffff) >> 9) * (weight)) + 1) >> 1) #define APPLY_WEIGHT_I(weight, sample) (((weight) * (sample) + 512) >> 10) #define APPLY_WEIGHT(weight, sample) ((sample) != (short) (sample) ? \ APPLY_WEIGHT_F(weight, sample) : APPLY_WEIGHT_I (weight, sample)) #define CLEAR(destin) memset(&destin, 0, sizeof(destin)); #define SHIFT_LSB 13 #define SHIFT_MASK (0x1FU << SHIFT_LSB) #define MAG_LSB 18 #define MAG_MASK (0x1FU << MAG_LSB) #define SRATE_LSB 23 #define SRATE_MASK (0xFU << SRATE_LSB) #define EXTRA_TRY_DELTAS 1 #define EXTRA_ADJUST_DELTAS 2 #define EXTRA_SORT_FIRST 4 #define EXTRA_BRANCHES 8 #define EXTRA_SORT_LAST 16 typedef struct WavPackExtraInfo { struct Decorr dps[MAX_TERMS]; int nterms, log_limit, gt16bit; uint32_t best_bits; } WavPackExtraInfo; typedef struct WavPackWords { int pend_data, holding_one, zeros_acc; int holding_zero, pend_count; WvChannel c[2]; } WavPackWords; typedef struct WavPackEncodeContext { AVClass *class; AVCodecContext *avctx; PutBitContext pb; int block_samples; int buffer_size; int sample_index; int stereo, stereo_in; int ch_offset; int32_t *samples[2]; int samples_size[2]; int32_t *sampleptrs[MAX_TERMS+2][2]; int sampleptrs_size[MAX_TERMS+2][2]; int32_t *temp_buffer[2][2]; int temp_buffer_size[2][2]; int32_t *best_buffer[2]; int best_buffer_size[2]; int32_t *js_left, *js_right; int js_left_size, js_right_size; int32_t *orig_l, *orig_r; int orig_l_size, orig_r_size; unsigned extra_flags; int optimize_mono; int decorr_filter; int joint; int num_branches; uint32_t flags; uint32_t crc_x; WavPackWords w; uint8_t int32_sent_bits, int32_zeros, int32_ones, int32_dups; uint8_t float_flags, float_shift, float_max_exp, max_exp; int32_t shifted_ones, shifted_zeros, shifted_both; int32_t false_zeros, neg_zeros, ordata; int num_terms, shift, joint_stereo, false_stereo; int num_decorrs, num_passes, best_decorr, mask_decorr; struct Decorr decorr_passes[MAX_TERMS]; const WavPackDecorrSpec *decorr_specs; float delta_decay; } WavPackEncodeContext; static av_cold int wavpack_encode_init(AVCodecContext *avctx) { WavPackEncodeContext *s = avctx->priv_data; s->avctx = avctx; if (!avctx->frame_size) { int block_samples; if (!(avctx->sample_rate & 1)) block_samples = avctx->sample_rate / 2; else block_samples = avctx->sample_rate; while (block_samples * avctx->channels > WV_MAX_SAMPLES) block_samples /= 2; while (block_samples * avctx->channels < 40000) block_samples *= 2; avctx->frame_size = block_samples; } else if (avctx->frame_size && (avctx->frame_size < 128 || avctx->frame_size > WV_MAX_SAMPLES)) { av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", avctx->frame_size); return AVERROR(EINVAL); } if (avctx->compression_level != FF_COMPRESSION_DEFAULT) { if (avctx->compression_level >= 3) { s->decorr_filter = 3; s->num_passes = 9; if (avctx->compression_level >= 8) { s->num_branches = 4; s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_SORT_LAST|EXTRA_BRANCHES; } else if (avctx->compression_level >= 7) { s->num_branches = 3; s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES; } else if (avctx->compression_level >= 6) { s->num_branches = 2; s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES; } else if (avctx->compression_level >= 5) { s->num_branches = 1; s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_SORT_FIRST|EXTRA_BRANCHES; } else if (avctx->compression_level >= 4) { s->num_branches = 1; s->extra_flags = EXTRA_TRY_DELTAS|EXTRA_ADJUST_DELTAS|EXTRA_BRANCHES; } } else if (avctx->compression_level == 2) { s->decorr_filter = 2; s->num_passes = 4; } else if (avctx->compression_level == 1) { s->decorr_filter = 1; s->num_passes = 2; } else if (avctx->compression_level < 1) { s->decorr_filter = 0; s->num_passes = 0; } } s->num_decorrs = decorr_filter_sizes[s->decorr_filter]; s->decorr_specs = decorr_filters[s->decorr_filter]; s->delta_decay = 2.0; return 0; } static void shift_mono(int32_t *samples, int nb_samples, int shift) { int i; for (i = 0; i < nb_samples; i++) samples[i] >>= shift; } static void shift_stereo(int32_t *left, int32_t *right, int nb_samples, int shift) { int i; for (i = 0; i < nb_samples; i++) { left [i] >>= shift; right[i] >>= shift; } } #define FLOAT_SHIFT_ONES 1 #define FLOAT_SHIFT_SAME 2 #define FLOAT_SHIFT_SENT 4 #define FLOAT_ZEROS_SENT 8 #define FLOAT_NEG_ZEROS 0x10 #define FLOAT_EXCEPTIONS 0x20 #define get_mantissa(f) ((f) & 0x7fffff) #define get_exponent(f) (((f) >> 23) & 0xff) #define get_sign(f) (((f) >> 31) & 0x1) static void process_float(WavPackEncodeContext *s, int32_t *sample) { int32_t shift_count, value, f = *sample; if (get_exponent(f) == 255) { s->float_flags |= FLOAT_EXCEPTIONS; value = 0x1000000; shift_count = 0; } else if (get_exponent(f)) { shift_count = s->max_exp - get_exponent(f); value = 0x800000 + get_mantissa(f); } else { shift_count = s->max_exp ? s->max_exp - 1 : 0; value = get_mantissa(f); } if (shift_count < 25) value >>= shift_count; else value = 0; if (!value) { if (get_exponent(f) || get_mantissa(f)) s->false_zeros++; else if (get_sign(f)) s->neg_zeros++; } else if (shift_count) { int32_t mask = (1 << shift_count) - 1; if (!(get_mantissa(f) & mask)) s->shifted_zeros++; else if ((get_mantissa(f) & mask) == mask) s->shifted_ones++; else s->shifted_both++; } s->ordata |= value; *sample = get_sign(f) ? -value : value; } static int scan_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples) { uint32_t crc = 0xffffffffu; int i; s->shifted_ones = s->shifted_zeros = s->shifted_both = s->ordata = 0; s->float_shift = s->float_flags = 0; s->false_zeros = s->neg_zeros = 0; s->max_exp = 0; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) { int32_t f = samples_l[i]; crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f); if (get_exponent(f) > s->max_exp && get_exponent(f) < 255) s->max_exp = get_exponent(f); } } else { for (i = 0; i < nb_samples; i++) { int32_t f; f = samples_l[i]; crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f); if (get_exponent(f) > s->max_exp && get_exponent(f) < 255) s->max_exp = get_exponent(f); f = samples_r[i]; crc = crc * 27 + get_mantissa(f) * 9 + get_exponent(f) * 3 + get_sign(f); if (get_exponent(f) > s->max_exp && get_exponent(f) < 255) s->max_exp = get_exponent(f); } } s->crc_x = crc; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) process_float(s, &samples_l[i]); } else { for (i = 0; i < nb_samples; i++) { process_float(s, &samples_l[i]); process_float(s, &samples_r[i]); } } s->float_max_exp = s->max_exp; if (s->shifted_both) s->float_flags |= FLOAT_SHIFT_SENT; else if (s->shifted_ones && !s->shifted_zeros) s->float_flags |= FLOAT_SHIFT_ONES; else if (s->shifted_ones && s->shifted_zeros) s->float_flags |= FLOAT_SHIFT_SAME; else if (s->ordata && !(s->ordata & 1)) { do { s->float_shift++; s->ordata >>= 1; } while (!(s->ordata & 1)); if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, s->float_shift); else shift_stereo(samples_l, samples_r, nb_samples, s->float_shift); } s->flags &= ~MAG_MASK; while (s->ordata) { s->flags += 1 << MAG_LSB; s->ordata >>= 1; } if (s->false_zeros || s->neg_zeros) s->float_flags |= FLOAT_ZEROS_SENT; if (s->neg_zeros) s->float_flags |= FLOAT_NEG_ZEROS; return s->float_flags & (FLOAT_EXCEPTIONS | FLOAT_ZEROS_SENT | FLOAT_SHIFT_SENT | FLOAT_SHIFT_SAME); } static void scan_int23(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples) { uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0; int i, total_shift = 0; s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) { int32_t M = samples_l[i]; magdata |= (M < 0) ? ~M : M; xordata |= M ^ -(M & 1); anddata &= M; ordata |= M; if ((ordata & 1) && !(anddata & 1) && (xordata & 2)) return; } } else { for (i = 0; i < nb_samples; i++) { int32_t L = samples_l[i]; int32_t R = samples_r[i]; magdata |= (L < 0) ? ~L : L; magdata |= (R < 0) ? ~R : R; xordata |= L ^ -(L & 1); xordata |= R ^ -(R & 1); anddata &= L & R; ordata |= L | R; if ((ordata & 1) && !(anddata & 1) && (xordata & 2)) return; } } s->flags &= ~MAG_MASK; while (magdata) { s->flags += 1 << MAG_LSB; magdata >>= 1; } if (!(s->flags & MAG_MASK)) return; if (!(ordata & 1)) { do { s->flags -= 1 << MAG_LSB; s->int32_zeros++; total_shift++; ordata >>= 1; } while (!(ordata & 1)); } else if (anddata & 1) { do { s->flags -= 1 << MAG_LSB; s->int32_ones++; total_shift++; anddata >>= 1; } while (anddata & 1); } else if (!(xordata & 2)) { do { s->flags -= 1 << MAG_LSB; s->int32_dups++; total_shift++; xordata >>= 1; } while (!