/* * Error resilience / concealment * * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Error resilience / concealment. */ #include <limits.h> #include "avcodec.h" #include "dsputil.h" #include "mpegvideo.h" #include "h264.h" #include "rectangle.h" #include "thread.h" /* * H264 redefines mb_intra so it is not mistakely used (its uninitialized in h264) * but error concealment must support both h264 and h263 thus we must undo this */ #undef mb_intra static void decode_mb(MpegEncContext *s, int ref) { s->dest[0] = s->current_picture.f.data[0] + (s->mb_y * 16 * s->linesize) + s->mb_x * 16; s->dest[1] = s->current_picture.f.data[1] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift); s->dest[2] = s->current_picture.f.data[2] + (s->mb_y * (16 >> s->chroma_y_shift) * s->uvlinesize) + s->mb_x * (16 >> s->chroma_x_shift); ff_init_block_index(s); ff_update_block_index(s); if (CONFIG_H264_DECODER && s->codec_id == CODEC_ID_H264) { H264Context *h = (void*)s; h->mb_xy = s->mb_x + s->mb_y * s->mb_stride; memset(h->non_zero_count_cache, 0, sizeof(h->non_zero_count_cache)); av_assert1(ref >= 0); /* FIXME: It is possible albeit uncommon that slice references * differ between slices. We take the easy approach and ignore * it for now. If this turns out to have any relevance in * practice then correct remapping should be added. */ if (ref >= h->ref_count[0]) ref = 0; if (!h->ref_list[0][ref].f.data[0]) { av_log(s->avctx, AV_LOG_DEBUG, "Reference not available for error concealing\n"); ref = 0; } fill_rectangle(&s->current_picture.f.ref_index[0][4 * h->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(s->mv[0][0][0], s->mv[0][0][1]), 4); h->mb_mbaff = h->mb_field_decoding_flag = 0; ff_h264_hl_decode_mb(h); } else { assert(ref == 0); ff_MPV_decode_mb(s, s->block); } } /** * @param stride the number of MVs to get to the next row * @param mv_step the number of MVs per row or column in a macroblock */ static void set_mv_strides(MpegEncContext *s, int *mv_step, int *stride) { if (s->codec_id == CODEC_ID_H264) { H264Context *h = (void*)s; av_assert0(s->quarter_sample); *mv_step = 4; *stride = h->b_stride; } else { *mv_step = 2; *stride = s->b8_stride; } } /** * Replace the current MB with a flat dc-only version. */ static void put_dc(MpegEncContext *s, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr, int mb_x, int mb_y) { int dc, dcu, dcv, y, i; for (i = 0; i < 4; i++) { dc = s->dc_val[0][mb_x * 2 + (i & 1) + (mb_y * 2 + (i >> 1)) * s->b8_stride]; if (dc < 0) dc = 0; else if (dc > 2040) dc = 2040; for (y = 0; y < 8; y++) { int x; for (x = 0; x < 8; x++) dest_y[x + (i & 1) * 8 + (y + (i >> 1) * 8) * s->linesize] = dc / 8; } } dcu = s->dc_val[1][mb_x + mb_y * s->mb_stride]; dcv = s->dc_val[2][mb_x + mb_y * s->mb_stride]; if (dcu < 0) dcu = 0; else if (dcu > 2040) dcu = 2040; if (dcv < 0) dcv = 0; else if (dcv > 2040) dcv = 2040; for (y = 0; y < 8; y++) { int x; for (x = 0; x < 8; x++) { dest_cb[x + y * s->uvlinesize] = dcu / 8; dest_cr[x + y * s->uvlinesize] = dcv / 8; } } } static void filter181(int16_t *data, int width, int height, int stride) { int x, y; /* horizontal filter */ for (y = 1; y < height - 1; y++) { int prev_dc = data[0 + y * stride]; for (x = 1; x < width - 1; x++) { int dc; dc = -prev_dc + data[x + y * stride] * 8 - data[x + 1 + y * stride]; dc = (dc * 10923 + 32768) >> 16; prev_dc = data[x + y * stride]; data[x + y * stride] = dc; } } /* vertical filter */ for (x = 1; x < width - 1; x++) { int prev_dc = data[x]; for (y = 1; y < height - 1; y++) { int dc; dc = -prev_dc + data[x + y * stride] * 8 - data[x + (y + 1) * stride]; dc = (dc * 10923 + 32768) >> 16; prev_dc = data[x + y * stride]; data[x + y * stride] = dc; } } } /** * guess the dc of blocks which do not have an undamaged dc * @param w width in 8 pixel blocks * @param h height in 8 pixel blocks */ static void guess_dc(MpegEncContext *s, int16_t *dc, int w, int h, int stride, int is_luma) { int b_x, b_y; int16_t (*col )[4] = av_malloc(stride*h*sizeof( int16_t)*4); uint32_t (*dist)[4] = av_malloc(stride*h*sizeof(uint32_t)*4); for(b_y=0; b_y<h; b_y++){ int color= 1024; int distance= -1; for(b_x=0; b_x<w; b_x++){ int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride; int error_j= s->error_status_table[mb_index_j]; int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); if(intra_j==0 || !(error_j&ER_DC_ERROR)){ color= dc[b_x + b_y*stride]; distance= b_x; } col [b_x + b_y*stride][1]= color; dist[b_x + b_y*stride][1]= distance >= 0 ? b_x-distance : 9999; } color= 1024; distance= -1; for(b_x=w-1; b_x>=0; b_x--){ int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride; int error_j= s->error_status_table[mb_index_j]; int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); if(intra_j==0 || !(error_j&ER_DC_ERROR)){ color= dc[b_x + b_y*stride]; distance= b_x; } col [b_x + b_y*stride][0]= color; dist[b_x + b_y*stride][0]= distance >= 0 ? distance-b_x : 9999; } } for(b_x=0; b_x<w; b_x++){ int color= 1024; int distance= -1; for(b_y=0; b_y<h; b_y++){ int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride; int error_j= s->error_status_table[mb_index_j]; int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); if(intra_j==0 || !(error_j&ER_DC_ERROR)){ color= dc[b_x + b_y*stride]; distance= b_y; } col [b_x + b_y*stride][3]= color; dist[b_x + b_y*stride][3]= distance >= 0 ? b_y-distance : 9999; } color= 1024; distance= -1; for(b_y=h-1; b_y>=0; b_y--){ int mb_index_j= (b_x>>is_luma) + (b_y>>is_luma)*s->mb_stride; int error_j= s->error_status_table[mb_index_j]; int intra_j = IS_INTRA(s->current_picture.f.mb_type[mb_index_j]); if(intra_j==0 || !(error_j&ER_DC_ERROR)){ color= dc[b_x + b_y*stride]; distance= b_y; } col [b_x + b_y*stride][2]= color; dist[b_x + b_y*stride][2]= distance >= 0 ? distance-b_y : 9999; } } for (b_y = 0; b_y < h; b_y++) { for (b_x = 0; b_x < w; b_x++) { int mb_index, error, j; int64_t guess, weight_sum; mb_index = (b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride; error = s->error_status_table[mb_index]; if (IS_INTER(s->current_picture.f.mb_type[mb_index])) continue; // inter if (!(error & ER_DC_ERROR)) continue; // dc-ok weight_sum = 0; guess = 0; for (j = 0; j < 4; j++) { int64_t weight = 256 * 256 * 256 * 16 / FFMAX(dist[b_x + b_y*stride][j], 1); guess += weight*(int64_t)col[b_x + b_y*stride][j]; weight_sum += weight; } guess = (guess + weight_sum / 2) / weight_sum; dc[b_x + b_y * stride] = guess; } } av_freep(&col); av_freep(&dist); } /** * simple horizontal deblocking filter used for error resilience * @param w width in 8 pixel blocks * @param h height in 8 pixel blocks */ static void h_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma) { int b_x, b_y, mvx_stride, mvy_stride; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; set_mv_strides(s, &mvx_stride, &mvy_stride); mvx_stride >>= is_luma; mvy_stride *= mvx_stride; for (b_y = 0; b_y < h; b_y++) { for (b_x = 0; b_x < w - 1; b_x++) { int y; int left_status = s->error_status_table[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]; int right_status = s->error_status_table[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]; int left_intra = IS_INTRA(s->current_picture.f.mb_type[( b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]); int right_intra = IS_INTRA(s->current_picture.f.mb_type[((b_x + 1) >> is_luma) + (b_y >> is_luma) * s->mb_stride]); int left_damage = left_status & ER_MB_ERROR; int right_damage = right_status & ER_MB_ERROR; int offset = b_x * 8 + b_y * stride * 8; int16_t *left_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * b_x]; int16_t *right_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * (b_x + 1)]; if (!(left_damage || right_damage)) continue; // both undamaged if ((!left_intra) && (!right_intra) && FFABS(left_mv[0] - right_mv[0]) + FFABS(left_mv[1] + right_mv[1]) < 2) continue; for (y = 0; y < 8; y++) { int a, b, c, d; a = dst[offset + 7 + y * stride] - dst[offset + 6 + y * stride]; b = dst[offset + 8 + y * stride] - dst[offset + 7 + y * stride]; c = dst[offset + 9 + y * stride] - dst[offset + 8 + y * stride]; d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1); d = FFMAX(d, 0); if (b < 0) d = -d; if (d == 0) continue; if (!(left_damage && right_damage)) d = d * 16 / 9; if (left_damage) { dst[offset + 7 + y * stride] = cm[dst[offset + 7 + y * stride] + ((d * 7) >> 4)]; dst[offset + 6 + y * stride] = cm[dst[offset + 6 + y * stride] + ((d * 5) >> 4)]; dst[offset + 5 + y * stride] = cm[dst[offset + 5 + y * stride] + ((d * 3) >> 4)]; dst[offset + 4 + y * stride] = cm[dst[offset + 4 + y * stride] + ((d * 1) >> 4)]; } if (right_damage) { dst[offset + 8 + y * stride] = cm[dst[offset + 8 + y * stride] - ((d * 7) >> 4)]; dst[offset + 9 + y * stride] = cm[dst[offset + 9 + y * stride] - ((d * 5) >> 4)]; dst[offset + 10+ y * stride] = cm[dst[offset + 10 + y * stride] - ((d * 3) >> 4)]; dst[offset + 11+ y * stride] = cm[dst[offset + 11 + y * stride] - ((d * 1) >> 4)]; } } } } } /** * simple vertical deblocking filter used for error resilience * @param w width in 8 pixel blocks * @param h height in 8 pixel blocks */ static void v_block_filter(MpegEncContext *s, uint8_t *dst, int w, int h, int stride, int is_luma) { int b_x, b_y, mvx_stride, mvy_stride; uint8_t *cm = ff_cropTbl + MAX_NEG_CROP; set_mv_strides(s, &mvx_stride, &mvy_stride); mvx_stride >>= is_luma; mvy_stride *= mvx_stride; for (b_y = 0; b_y < h - 1; b_y++) { for (b_x = 0; b_x < w; b_x++) { int x; int top_status = s->error_status_table[(b_x >> is_luma) + (b_y >> is_luma) * s->mb_stride]; int bottom_status = s->error_status_table[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]; int top_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ( b_y >> is_luma) * s->mb_stride]); int bottom_intra = IS_INTRA(s->current_picture.f.mb_type[(b_x >> is_luma) + ((b_y + 1) >> is_luma) * s->mb_stride]); int top_damage = top_status & ER_MB_ERROR; int bottom_damage = bottom_status & ER_MB_ERROR; int offset = b_x * 8 + b_y * stride * 8; int16_t *top_mv = s->current_picture.f.motion_val[0][mvy_stride * b_y + mvx_stride * b_x]; int16_t *bottom_mv = s->current_picture.f.motion_val[0][mvy_stride * (b_y + 1) + mvx_stride * b_x]; if (!