(xordata & 2)); } if (total_shift) { s->flags |= WV_INT32_DATA; if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, total_shift); else shift_stereo(samples_l, samples_r, nb_samples, total_shift); } } static int scan_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples) { uint32_t magdata = 0, ordata = 0, xordata = 0, anddata = ~0; uint32_t crc = 0xffffffffu; int i, total_shift = 0; s->int32_sent_bits = s->int32_zeros = s->int32_ones = s->int32_dups = 0; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) { int32_t M = samples_l[i]; crc = crc * 9 + (M & 0xffff) * 3 + ((M >> 16) & 0xffff); magdata |= (M < 0) ? ~M : M; xordata |= M ^ -(M & 1); anddata &= M; ordata |= M; } } else { for (i = 0; i < nb_samples; i++) { int32_t L = samples_l[i]; int32_t R = samples_r[i]; crc = crc * 9 + (L & 0xffff) * 3 + ((L >> 16) & 0xffff); crc = crc * 9 + (R & 0xffff) * 3 + ((R >> 16) & 0xffff); magdata |= (L < 0) ? ~L : L; magdata |= (R < 0) ? ~R : R; xordata |= L ^ -(L & 1); xordata |= R ^ -(R & 1); anddata &= L & R; ordata |= L | R; } } s->crc_x = crc; s->flags &= ~MAG_MASK; while (magdata) { s->flags += 1 << MAG_LSB; magdata >>= 1; } if (!((s->flags & MAG_MASK) >> MAG_LSB)) { s->flags &= ~WV_INT32_DATA; return 0; } if (!(ordata & 1)) do { s->flags -= 1 << MAG_LSB; s->int32_zeros++; total_shift++; ordata >>= 1; } while (!(ordata & 1)); else if (anddata & 1) do { s->flags -= 1 << MAG_LSB; s->int32_ones++; total_shift++; anddata >>= 1; } while (anddata & 1); else if (!(xordata & 2)) do { s->flags -= 1 << MAG_LSB; s->int32_dups++; total_shift++; xordata >>= 1; } while (!(xordata & 2)); if (((s->flags & MAG_MASK) >> MAG_LSB) > 23) { s->int32_sent_bits = (uint8_t)(((s->flags & MAG_MASK) >> MAG_LSB) - 23); total_shift += s->int32_sent_bits; s->flags &= ~MAG_MASK; s->flags += 23 << MAG_LSB; } if (total_shift) { s->flags |= WV_INT32_DATA; if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, total_shift); else shift_stereo(samples_l, samples_r, nb_samples, total_shift); } return s->int32_sent_bits; } static int8_t store_weight(int weight) { weight = av_clip(weight, -1024, 1024); if (weight > 0) weight -= (weight + 64) >> 7; return (weight + 4) >> 3; } static int restore_weight(int8_t weight) { int result; if ((result = (int) weight << 3) > 0) result += (result + 64) >> 7; return result; } static int log2s(int32_t value) { return (value < 0) ? -wp_log2(-value) : wp_log2(value); } static void decorr_mono(int32_t *in_samples, int32_t *out_samples, int nb_samples, struct Decorr *dpp, int dir) { int m = 0, i; dpp->sumA = 0; if (dir < 0) { out_samples += (nb_samples - 1); in_samples += (nb_samples - 1); } dpp->weightA = restore_weight(store_weight(dpp->weightA)); for (i = 0; i < MAX_TERM; i++) dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i])); if (dpp->value > MAX_TERM) { while (nb_samples--) { int32_t left, sam_A; sam_A = ((3 - (dpp->value & 1)) * dpp->samplesA[0] - dpp->samplesA[1]) >> !(dpp->value & 1); dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesA[0] = left = in_samples[0]; left -= APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left); dpp->sumA += dpp->weightA; out_samples[0] = left; in_samples += dir; out_samples += dir; } } else if (dpp->value > 0) { while (nb_samples--) { int k = (m + dpp->value) & (MAX_TERM - 1); int32_t left, sam_A; sam_A = dpp->samplesA[m]; dpp->samplesA[k] = left = in_samples[0]; m = (m + 1) & (MAX_TERM - 1); left -= APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam_A, left); dpp->sumA += dpp->weightA; out_samples[0] = left; in_samples += dir; out_samples += dir; } } if (m && dpp->value > 0 && dpp->value <= MAX_TERM) { int32_t temp_A[MAX_TERM]; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); for (i = 0; i < MAX_TERM; i++) { dpp->samplesA[i] = temp_A[m]; m = (m + 1) & (MAX_TERM - 1); } } } static void reverse_mono_decorr(struct Decorr *dpp) { if (dpp->value > MAX_TERM) { int32_t sam_A; if (dpp->value & 1) sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1]; else sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesA[0] = sam_A; if (dpp->value & 1) sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1]; else sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; dpp->samplesA[1] = sam_A; } else if (dpp->value > 1) { int i, j, k; for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) { i &= (MAX_TERM - 1); j &= (MAX_TERM - 1); dpp->samplesA[i] ^= dpp->samplesA[j]; dpp->samplesA[j] ^= dpp->samplesA[i]; dpp->samplesA[i] ^= dpp->samplesA[j]; } } } static uint32_t log2sample(uint32_t v, int limit, uint32_t *result) { uint32_t dbits; if ((v += v >> 9) < (1 << 8)) { dbits = nbits_table[v]; *result += (dbits << 8) + wp_log2_table[(v << (9 - dbits)) & 0xff]; } else { if (v < (1L << 16)) dbits = nbits_table[v >> 8] + 8; else if (v < (1L << 24)) dbits = nbits_table[v >> 16] + 16; else dbits = nbits_table[v >> 24] + 24; *result += dbits = (dbits << 8) + wp_log2_table[(v >> (dbits - 9)) & 0xff]; if (limit && dbits >= limit) return 1; } return 0; } static uint32_t log2mono(int32_t *samples, int nb_samples, int limit) { uint32_t result = 0; while (nb_samples--) { if (log2sample(abs(*samples++), limit, &result)) return UINT32_MAX; } return result; } static uint32_t log2stereo(int32_t *samples_l, int32_t *samples_r, int nb_samples, int limit) { uint32_t result = 0; while (nb_samples--) { if (log2sample(abs(*samples_l++), limit, &result) || log2sample(abs(*samples_r++), limit, &result)) return UINT32_MAX; } return result; } static void decorr_mono_buffer(int32_t *samples, int32_t *outsamples, int nb_samples, struct Decorr *dpp, int tindex) { struct Decorr dp, *dppi = dpp + tindex; int delta = dppi->delta, pre_delta, term = dppi->value; if (delta == 7) pre_delta = 7; else if (delta < 2) pre_delta = 3; else pre_delta = delta + 1; CLEAR(dp); dp.value = term; dp.delta = pre_delta; decorr_mono(samples, outsamples, FFMIN(2048, nb_samples), &dp, -1); dp.delta = delta; if (tindex == 0) reverse_mono_decorr(&dp); else CLEAR(dp.samplesA); memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA)); dppi->weightA = dp.weightA; if (delta == 0) { dp.delta = 1; decorr_mono(samples, outsamples, nb_samples, &dp, 1); dp.delta = 0; memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA)); dppi->weightA = dp.weightA = dp.sumA / nb_samples; } decorr_mono(samples, outsamples, nb_samples, &dp, 1); } static void recurse_mono(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits) { int term, branches = s->num_branches - depth; int32_t *samples, *outsamples; uint32_t term_bits[22], bits; if (branches < 1 || depth + 1 == info->nterms) branches = 1; CLEAR(term_bits); samples = s->sampleptrs[depth][0]; outsamples = s->sampleptrs[depth + 1][0]; for (term = 1; term <= 18; term++) { if (term == 17 && branches == 1 && depth + 1 < info->nterms) continue; if (term > 8 && term < 17) continue; if (!s->extra_flags && (term > 4 && term < 17)) continue; info->dps[depth].value = term; info->dps[depth].delta = delta; decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth); bits = log2mono(outsamples, s->block_samples, info->log_limit); if (bits < info->best_bits) { info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1)); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[depth + 1][0], s->block_samples * 4); } term_bits[term + 3] = bits; } while (depth + 1 < info->nterms && branches--) { uint32_t local_best_bits = input_bits; int best_term = 0, i; for (i = 0; i < 22; i++) if (term_bits[i] && term_bits[i] < local_best_bits) { local_best_bits = term_bits[i]; best_term = i - 3; } if (!best_term) break; term_bits[best_term + 3] = 0; info->dps[depth].value = best_term; info->dps[depth].delta = delta; decorr_mono_buffer(samples, outsamples, s->block_samples, info->dps, depth); recurse_mono(s, info, depth + 1, delta, local_best_bits); } } static void sort_mono(WavPackEncodeContext *s, WavPackExtraInfo *info) { int reversed = 1; uint32_t bits; while (reversed) { int ri, i; memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes)); reversed = 0; for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) { if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value) break; if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) { decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0], s->block_samples, info->dps, ri); continue; } info->dps[ri ] = s->decorr_passes[ri+1]; info->dps[ri+1] = s->decorr_passes[ri ]; for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++) decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0], s->block_samples, info->dps, i); bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit); if (bits < info->best_bits) { reversed = 1; info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); } else { info->dps[ri ] = s->decorr_passes[ri]; info->dps[ri+1] = s->decorr_passes[ri+1]; decorr_mono_buffer(s->sampleptrs[ri][0], s->sampleptrs[ri+1][0], s->block_samples, info->dps, ri); } } } } static void delta_mono(WavPackEncodeContext *s, WavPackExtraInfo *info) { int lower = 0, delta, d; uint32_t bits; if (!s->decorr_passes[0].value) return; delta = s->decorr_passes[0].delta; for (d = delta - 1; d >= 0; d--) { int i; for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) { info->dps[i].value = s->decorr_passes[i].value; info->dps[i].delta = d; decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0], s->block_samples, info->dps, i); } bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit); if (bits >= info->best_bits) break; lower = 1; info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); } for (d = delta + 1; !lower && d <= 7; d++) { int i; for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) { info->dps[i].value = s->decorr_passes[i].value; info->dps[i].delta = d; decorr_mono_buffer(s->sampleptrs[i][0], s->sampleptrs[i+1][0], s->block_samples, info->dps, i); } bits = log2mono(s->sampleptrs[i][0], s->block_samples, info->log_limit); if (bits >= info->best_bits) break; info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); } } static int allocate_buffers2(WavPackEncodeContext *s, int nterms) { int i; for (i = 0; i < nterms + 2; i++) { av_fast_padded_malloc(&s->sampleptrs[i][0], &s->sampleptrs_size[i][0], s->block_samples * 4); if (!s->sampleptrs[i][0]) return AVERROR(ENOMEM); if (!(s->flags & WV_MONO_DATA)) { av_fast_padded_malloc(&s->sampleptrs[i][1], &s->sampleptrs_size[i][1], s->block_samples * 4); if (!s->sampleptrs[i][1]) return AVERROR(ENOMEM); } } return 0; } static int allocate_buffers(WavPackEncodeContext *s) { int i; for (i = 0; i < 2; i++) { av_fast_padded_malloc(&s->best_buffer[0], &s->best_buffer_size[0], s->block_samples * 4); if (!s->best_buffer[0]) return AVERROR(ENOMEM); av_fast_padded_malloc(&s->temp_buffer[i][0], &s->temp_buffer_size[i][0], s->block_samples * 4); if (!s->temp_buffer[i][0]) return AVERROR(ENOMEM); if (!(s->flags & WV_MONO_DATA)) { av_fast_padded_malloc(&s->best_buffer[1], &s->best_buffer_size[1], s->block_samples * 4); if (!s->best_buffer[1]) return AVERROR(ENOMEM); av_fast_padded_malloc(&s->temp_buffer[i][1], &s->temp_buffer_size[i][1], s->block_samples * 4); if (!s->temp_buffer[i][1]) return AVERROR(ENOMEM); } } return 0; } static void analyze_mono(WavPackEncodeContext *s, int32_t *samples, int do_samples) { WavPackExtraInfo info; int i; info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256; info.log_limit = FFMIN(6912, info.log_limit); info.nterms = s->num_terms; if (allocate_buffers2(s, s->num_terms)) return; memcpy(info.dps, s->decorr_passes, sizeof(info.dps)); memcpy(s->sampleptrs[0][0], samples, s->block_samples * 4); for (i = 0; i < info.nterms && info.dps[i].value; i++) decorr_mono(s->sampleptrs[i][0], s->sampleptrs[i + 1][0], s->block_samples, info.dps + i, 1); info.best_bits = log2mono(s->sampleptrs[info.nterms][0], s->block_samples, 0) * 1; memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); if (s->extra_flags & EXTRA_BRANCHES) recurse_mono(s, &info, 0, (int) floor(s->delta_decay + 0.5), log2mono(s->sampleptrs[0][0], s->block_samples, 0)); if (s->extra_flags & EXTRA_SORT_FIRST) sort_mono(s, &info); if (s->extra_flags & EXTRA_TRY_DELTAS) { delta_mono(s, &info); if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value) s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0); else s->delta_decay = 2.0; } if (s->extra_flags & EXTRA_SORT_LAST) sort_mono(s, &info); if (do_samples) memcpy(samples, s->sampleptrs[info.nterms + 1][0], s->block_samples * 4); for (i = 0; i < info.nterms; i++) if (!s->decorr_passes[i].value) break; s->num_terms = i; } static void scan_word(WavPackEncodeContext *s, WvChannel *c, int32_t *samples, int nb_samples, int dir) { if (dir < 0) samples += nb_samples - 1; while (nb_samples--) { uint32_t low, value = labs(samples[0]); if (value < GET_MED(0)) { DEC_MED(0); } else { low = GET_MED(0); INC_MED(0); if (value - low < GET_MED(1)) { DEC_MED(1); } else { low += GET_MED(1); INC_MED(1); if (value - low < GET_MED(2)) { DEC_MED(2); } else { INC_MED(2); } } } samples += dir; } } static int wv_mono(WavPackEncodeContext *s, int32_t *samples, int no_history, int do_samples) { struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}}; int nb_samples = s->block_samples; int buf_size = sizeof(int32_t) * nb_samples; uint32_t best_size = UINT32_MAX, size; int log_limit, pi, i, ret; for (i = 0; i < nb_samples; i++) if (samples[i]) break; if (i == nb_samples) { CLEAR(s->decorr_passes); CLEAR(s->w); s->num_terms = 0; return 0; } log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256; log_limit = FFMIN(6912, log_limit); if ((ret = allocate_buffers(s)) < 0) return ret; if (no_history || s->num_passes >= 7) s->best_decorr = s->mask_decorr = 0; for (pi = 0; pi < s->num_passes;) { const WavPackDecorrSpec *wpds; int nterms, c, j; if (!pi) { c = s->best_decorr; } else { if (s->mask_decorr == 0) c = 0; else c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr; if (c == s->best_decorr) { s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1; continue; } } wpds = &s->decorr_specs[c]; nterms = decorr_filter_nterms[s->decorr_filter]; while (1) { memcpy(s->temp_buffer[0][0], samples, buf_size); CLEAR(save_decorr_passes); for (j = 0; j < nterms; j++) { CLEAR(temp_decorr_pass); temp_decorr_pass.delta = wpds->delta; temp_decorr_pass.value = wpds->terms[j]; if (temp_decorr_pass.value < 0) temp_decorr_pass.value = 1; decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0], FFMIN(nb_samples, 2048), &temp_decorr_pass, -1); if (j) { CLEAR(temp_decorr_pass.samplesA); } else { reverse_mono_decorr(&temp_decorr_pass); } memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr)); decorr_mono(s->temp_buffer[j&1][0], s->temp_buffer[~j&1][0], nb_samples, &temp_decorr_pass, 1); } size = log2mono(s->temp_buffer[j&1][0], nb_samples, log_limit); if (size != UINT32_MAX || !nterms) break; nterms >>= 1; } if (size < best_size) { memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size); memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS); s->num_terms = nterms; s->best_decorr = c; best_size = size; } if (pi++) s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1; } if (s->extra_flags) analyze_mono(s, samples, do_samples); else if (do_samples) memcpy(samples, s->best_buffer[0], buf_size); if (no_history || s->extra_flags) { CLEAR(s->w); scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1); } return 0; } static void decorr_stereo(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp, int dir) { int m = 0, i; dpp->sumA = dpp->sumB = 0; if (dir < 0) { out_left += nb_samples - 1; out_right += nb_samples - 1; in_left += nb_samples - 1; in_right += nb_samples - 1; } dpp->weightA = restore_weight(store_weight(dpp->weightA)); dpp->weightB = restore_weight(store_weight(dpp->weightB)); for (i = 0; i < MAX_TERM; i++) { dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i])); dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i])); } switch (dpp->value) { case 2: while (nb_samples--) { int32_t sam, tmp; sam = dpp->samplesA[0]; dpp->samplesA[0] = dpp->samplesA[1]; out_left[0] = tmp = (dpp->samplesA[1] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); dpp->sumA += dpp->weightA; sam = dpp->samplesB[0]; dpp->samplesB[0] = dpp->samplesB[1]; out_right[0] = tmp = (dpp->samplesB[1] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); dpp->sumB += dpp->weightB; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; case 17: while (nb_samples--) { int32_t sam, tmp; sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; dpp->samplesA[1] = dpp->samplesA[0]; out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); dpp->sumA += dpp->weightA; sam = 2 * dpp->samplesB[0] - dpp->samplesB[1]; dpp->samplesB[1] = dpp->samplesB[0]; out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT (dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); dpp->sumB += dpp->weightB; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; case 18: while (nb_samples--) { int32_t sam, tmp; sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1); dpp->samplesA[1] = dpp->samplesA[0]; out_left[0] = tmp = (dpp->samplesA[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); dpp->sumA += dpp->weightA; sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1); dpp->samplesB[1] = dpp->samplesB[0]; out_right[0] = tmp = (dpp->samplesB[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); dpp->sumB += dpp->weightB; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; default: { int k = dpp->value & (MAX_TERM - 1); while (nb_samples--) { int32_t sam, tmp; sam = dpp->samplesA[m]; out_left[0] = tmp = (dpp->samplesA[k] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); dpp->sumA += dpp->weightA; sam = dpp->samplesB[m]; out_right[0] = tmp = (dpp->samplesB[k] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); dpp->sumB += dpp->weightB; in_left += dir; out_left += dir; in_right += dir; out_right += dir; m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; int k; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } break; } case -1: while (nb_samples--) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; out_left[0] = tmp = (sam_B = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); dpp->sumA += dpp->weightA; out_right[0] = tmp = (dpp->samplesA[0] = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); dpp->sumB += dpp->weightB; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; case -2: while (nb_samples--) { int32_t sam_A, sam_B, tmp; sam_B = dpp->samplesB[0]; out_right[0] = tmp = (sam_A = in_right[0]) - APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); dpp->sumB += dpp->weightB; out_left[0] = tmp = (dpp->samplesB[0] = in_left[0]) - APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); dpp->sumA += dpp->weightA; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; case -3: while (nb_samples--) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; sam_B = dpp->samplesB[0]; dpp->samplesA[0] = tmp = in_right[0]; out_right[0] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); dpp->sumB += dpp->weightB; dpp->samplesB[0] = tmp = in_left[0]; out_left[0] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); dpp->sumA += dpp->weightA; in_left += dir; out_left += dir; in_right += dir; out_right += dir; } break; } } static void reverse_decorr(struct Decorr *dpp) { if (dpp->value > MAX_TERM) { int32_t sam_A, sam_B; if (dpp->value & 1) { sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1]; sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1]; } else { sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1; } dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesB[1] = dpp->samplesB[0]; dpp->samplesA[0] = sam_A; dpp->samplesB[0] = sam_B; if (dpp->value & 1) { sam_A = 2 * dpp->samplesA[0] - dpp->samplesA[1]; sam_B = 2 * dpp->samplesB[0] - dpp->samplesB[1]; } else { sam_A = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; sam_B = (3 * dpp->samplesB[0] - dpp->samplesB[1]) >> 1; } dpp->samplesA[1] = sam_A; dpp->samplesB[1] = sam_B; } else if (dpp->value > 1) { int i, j, k; for (i = 0, j = dpp->value - 1, k = 0; k < dpp->value / 2; i++, j--, k++) { i &= (MAX_TERM - 1); j &= (MAX_TERM - 1); dpp->samplesA[i] ^= dpp->samplesA[j]; dpp->samplesA[j] ^= dpp->samplesA[i]; dpp->samplesA[i] ^= dpp->samplesA[j]; dpp->samplesB[i] ^= dpp->samplesB[j]; dpp->samplesB[j] ^= dpp->samplesB[i]; dpp->samplesB[i] ^= dpp->samplesB[j]; } } } static void decorr_stereo_quick(int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, struct Decorr *dpp) { int m = 0, i; dpp->weightA = restore_weight(store_weight(dpp->weightA)); dpp->weightB = restore_weight(store_weight(dpp->weightB)); for (i = 0; i < MAX_TERM; i++) { dpp->samplesA[i] = wp_exp2(log2s(dpp->samplesA[i])); dpp->samplesB[i] = wp_exp2(log2s(dpp->samplesB[i])); } switch (dpp->value) { case 2: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[0]; dpp->samplesA[0] = dpp->samplesA[1]; out_left[i] = tmp = (dpp->samplesA[1] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[0]; dpp->samplesB[0] = dpp->samplesB[1]; out_right[i] = tmp = (dpp->samplesB[1] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); } break; case 17: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; dpp->samplesA[1] = dpp->samplesA[0]; out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = 2 * dpp->samplesB[0] - dpp->samplesB[1]; dpp->samplesB[1] = dpp->samplesB[0]; out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); } break; case 18: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1); dpp->samplesA[1] = dpp->samplesA[0]; out_left[i] = tmp = (dpp->samplesA[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1); dpp->samplesB[1] = dpp->samplesB[0]; out_right[i] = tmp = (dpp->samplesB[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); } break; default: { int k = dpp->value & (MAX_TERM - 1); for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[m]; out_left[i] = tmp = (dpp->samplesA[k] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[m]; out_right[i] = tmp = (dpp->samplesB[k] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; int k; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } break; } case -1: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; out_left[i] = tmp = (sam_B = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); out_right[i] = tmp = (dpp->samplesA[0] = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); } break; case -2: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_B = dpp->samplesB[0]; out_right[i] = tmp = (sam_A = in_right[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); out_left[i] = tmp = (dpp->samplesB[0] = in_left[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); } break; case -3: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; sam_B = dpp->samplesB[0]; dpp->samplesA[0] = tmp = in_right[i]; out_right[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); dpp->samplesB[0] = tmp = in_left[i]; out_left[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); } break; } } static void decorr_stereo_buffer(WavPackExtraInfo *info, int32_t *in_left, int32_t *in_right, int32_t *out_left, int32_t *out_right, int nb_samples, int tindex) { struct Decorr dp = {0}, *dppi = info->dps + tindex; int delta = dppi->delta, pre_delta; int term = dppi->value; if (delta == 7) pre_delta = 7; else if (delta < 2) pre_delta = 3; else pre_delta = delta + 1; dp.value = term; dp.delta = pre_delta; decorr_stereo(in_left, in_right, out_left, out_right, FFMIN(2048, nb_samples), &dp, -1); dp.delta = delta; if (tindex == 0) { reverse_decorr(&dp); } else { CLEAR(dp.samplesA); CLEAR(dp.samplesB); } memcpy(dppi->samplesA, dp.samplesA, sizeof(dp.samplesA)); memcpy(dppi->samplesB, dp.samplesB, sizeof(dp.samplesB)); dppi->weightA = dp.weightA; dppi->weightB = dp.weightB; if (delta == 0) { dp.delta = 1; decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1); dp.delta = 0; memcpy(dp.samplesA, dppi->samplesA, sizeof(dp.samplesA)); memcpy(dp.samplesB, dppi->samplesB, sizeof(dp.samplesB)); dppi->weightA = dp.weightA = dp.sumA / nb_samples; dppi->weightB = dp.weightB = dp.sumB / nb_samples; } if (info->gt16bit) decorr_stereo(in_left, in_right, out_left, out_right, nb_samples, &dp, 1); else decorr_stereo_quick(in_left, in_right, out_left, out_right, nb_samples, &dp); } static void sort_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info) { int reversed = 1; uint32_t bits; while (reversed) { int ri, i; memcpy(info->dps, s->decorr_passes, sizeof(s->decorr_passes)); reversed = 0; for (ri = 0; ri < info->nterms && s->decorr_passes[ri].value; ri++) { if (ri + 1 >= info->nterms || !s->decorr_passes[ri+1].value) break; if (s->decorr_passes[ri].value == s->decorr_passes[ri+1].value) { decorr_stereo_buffer(info, s->sampleptrs[ri ][0], s->sampleptrs[ri ][1], s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1], s->block_samples, ri); continue; } info->dps[ri ] = s->decorr_passes[ri+1]; info->dps[ri+1] = s->decorr_passes[ri ]; for (i = ri; i < info->nterms && s->decorr_passes[i].value; i++) decorr_stereo_buffer(info, s->sampleptrs[i ][0], s->sampleptrs[i ][1], s->sampleptrs[i+1][0], s->sampleptrs[i+1][1], s->block_samples, i); bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1], s->block_samples, info->log_limit); if (bits < info->best_bits) { reversed = 1; info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4); } else { info->dps[ri ] = s->decorr_passes[ri ]; info->dps[ri+1] = s->decorr_passes[ri+1]; decorr_stereo_buffer(info, s->sampleptrs[ri ][0], s->sampleptrs[ri ][1], s->sampleptrs[ri+1][0], s->sampleptrs[ri+1][1], s->block_samples, ri); } } } } static void delta_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info) { int lower = 0, delta, d, i; uint32_t bits; if (!s->decorr_passes[0].value) return; delta = s->decorr_passes[0].delta; for (d = delta - 1; d >= 0; d--) { for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) { info->dps[i].value = s->decorr_passes[i].value; info->dps[i].delta = d; decorr_stereo_buffer(info, s->sampleptrs[i ][0], s->sampleptrs[i ][1], s->sampleptrs[i+1][0], s->sampleptrs[i+1][1], s->block_samples, i); } bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1], s->block_samples, info->log_limit); if (bits >= info->best_bits) break; lower = 1; info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4); } for (d = delta + 1; !lower && d <= 7; d++) { for (i = 0; i < info->nterms && s->decorr_passes[i].value; i++) { info->dps[i].value = s->decorr_passes[i].value; info->dps[i].delta = d; decorr_stereo_buffer(info, s->sampleptrs[i ][0], s->sampleptrs[i ][1], s->sampleptrs[i+1][0], s->sampleptrs[i+1][1], s->block_samples, i); } bits = log2stereo(s->sampleptrs[i][0], s->sampleptrs[i][1], s->block_samples, info->log_limit); if (bits < info->best_bits) { info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * i); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4); } else break; } } static void recurse_stereo(WavPackEncodeContext *s, WavPackExtraInfo *info, int depth, int delta, uint32_t input_bits) { int term, branches = s->num_branches - depth; int32_t *in_left, *in_right, *out_left, *out_right; uint32_t term_bits[22], bits; if (branches < 1 || depth + 1 == info->nterms) branches = 1; CLEAR(term_bits); in_left = s->sampleptrs[depth ][0]; in_right = s->sampleptrs[depth ][1]; out_left = s->sampleptrs[depth + 1][0]; out_right = s->sampleptrs[depth + 1][1]; for (term = -3; term <= 18; term++) { if (!term || (term > 8 && term < 17)) continue; if (term == 17 && branches == 1 && depth + 1 < info->nterms) continue; if (term == -1 || term == -2) if (!(s->flags & WV_CROSS_DECORR)) continue; if (!s->extra_flags && (term > 4 && term < 17)) continue; info->dps[depth].value = term; info->dps[depth].delta = delta; decorr_stereo_buffer(info, in_left, in_right, out_left, out_right, s->block_samples, depth); bits = log2stereo(out_left, out_right, s->block_samples, info->log_limit); if (bits < info->best_bits) { info->best_bits = bits; CLEAR(s->decorr_passes); memcpy(s->decorr_passes, info->dps, sizeof(info->dps[0]) * (depth + 1)); memcpy(s->sampleptrs[info->nterms + 1][0], s->sampleptrs[depth + 1][0], s->block_samples * 4); memcpy(s->sampleptrs[info->nterms + 1][1], s->sampleptrs[depth + 1][1], s->block_samples * 4); } term_bits[term + 3] = bits; } while (depth + 1 < info->nterms && branches--) { uint32_t local_best_bits = input_bits; int best_term = 0, i; for (i = 0; i < 22; i++) if (term_bits[i] && term_bits[i] < local_best_bits) { local_best_bits = term_bits[i]; best_term = i - 3; } if (!best_term) break; term_bits[best_term + 3] = 0; info->dps[depth].value = best_term; info->dps[depth].delta = delta; decorr_stereo_buffer(info, in_left, in_right, out_left, out_right, s->block_samples, depth); recurse_stereo(s, info, depth + 1, delta, local_best_bits); } } static void analyze_stereo(WavPackEncodeContext *s, int32_t *in_left, int32_t *in_right, int do_samples) { WavPackExtraInfo info; int i; info.gt16bit = ((s->flags & MAG_MASK) >> MAG_LSB) >= 16; info.log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256; info.log_limit = FFMIN(6912, info.log_limit); info.nterms = s->num_terms; if (allocate_buffers2(s, s->num_terms)) return; memcpy(info.dps, s->decorr_passes, sizeof(info.dps)); memcpy(s->sampleptrs[0][0], in_left, s->block_samples * 4); memcpy(s->sampleptrs[0][1], in_right, s->block_samples * 4); for (i = 0; i < info.nterms && info.dps[i].value; i++) if (info.gt16bit) decorr_stereo(s->sampleptrs[i ][0], s->sampleptrs[i ][1], s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1], s->block_samples, info.dps + i, 1); else decorr_stereo_quick(s->sampleptrs[i ][0], s->sampleptrs[i ][1], s->sampleptrs[i + 1][0], s->sampleptrs[i + 1][1], s->block_samples, info.dps + i); info.best_bits = log2stereo(s->sampleptrs[info.nterms][0], s->sampleptrs[info.nterms][1], s->block_samples, 0); memcpy(s->sampleptrs[info.nterms + 1][0], s->sampleptrs[i][0], s->block_samples * 4); memcpy(s->sampleptrs[info.nterms + 1][1], s->sampleptrs[i][1], s->block_samples * 4); if (s->extra_flags & EXTRA_BRANCHES) recurse_stereo(s, &info, 0, (int) floor(s->delta_decay + 0.5), log2stereo(s->sampleptrs[0][0], s->sampleptrs[0][1], s->block_samples, 0)); if (s->extra_flags & EXTRA_SORT_FIRST) sort_stereo(s, &info); if (s->extra_flags & EXTRA_TRY_DELTAS) { delta_stereo(s, &info); if ((s->extra_flags & EXTRA_ADJUST_DELTAS) && s->decorr_passes[0].value) s->delta_decay = (float)((s->delta_decay * 2.0 + s->decorr_passes[0].delta) / 3.0); else s->delta_decay = 2.0; } if (s->extra_flags & EXTRA_SORT_LAST) sort_stereo(s, &info); if (do_samples) { memcpy(in_left, s->sampleptrs[info.nterms + 1][0], s->block_samples * 4); memcpy(in_right, s->sampleptrs[info.nterms + 1][1], s->block_samples * 4); } for (i = 0; i < info.nterms; i++) if (!s->decorr_passes[i].value) break; s->num_terms = i; } static int wv_stereo(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int no_history, int do_samples) { struct Decorr temp_decorr_pass, save_decorr_passes[MAX_TERMS] = {{0}}; int nb_samples = s->block_samples, ret; int buf_size = sizeof(int32_t) * nb_samples; int log_limit, force_js = 0, force_ts = 0, got_js = 0, pi, i; uint32_t best_size = UINT32_MAX, size; for (i = 0; i < nb_samples; i++) if (samples_l[i] || samples_r[i]) break; if (i == nb_samples) { s->flags &= ~((uint32_t) WV_JOINT_STEREO); CLEAR(s->decorr_passes); CLEAR(s->w); s->num_terms = 0; return 0; } log_limit = (((s->flags & MAG_MASK) >> MAG_LSB) + 4) * 256; log_limit = FFMIN(6912, log_limit); if (s->joint) { force_js = s->joint > 0; force_ts = s->joint < 0; } if ((ret = allocate_buffers(s)) < 0) return ret; if (no_history || s->num_passes >= 7) s->best_decorr = s->mask_decorr = 0; for (pi = 0; pi < s->num_passes;) { const WavPackDecorrSpec *wpds; int nterms, c, j; if (!pi) c = s->best_decorr; else { if (s->mask_decorr == 0) c = 0; else c = (s->best_decorr & (s->mask_decorr - 1)) | s->mask_decorr; if (c == s->best_decorr) { s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1; continue; } } wpds = &s->decorr_specs[c]; nterms = decorr_filter_nterms[s->decorr_filter]; while (1) { if (force_js || (wpds->joint_stereo && !force_ts)) { if (!got_js) { av_fast_padded_malloc(&s->js_left, &s->js_left_size, buf_size); av_fast_padded_malloc(&s->js_right, &s->js_right_size, buf_size); memcpy(s->js_left, samples_l, buf_size); memcpy(s->js_right, samples_r, buf_size); for (i = 0; i < nb_samples; i++) s->js_right[i] += ((s->js_left[i] -= s->js_right[i]) >> 1); got_js = 1; } memcpy(s->temp_buffer[0][0], s->js_left, buf_size); memcpy(s->temp_buffer[0][1], s->js_right, buf_size); } else { memcpy(s->temp_buffer[0][0], samples_l, buf_size); memcpy(s->temp_buffer[0][1], samples_r, buf_size); } CLEAR(save_decorr_passes); for (j = 0; j < nterms; j++) { CLEAR(temp_decorr_pass); temp_decorr_pass.delta = wpds->delta; temp_decorr_pass.value = wpds->terms[j]; if (temp_decorr_pass.value < 0 && !