(top_damage || bottom_damage)) continue; // both undamaged if ((!top_intra) && (!bottom_intra) && FFABS(top_mv[0] - bottom_mv[0]) + FFABS(top_mv[1] + bottom_mv[1]) < 2) continue; for (x = 0; x < 8; x++) { int a, b, c, d; a = dst[offset + x + 7 * stride] - dst[offset + x + 6 * stride]; b = dst[offset + x + 8 * stride] - dst[offset + x + 7 * stride]; c = dst[offset + x + 9 * stride] - dst[offset + x + 8 * stride]; d = FFABS(b) - ((FFABS(a) + FFABS(c) + 1) >> 1); d = FFMAX(d, 0); if (b < 0) d = -d; if (d == 0) continue; if (!(top_damage && bottom_damage)) d = d * 16 / 9; if (top_damage) { dst[offset + x + 7 * stride] = cm[dst[offset + x + 7 * stride] + ((d * 7) >> 4)]; dst[offset + x + 6 * stride] = cm[dst[offset + x + 6 * stride] + ((d * 5) >> 4)]; dst[offset + x + 5 * stride] = cm[dst[offset + x + 5 * stride] + ((d * 3) >> 4)]; dst[offset + x + 4 * stride] = cm[dst[offset + x + 4 * stride] + ((d * 1) >> 4)]; } if (bottom_damage) { dst[offset + x + 8 * stride] = cm[dst[offset + x + 8 * stride] - ((d * 7) >> 4)]; dst[offset + x + 9 * stride] = cm[dst[offset + x + 9 * stride] - ((d * 5) >> 4)]; dst[offset + x + 10 * stride] = cm[dst[offset + x + 10 * stride] - ((d * 3) >> 4)]; dst[offset + x + 11 * stride] = cm[dst[offset + x + 11 * stride] - ((d * 1) >> 4)]; } } } } } static void guess_mv(MpegEncContext *s) { uint8_t *fixed = av_malloc(s->mb_stride * s->mb_height); #define MV_FROZEN 3 #define MV_CHANGED 2 #define MV_UNCHANGED 1 const int mb_stride = s->mb_stride; const int mb_width = s->mb_width; const int mb_height = s->mb_height; int i, depth, num_avail; int mb_x, mb_y, mot_step, mot_stride; set_mv_strides(s, &mot_step, &mot_stride); num_avail = 0; for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; int f = 0; int error = s->error_status_table[mb_xy]; if (IS_INTRA(s->current_picture.f.mb_type[mb_xy])) f = MV_FROZEN; // intra // FIXME check if (!(error & ER_MV_ERROR)) f = MV_FROZEN; // inter with undamaged MV fixed[mb_xy] = f; if (f == MV_FROZEN) num_avail++; else if(s->last_picture.f.data[0] && s->last_picture.f.motion_val[0]){ const int mb_y= mb_xy / s->mb_stride; const int mb_x= mb_xy % s->mb_stride; const int mot_index= (mb_x + mb_y*mot_stride) * mot_step; s->current_picture.f.motion_val[0][mot_index][0]= s->last_picture.f.motion_val[0][mot_index][0]; s->current_picture.f.motion_val[0][mot_index][1]= s->last_picture.f.motion_val[0][mot_index][1]; s->current_picture.f.ref_index[0][4*mb_xy] = s->last_picture.f.ref_index[0][4*mb_xy]; } } if ((!(s->avctx->error_concealment&FF_EC_GUESS_MVS)) || num_avail <= mb_width / 2) { for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { const int mb_xy = mb_x + mb_y * s->mb_stride; if (IS_INTRA(s->current_picture.f.mb_type[mb_xy])) continue; if (!(s->error_status_table[mb_xy] & ER_MV_ERROR)) continue; s->mv_dir = s->last_picture.f.data[0] ? MV_DIR_FORWARD : MV_DIR_BACKWARD; s->mb_intra = 0; s->mv_type = MV_TYPE_16X16; s->mb_skipped = 0; s->dsp.clear_blocks(s->block[0]); s->mb_x = mb_x; s->mb_y = mb_y; s->mv[0][0][0] = 0; s->mv[0][0][1] = 0; decode_mb(s, 0); } } goto end; } for (depth = 0; ; depth++) { int changed, pass, none_left; none_left = 1; changed = 1; for (pass = 0; (changed || pass < 2) && pass < 10; pass++) { int mb_x, mb_y; int score_sum = 0; changed = 0; for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { const int mb_xy = mb_x + mb_y * s->mb_stride; int mv_predictor[8][2] = { { 