(s->flags & WV_CROSS_DECORR)) temp_decorr_pass.value = -3; decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1], s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1], FFMIN(2048, nb_samples), &temp_decorr_pass, -1); if (j) { CLEAR(temp_decorr_pass.samplesA); CLEAR(temp_decorr_pass.samplesB); } else { reverse_decorr(&temp_decorr_pass); } memcpy(save_decorr_passes + j, &temp_decorr_pass, sizeof(struct Decorr)); if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16) decorr_stereo(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1], s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1], nb_samples, &temp_decorr_pass, 1); else decorr_stereo_quick(s->temp_buffer[ j&1][0], s->temp_buffer[ j&1][1], s->temp_buffer[~j&1][0], s->temp_buffer[~j&1][1], nb_samples, &temp_decorr_pass); } size = log2stereo(s->temp_buffer[j&1][0], s->temp_buffer[j&1][1], nb_samples, log_limit); if (size != UINT32_MAX || !nterms) break; nterms >>= 1; } if (size < best_size) { memcpy(s->best_buffer[0], s->temp_buffer[j&1][0], buf_size); memcpy(s->best_buffer[1], s->temp_buffer[j&1][1], buf_size); memcpy(s->decorr_passes, save_decorr_passes, sizeof(struct Decorr) * MAX_TERMS); s->num_terms = nterms; s->best_decorr = c; best_size = size; } if (pi++) s->mask_decorr = s->mask_decorr ? ((s->mask_decorr << 1) & (s->num_decorrs - 1)) : 1; } if (force_js || (s->decorr_specs[s->best_decorr].joint_stereo && !force_ts)) s->flags |= WV_JOINT_STEREO; else s->flags &= ~((uint32_t) WV_JOINT_STEREO); if (s->extra_flags) { if (s->flags & WV_JOINT_STEREO) { analyze_stereo(s, s->js_left, s->js_right, do_samples); if (do_samples) { memcpy(samples_l, s->js_left, buf_size); memcpy(samples_r, s->js_right, buf_size); } } else analyze_stereo(s, samples_l, samples_r, do_samples); } else if (do_samples) { memcpy(samples_l, s->best_buffer[0], buf_size); memcpy(samples_r, s->best_buffer[1], buf_size); } if (s->extra_flags || no_history || s->joint_stereo != s->decorr_specs[s->best_decorr].joint_stereo) { s->joint_stereo = s->decorr_specs[s->best_decorr].joint_stereo; CLEAR(s->w); scan_word(s, &s->w.c[0], s->best_buffer[0], nb_samples, -1); scan_word(s, &s->w.c[1], s->best_buffer[1], nb_samples, -1); } return 0; } #define count_bits(av) ( \ (av) < (1 << 8) ? nbits_table[av] : \ ( \ (av) < (1L << 16) ? nbits_table[(av) >> 8] + 8 : \ ((av) < (1L << 24) ? nbits_table[(av) >> 16] + 16 : nbits_table[(av) >> 24] + 24) \ ) \ ) static void encode_flush(WavPackEncodeContext *s) { WavPackWords *w = &s->w; PutBitContext *pb = &s->pb; if (w->zeros_acc) { int cbits = count_bits(w->zeros_acc); do { if (cbits > 31) { put_bits(pb, 31, 0x7FFFFFFF); cbits -= 31; } else { put_bits(pb, cbits, (1 << cbits) - 1); cbits = 0; } } while (cbits); put_bits(pb, 1, 0); while (w->zeros_acc > 1) { put_bits(pb, 1, w->zeros_acc & 1); w->zeros_acc >>= 1; } w->zeros_acc = 0; } if (w->holding_one) { if (w->holding_one >= 16) { int cbits; put_bits(pb, 16, (1 << 16) - 1); put_bits(pb, 1, 0); w->holding_one -= 16; cbits = count_bits(w->holding_one); do { if (cbits > 31) { put_bits(pb, 31, 0x7FFFFFFF); cbits -= 31; } else { put_bits(pb, cbits, (1 << cbits) - 1); cbits = 0; } } while (cbits); put_bits(pb, 1, 0); while (w->holding_one > 1) { put_bits(pb, 1, w->holding_one & 1); w->holding_one >>= 1; } w->holding_zero = 0; } else { put_bits(pb, w->holding_one, (1 << w->holding_one) - 1); } w->holding_one = 0; } if (w->holding_zero) { put_bits(pb, 1, 0); w->holding_zero = 0; } if (w->pend_count) { put_bits(pb, w->pend_count, w->pend_data); w->pend_data = w->pend_count = 0; } } static void wavpack_encode_sample(WavPackEncodeContext *s, WvChannel *c, int32_t sample) { WavPackWords *w = &s->w; uint32_t ones_count, low, high; int sign = sample < 0; if (s->w.c[0].median[0] < 2 && !s->w.holding_zero && s->w.c[1].median[0] < 2) { if (w->zeros_acc) { if (sample) encode_flush(s); else { w->zeros_acc++; return; } } else if (sample) { put_bits(&s->pb, 1, 0); } else { CLEAR(s->w.c[0].median); CLEAR(s->w.c[1].median); w->zeros_acc = 1; return; } } if (sign) sample = ~sample; if (sample < (int32_t) GET_MED(0)) { ones_count = low = 0; high = GET_MED(0) - 1; DEC_MED(0); } else { low = GET_MED(0); INC_MED(0); if (sample - low < GET_MED(1)) { ones_count = 1; high = low + GET_MED(1) - 1; DEC_MED(1); } else { low += GET_MED(1); INC_MED(1); if (sample - low < GET_MED(2)) { ones_count = 2; high = low + GET_MED(2) - 1; DEC_MED(2); } else { ones_count = 2 + (sample - low) / GET_MED(2); low += (ones_count - 2) * GET_MED(2); high = low + GET_MED(2) - 1; INC_MED(2); } } } if (w->holding_zero) { if (ones_count) w->holding_one++; encode_flush(s); if (ones_count) { w->holding_zero = 1; ones_count--; } else w->holding_zero = 0; } else w->holding_zero = 1; w->holding_one = ones_count * 2; if (high != low) { uint32_t maxcode = high - low, code = sample - low; int bitcount = count_bits(maxcode); uint32_t extras = (1 << bitcount) - maxcode - 1; if (code < extras) { w->pend_data |= code << w->pend_count; w->pend_count += bitcount - 1; } else { w->pend_data |= ((code + extras) >> 1) << w->pend_count; w->pend_count += bitcount - 1; w->pend_data |= ((code + extras) & 1) << w->pend_count++; } } w->pend_data |= ((int32_t) sign << w->pend_count++); if (!w->holding_zero) encode_flush(s); } static void pack_int32(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples) { const int sent_bits = s->int32_sent_bits; int32_t value, mask = (1 << sent_bits) - 1; PutBitContext *pb = &s->pb; int i, pre_shift; pre_shift = s->int32_zeros + s->int32_ones + s->int32_dups; if (!sent_bits) return; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) { value = (samples_l[i] >> pre_shift) & mask; put_bits(pb, sent_bits, value); } } else { for (i = 0; i < nb_samples; i++) { value = (samples_l[i] >> pre_shift) & mask; put_bits(pb, sent_bits, value); value = (samples_r[i] >> pre_shift) & mask; put_bits(pb, sent_bits, value); } } } static void pack_float_sample(WavPackEncodeContext *s, int32_t *sample) { const int max_exp = s->float_max_exp; PutBitContext *pb = &s->pb; int32_t value, shift_count; if (get_exponent(*sample) == 255) { if (get_mantissa(*sample)) { put_bits(pb, 1, 1); put_bits(pb, 23, get_mantissa(*sample)); } else { put_bits(pb, 1, 0); } value = 0x1000000; shift_count = 0; } else if (get_exponent(*sample)) { shift_count = max_exp - get_exponent(*sample); value = 0x800000 + get_mantissa(*sample); } else { shift_count = max_exp ? max_exp - 1 : 0; value = get_mantissa(*sample); } if (shift_count < 25) value >>= shift_count; else value = 0; if (!value) { if (s->float_flags & FLOAT_ZEROS_SENT) { if (get_exponent(*sample) || get_mantissa(*sample)) { put_bits(pb, 1, 1); put_bits(pb, 23, get_mantissa(*sample)); if (max_exp >= 25) put_bits(pb, 8, get_exponent(*sample)); put_bits(pb, 1, get_sign(*sample)); } else { put_bits(pb, 1, 0); if (s->float_flags & FLOAT_NEG_ZEROS) put_bits(pb, 1, get_sign(*sample)); } } } else if (shift_count) { if (s->float_flags & FLOAT_SHIFT_SENT) { int32_t data = get_mantissa(*sample) & ((1 << shift_count) - 1); put_bits(pb, shift_count, data); } else if (s->float_flags & FLOAT_SHIFT_SAME) { put_bits(pb, 1, get_mantissa(*sample) & 1); } } } static void pack_float(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, int nb_samples) { int i; if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) pack_float_sample(s, &samples_l[i]); } else { for (i = 0; i < nb_samples; i++) { pack_float_sample(s, &samples_l[i]); pack_float_sample(s, &samples_r[i]); } } } static void decorr_stereo_pass2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples) { int i, m, k; switch (dpp->value) { case 17: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; dpp->samplesA[1] = dpp->samplesA[0]; samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = 2 * dpp->samplesB[0] - dpp->samplesB[1]; dpp->samplesB[1] = dpp->samplesB[0]; samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); } break; case 18: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1); dpp->samplesA[1] = dpp->samplesA[0]; samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1); dpp->samplesB[1] = dpp->samplesB[0]; samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); } break; default: for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[m]; samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[m]; samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam); UPDATE_WEIGHT(dpp->weightB, dpp->delta, sam, tmp); m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; memcpy(temp_A, dpp->samplesA, sizeof (dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof (dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } break; case -1: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); } break; case -2: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_B = dpp->samplesB[0]; samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); } break; case -3: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; sam_B = dpp->samplesB[0]; dpp->samplesA[0] = tmp = samples_r[i]; samples_r[i] = tmp -= APPLY_WEIGHT(dpp->weightB, sam_B); UPDATE_WEIGHT_CLIP(dpp->weightB, dpp->delta, sam_B, tmp); dpp->samplesB[0] = tmp = samples_l[i]; samples_l[i] = tmp -= APPLY_WEIGHT(dpp->weightA, sam_A); UPDATE_WEIGHT_CLIP(dpp->weightA, dpp->delta, sam_A, tmp); } break; } } #define update_weight_d2(weight, delta, source, result) \ if (source && result) \ weight -= (((source ^ result) >> 29) & 4) - 2; #define update_weight_clip_d2(weight, delta, source, result) \ if (source && result) { \ const int32_t s = (source ^ result) >> 31; \ if ((weight = (weight ^ s) + (2 - s)) > 1024) weight = 1024; \ weight = (weight ^ s) - s; \ } static void decorr_stereo_pass_id2(struct Decorr *dpp, int32_t *samples_l, int32_t *samples_r, int nb_samples) { int i, m, k; switch (dpp->value) { case 17: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; dpp->samplesA[1] = dpp->samplesA[0]; samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); update_weight_d2(dpp->weightA, dpp->delta, sam, tmp); sam = 2 * dpp->samplesB[0] - dpp->samplesB[1]; dpp->samplesB[1] = dpp->samplesB[0]; samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); update_weight_d2(dpp->weightB, dpp->delta, sam, tmp); } break; case 18: for (i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[0] + ((dpp->samplesA[0] - dpp->samplesA[1]) >> 1); dpp->samplesA[1] = dpp->samplesA[0]; samples_l[i] = tmp = (dpp->samplesA[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); update_weight_d2(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[0] + ((dpp->samplesB[0] - dpp->samplesB[1]) >> 1); dpp->samplesB[1] = dpp->samplesB[0]; samples_r[i] = tmp = (dpp->samplesB[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); update_weight_d2(dpp->weightB, dpp->delta, sam, tmp); } break; default: for (m = 0, k = dpp->value & (MAX_TERM - 1), i = 0; i < nb_samples; i++) { int32_t sam, tmp; sam = dpp->samplesA[m]; samples_l[i] = tmp = (dpp->samplesA[k] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam); update_weight_d2(dpp->weightA, dpp->delta, sam, tmp); sam = dpp->samplesB[m]; samples_r[i] = tmp = (dpp->samplesB[k] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam); update_weight_d2(dpp->weightB, dpp->delta, sam, tmp); m = (m + 1) & (MAX_TERM - 1); k = (k + 1) & (MAX_TERM - 1); } if (m) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } break; case -1: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; samples_l[i] = tmp = (sam_B = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A); update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp); samples_r[i] = tmp = (dpp->samplesA[0] = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B); update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp); } break; case -2: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_B = dpp->samplesB[0]; samples_r[i] = tmp = (sam_A = samples_r[i]) - APPLY_WEIGHT_I(dpp->weightB, sam_B); update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp); samples_l[i] = tmp = (dpp->samplesB[0] = samples_l[i]) - APPLY_WEIGHT_I(dpp->weightA, sam_A); update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp); } break; case -3: for (i = 0; i < nb_samples; i++) { int32_t sam_A, sam_B, tmp; sam_A = dpp->samplesA[0]; sam_B = dpp->samplesB[0]; dpp->samplesA[0] = tmp = samples_r[i]; samples_r[i] = tmp -= APPLY_WEIGHT_I(dpp->weightB, sam_B); update_weight_clip_d2(dpp->weightB, dpp->delta, sam_B, tmp); dpp->samplesB[0] = tmp = samples_l[i]; samples_l[i] = tmp -= APPLY_WEIGHT_I(dpp->weightA, sam_A); update_weight_clip_d2(dpp->weightA, dpp->delta, sam_A, tmp); } break; } } static void put_metadata_block(PutByteContext *pb, int flags, int size) { if (size & 1) flags |= WP_IDF_ODD; bytestream2_put_byte(pb, flags); bytestream2_put_byte(pb, (size + 1) >> 1); } static int wavpack_encode_block(WavPackEncodeContext *s, int32_t *samples_l, int32_t *samples_r, uint8_t *out, int out_size) { int block_size, start, end, data_size, tcount, temp, m = 0; int i, j, ret = 0, got_extra = 0, nb_samples = s->block_samples; uint32_t crc = 0xffffffffu; struct Decorr *dpp; PutByteContext pb; if (!(s->flags & WV_MONO) && s->optimize_mono) { int32_t lor = 0, diff = 0; for (i = 0; i < nb_samples; i++) { lor |= samples_l[i] | samples_r[i]; diff |= samples_l[i] - samples_r[i]; if (lor && diff) break; } if (i == nb_samples && lor && !diff) { s->flags &= ~(WV_JOINT_STEREO | WV_CROSS_DECORR); s->flags |= WV_FALSE_STEREO; if (!s->false_stereo) { s->false_stereo = 1; s->num_terms = 0; CLEAR(s->w); } } else if (s->false_stereo) { s->false_stereo = 0; s->num_terms = 0; CLEAR(s->w); } } if (s->flags & SHIFT_MASK) { int shift = (s->flags & SHIFT_MASK) >> SHIFT_LSB; int mag = (s->flags & MAG_MASK) >> MAG_LSB; if (s->flags & WV_MONO_DATA) shift_mono(samples_l, nb_samples, shift); else shift_stereo(samples_l, samples_r, nb_samples, shift); if ((mag -= shift) < 0) s->flags &= ~MAG_MASK; else s->flags -= (1 << MAG_LSB) * shift; } if ((s->flags & WV_FLOAT_DATA) || (s->flags & MAG_MASK) >> MAG_LSB >= 24) { av_fast_padded_malloc(&s->orig_l, &s->orig_l_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_l, samples_l, sizeof(int32_t) * nb_samples); if (!(s->flags & WV_MONO_DATA)) { av_fast_padded_malloc(&s->orig_r, &s->orig_r_size, sizeof(int32_t) * nb_samples); memcpy(s->orig_r, samples_r, sizeof(int32_t) * nb_samples); } if (s->flags & WV_FLOAT_DATA) got_extra = scan_float(s, samples_l, samples_r, nb_samples); else got_extra = scan_int32(s, samples_l, samples_r, nb_samples); s->num_terms = 0; } else { scan_int23(s, samples_l, samples_r, nb_samples); if (s->shift != s->int32_zeros + s->int32_ones + s->int32_dups) { s->shift = s->int32_zeros + s->int32_ones + s->int32_dups; s->num_terms = 0; } } if (!s->num_passes && !s->num_terms) { s->num_passes = 1; if (s->flags & WV_MONO_DATA) ret = wv_mono(s, samples_l, 1, 0); else ret = wv_stereo(s, samples_l, samples_r, 1, 0); s->num_passes = 0; } if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) crc += (crc << 1) + samples_l[i]; if (s->num_passes) ret = wv_mono(s, samples_l, !s->num_terms, 1); } else { for (i = 0; i < nb_samples; i++) crc += (crc << 3) + (samples_l[i] << 1) + samples_l[i] + samples_r[i]; if (s->num_passes) ret = wv_stereo(s, samples_l, samples_r, !s->num_terms, 1); } if (ret < 0) return ret; if (!s->ch_offset) s->flags |= WV_INITIAL_BLOCK; s->ch_offset += 1 + !(s->flags & WV_MONO); if (s->ch_offset == s->avctx->channels) s->flags |= WV_FINAL_BLOCK; bytestream2_init_writer(&pb, out, out_size); bytestream2_put_le32(&pb, MKTAG('w', 'v', 'p', 'k')); bytestream2_put_le32(&pb, 0); bytestream2_put_le16(&pb, 0x410); bytestream2_put_le16(&pb, 0); bytestream2_put_le32(&pb, 0); bytestream2_put_le32(&pb, s->sample_index); bytestream2_put_le32(&pb, nb_samples); bytestream2_put_le32(&pb, s->flags); bytestream2_put_le32(&pb, crc); if (s->flags & WV_INITIAL_BLOCK && s->avctx->channel_layout != AV_CH_LAYOUT_MONO && s->avctx->channel_layout != AV_CH_LAYOUT_STEREO) { put_metadata_block(&pb, WP_ID_CHANINFO, 5); bytestream2_put_byte(&pb, s->avctx->channels); bytestream2_put_le32(&pb, s->avctx->channel_layout); bytestream2_put_byte(&pb, 0); } if ((s->flags & SRATE_MASK) == SRATE_MASK) { put_metadata_block(&pb, WP_ID_SAMPLE_RATE, 3); bytestream2_put_le24(&pb, s->avctx->sample_rate); bytestream2_put_byte(&pb, 0); } put_metadata_block(&pb, WP_ID_DECTERMS, s->num_terms); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; bytestream2_put_byte(&pb, ((dpp->value + 5) & 0x1f) | ((dpp->delta << 5) & 0xe0)); } if (s->num_terms & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECWEIGHT(type) do { \ temp = store_weight(type); \ bytestream2_put_byte(&pb, temp); \ type = restore_weight(temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECWEIGHTS); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = s->num_terms - 1; i >= 0; --i) { struct Decorr *dpp = &s->decorr_passes[i]; if (store_weight(dpp->weightA) || (!(s->flags & WV_MONO_DATA) && store_weight(dpp->weightB))) break; } tcount = i + 1; for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i < tcount) { WRITE_DECWEIGHT(dpp->weightA); if (!(s->flags & WV_MONO_DATA)) WRITE_DECWEIGHT(dpp->weightB); } else { dpp->weightA = dpp->weightB = 0; } } end = bytestream2_tell_p(&pb); out[start - 2] = WP_ID_DECWEIGHTS | (((end - start) & 1) ? WP_IDF_ODD: 0); out[start - 1] = (end - start + 1) >> 1; if ((end - start) & 1) bytestream2_put_byte(&pb, 0); #define WRITE_DECSAMPLE(type) do { \ temp = log2s(type); \ type = wp_exp2(temp); \ bytestream2_put_le16(&pb, temp); \ } while (0) bytestream2_put_byte(&pb, WP_ID_DECSAMPLES); bytestream2_put_byte(&pb, 0); start = bytestream2_tell_p(&pb); for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (i == 0) { if (dpp->value > MAX_TERM) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesA[1]); if (!(s->flags & WV_MONO_DATA)) { WRITE_DECSAMPLE(dpp->samplesB[0]); WRITE_DECSAMPLE(dpp->samplesB[1]); } } else if (dpp->value < 0) { WRITE_DECSAMPLE(dpp->samplesA[0]); WRITE_DECSAMPLE(dpp->samplesB[0]); } else { for (j = 0; j < dpp->value; j++) { WRITE_DECSAMPLE(dpp->samplesA[j]); if (!(s->flags & WV_MONO_DATA)) WRITE_DECSAMPLE(dpp->samplesB[j]); } } } else { CLEAR(dpp->samplesA); CLEAR(dpp->samplesB); } } end = bytestream2_tell_p(&pb); out[start - 1] = (end - start) >> 1; #define WRITE_CHAN_ENTROPY(chan) do { \ for (i = 0; i < 3; i++) { \ temp = wp_log2(s->w.c[chan].median[i]); \ bytestream2_put_le16(&pb, temp); \ s->w.c[chan].median[i] = wp_exp2(temp); \ } \ } while (0) put_metadata_block(&pb, WP_ID_ENTROPY, 6 * (1 + (!(s->flags & WV_MONO_DATA)))); WRITE_CHAN_ENTROPY(0); if (!(s->flags & WV_MONO_DATA)) WRITE_CHAN_ENTROPY(1); if (s->flags & WV_FLOAT_DATA) { put_metadata_block(&pb, WP_ID_FLOATINFO, 4); bytestream2_put_byte(&pb, s->float_flags); bytestream2_put_byte(&pb, s->float_shift); bytestream2_put_byte(&pb, s->float_max_exp); bytestream2_put_byte(&pb, 127); } if (s->flags & WV_INT32_DATA) { put_metadata_block(&pb, WP_ID_INT32INFO, 4); bytestream2_put_byte(&pb, s->int32_sent_bits); bytestream2_put_byte(&pb, s->int32_zeros); bytestream2_put_byte(&pb, s->int32_ones); bytestream2_put_byte(&pb, s->int32_dups); } if (s->flags & WV_MONO_DATA && !s->num_passes) { for (i = 0; i < nb_samples; i++) { int32_t code = samples_l[i]; for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) { int32_t sam; if (dpp->value > MAX_TERM) { if (dpp->value & 1) sam = 2 * dpp->samplesA[0] - dpp->samplesA[1]; else sam = (3 * dpp->samplesA[0] - dpp->samplesA[1]) >> 1; dpp->samplesA[1] = dpp->samplesA[0]; dpp->samplesA[0] = code; } else { sam = dpp->samplesA[m]; dpp->samplesA[(m + dpp->value) & (MAX_TERM - 1)] = code; } code -= APPLY_WEIGHT(dpp->weightA, sam); UPDATE_WEIGHT(dpp->weightA, dpp->delta, sam, code); } m = (m + 1) & (MAX_TERM - 1); samples_l[i] = code; } if (m) { for (tcount = s->num_terms, dpp = s->decorr_passes; tcount--; dpp++) if (dpp->value > 0 && dpp->value <= MAX_TERM) { int32_t temp_A[MAX_TERM], temp_B[MAX_TERM]; int k; memcpy(temp_A, dpp->samplesA, sizeof(dpp->samplesA)); memcpy(temp_B, dpp->samplesB, sizeof(dpp->samplesB)); for (k = 0; k < MAX_TERM; k++) { dpp->samplesA[k] = temp_A[m]; dpp->samplesB[k] = temp_B[m]; m = (m + 1) & (MAX_TERM - 1); } } } } else if (!s->num_passes) { if (s->flags & WV_JOINT_STEREO) { for (i = 0; i < nb_samples; i++) samples_r[i] += ((samples_l[i] -= samples_r[i]) >> 1); } for (i = 0; i < s->num_terms; i++) { struct Decorr *dpp = &s->decorr_passes[i]; if (((s->flags & MAG_MASK) >> MAG_LSB) >= 16 || dpp->delta != 2) decorr_stereo_pass2(dpp, samples_l, samples_r, nb_samples); else decorr_stereo_pass_id2(dpp, samples_l, samples_r, nb_samples); } } bytestream2_put_byte(&pb, WP_ID_DATA | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 3, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_MONO_DATA) { for (i = 0; i < nb_samples; i++) wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); } else { for (i = 0; i < nb_samples; i++) { wavpack_encode_sample(s, &s->w.c[0], s->samples[0][i]); wavpack_encode_sample(s, &s->w.c[1], s->samples[1][i]); } } encode_flush(s); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 1) >> 1); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); if (got_extra) { bytestream2_put_byte(&pb, WP_ID_EXTRABITS | WP_IDF_LONG); init_put_bits(&s->pb, pb.buffer + 7, bytestream2_get_bytes_left_p(&pb)); if (s->flags & WV_FLOAT_DATA) pack_float(s, s->orig_l, s->orig_r, nb_samples); else pack_int32(s, s->orig_l, s->orig_r, nb_samples); flush_put_bits(&s->pb); data_size = put_bits_count(&s->pb) >> 3; bytestream2_put_le24(&pb, (data_size + 5) >> 1); bytestream2_put_le32(&pb, s->crc_x); bytestream2_skip_p(&pb, data_size); if (data_size & 1) bytestream2_put_byte(&pb, 0); } block_size = bytestream2_tell_p(&pb); AV_WL32(out + 4, block_size - 8); av_assert0(!bytestream2_get_eof(&pb)); return block_size; } static void fill_buffer(WavPackEncodeContext *s, const int8_t *src, int32_t *dst, int nb_samples) { int i; #define COPY_SAMPLES(type, offset, shift) do { \ const type *sptr = (const type *)src; \ for (i = 0; i < nb_samples; i++) \ dst[i] = (sptr[i] - offset) >> shift; \ } while (0) switch (s->avctx->sample_fmt) { case AV_SAMPLE_FMT_U8P: COPY_SAMPLES(int8_t, 0x80, 0); break; case AV_SAMPLE_FMT_S16P: COPY_SAMPLES(int16_t, 0, 0); break; case AV_SAMPLE_FMT_S32P: if (s->avctx->bits_per_raw_sample <= 24) { COPY_SAMPLES(int32_t, 0, 8); break; } case AV_SAMPLE_FMT_FLTP: memcpy(dst, src, nb_samples * 4); } } static void set_samplerate(WavPackEncodeContext *s) { int i; for (i = 0; i < 15; i++) { if (wv_rates[i] == s->avctx->sample_rate) break; } s->flags = i << SRATE_LSB; } static int wavpack_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, const AVFrame *frame, int *got_packet_ptr) { WavPackEncodeContext *s = avctx->priv_data; int buf_size, ret; uint8_t *buf; s->block_samples = frame->nb_samples; av_fast_padded_malloc(&s->samples[0], &s->samples_size[0], sizeof(int32_t) * s->block_samples); if (!s->samples[0]) return AVERROR(ENOMEM); if (avctx->channels > 1) { av_fast_padded_malloc(&s->samples[1], &s->samples_size[1], sizeof(int32_t) * s->block_samples); if (!s->samples[1]) return AVERROR(ENOMEM); } buf_size = s->block_samples * avctx->channels * 8 + 200 /* for headers */; if ((ret = ff_alloc_packet2(avctx, avpkt, buf_size)) < 0) return ret; buf = avpkt->data; for (s->ch_offset = 0; s->ch_offset < avctx->channels;) { set_samplerate(s); switch (s->avctx->sample_fmt) { case AV_SAMPLE_FMT_S16P: s->flags |= 1; break; case AV_SAMPLE_FMT_S32P: s->flags |= 3 - (s->avctx->bits_per_raw_sample <= 24); break; case AV_SAMPLE_FMT_FLTP: s->flags |= 3 | WV_FLOAT_DATA; } fill_buffer(s, frame->extended_data[s->ch_offset], s->samples[0], s->block_samples); if (avctx->channels - s->ch_offset == 1) { s->flags |= WV_MONO; } else { s->flags |= WV_CROSS_DECORR; fill_buffer(s, frame->extended_data[s->ch_offset + 1], s->samples[1], s->block_samples); } s->flags += (1 << MAG_LSB) * ((s->flags & 3) * 8 + 7); if ((ret = wavpack_encode_block(s, s->samples[0], s->samples[1], buf, buf_size)) < 0) return ret; buf += ret; buf_size -= ret; } s->sample_index += frame->nb_samples; avpkt->pts = frame->pts; avpkt->size = buf - avpkt->data; avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); *got_packet_ptr = 1; return 0; } static av_cold int wavpack_encode_close(AVCodecContext *avctx) { WavPackEncodeContext *s = avctx->priv_data; int i; for (i = 0; i < MAX_TERMS + 2; i++) { av_freep(&s->sampleptrs[i][0]); av_freep(&s->sampleptrs[i][1]); s->sampleptrs_size[i][0] = s->sampleptrs_size[i][1] = 0; } for (i = 0; i < 2; i++) { av_freep(&s->samples[i]); s->samples_size[i] = 0; av_freep(&s->best_buffer[i]); s->best_buffer_size[i] = 0; av_freep(&s->temp_buffer[i][0]); av_freep(&s->temp_buffer[i][1]); s->temp_buffer_size[i][0] = s->temp_buffer_size[i][1] = 0; } av_freep(&s->js_left); av_freep(&s->js_right); s->js_left_size = s->js_right_size = 0; av_freep(&s->orig_l); av_freep(&s->orig_r); s->orig_l_size = s->orig_r_size = 0; return 0; } #define OFFSET(x) offsetof(WavPackEncodeContext, x) #define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM static const AVOption options[] = { { "joint_stereo", "", OFFSET(joint), AV_OPT_TYPE_INT, {.i64=0},-1, 1, FLAGS, "joint" }, { "on", "mid/side", 0, AV_OPT_TYPE_CONST, {.i64= 1}, 0, 0, FLAGS, "joint"}, { "off", "left/right", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, FLAGS, "joint"}, { "auto", NULL, 0, AV_OPT_TYPE_CONST, {.i64= 0}, 0, 0, FLAGS, "joint"}, { "optimize_mono", "", OFFSET(optimize_mono), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "opt_mono" }, { "on", NULL, 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "opt_mono"}, { "off", NULL, 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "opt_mono"}, { NULL }, }; static const AVClass wavpack_encoder_class = { .class_name = "WavPack encoder", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_wavpack_encoder = { .name = "wavpack", .long_name = NULL_IF_CONFIG_SMALL("WavPack"), .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_WAVPACK, .priv_data_size = sizeof(WavPackEncodeContext), .priv_class = &wavpack_encoder_class, .init = wavpack_encode_init, .encode2 = wavpack_encode_frame, .close = wavpack_encode_close, .capabilities = CODEC_CAP_SMALL_LAST_FRAME, .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_U8P, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }, };