0 } }; int ref[8] = { 0 }; int pred_count = 0; int j; int best_score = 256 * 256 * 256 * 64; int best_pred = 0; const int mot_index = (mb_x + mb_y * mot_stride) * mot_step; int prev_x, prev_y, prev_ref; if ((mb_x ^ mb_y ^ pass) & 1) continue; if (fixed[mb_xy] == MV_FROZEN) continue; av_assert1(!IS_INTRA(s->current_picture.f.mb_type[mb_xy])); av_assert1(s->last_picture_ptr && s->last_picture_ptr->f.data[0]); j = 0; if (mb_x > 0 && fixed[mb_xy - 1] == MV_FROZEN) j = 1; if (mb_x + 1 < mb_width && fixed[mb_xy + 1] == MV_FROZEN) j = 1; if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_FROZEN) j = 1; if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_FROZEN) j = 1; if (j == 0) continue; j = 0; if (mb_x > 0 && fixed[mb_xy - 1 ] == MV_CHANGED) j = 1; if (mb_x + 1 < mb_width && fixed[mb_xy + 1 ] == MV_CHANGED) j = 1; if (mb_y > 0 && fixed[mb_xy - mb_stride] == MV_CHANGED) j = 1; if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride] == MV_CHANGED) j = 1; if (j == 0 && pass > 1) continue; none_left = 0; if (mb_x > 0 && fixed[mb_xy - 1]) { mv_predictor[pred_count][0] = s->current_picture.f.motion_val[0][mot_index - mot_step][0]; mv_predictor[pred_count][1] = s->current_picture.f.motion_val[0][mot_index - mot_step][1]; ref[pred_count] = s->current_picture.f.ref_index[0][4 * (mb_xy - 1)]; pred_count++; } if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) { mv_predictor[pred_count][0] = s->current_picture.f.motion_val[0][mot_index + mot_step][0]; mv_predictor[pred_count][1] = s->current_picture.f.motion_val[0][mot_index + mot_step][1]; ref[pred_count] = s->current_picture.f.ref_index[0][4 * (mb_xy + 1)]; pred_count++; } if (mb_y > 0 && fixed[mb_xy - mb_stride]) { mv_predictor[pred_count][0] = s->current_picture.f.motion_val[0][mot_index - mot_stride * mot_step][0]; mv_predictor[pred_count][1] = s->current_picture.f.motion_val[0][mot_index - mot_stride * mot_step][1]; ref[pred_count] = s->current_picture.f.ref_index[0][4 * (mb_xy - s->mb_stride)]; pred_count++; } if (mb_y + 1<mb_height && fixed[mb_xy + mb_stride]) { mv_predictor[pred_count][0] = s->current_picture.f.motion_val[0][mot_index + mot_stride * mot_step][0]; mv_predictor[pred_count][1] = s->current_picture.f.motion_val[0][mot_index + mot_stride * mot_step][1]; ref[pred_count] = s->current_picture.f.ref_index[0][4 * (mb_xy + s->mb_stride)]; pred_count++; } if (pred_count == 0) continue; if (pred_count > 1) { int sum_x = 0, sum_y = 0, sum_r = 0; int max_x, max_y, min_x, min_y, max_r, min_r; for (j = 0; j < pred_count; j++) { sum_x += mv_predictor[j][0]; sum_y += mv_predictor[j][1]; sum_r += ref[j]; if (j && ref[j] != ref[j - 1]) goto skip_mean_and_median; } /* mean */ mv_predictor[pred_count][0] = sum_x / j; mv_predictor[pred_count][1] = sum_y / j; ref[pred_count] = sum_r / j; /* median */ if (pred_count >= 3) { min_y = min_x = min_r = 99999; max_y = max_x = max_r = -99999; } else { min_x = min_y = max_x = max_y = min_r = max_r = 0; } for (j = 0; j < pred_count; j++) { max_x = FFMAX(max_x, mv_predictor[j][0]); max_y = FFMAX(max_y, mv_predictor[j][1]); max_r = FFMAX(max_r, ref[j]); min_x = FFMIN(min_x, mv_predictor[j][0]); min_y = FFMIN(min_y, mv_predictor[j][1]); min_r = FFMIN(min_r, ref[j]); } mv_predictor[pred_count + 1][0] = sum_x - max_x - min_x; mv_predictor[pred_count + 1][1] = sum_y - max_y - min_y; ref[pred_count + 1] = sum_r - max_r - min_r; if (pred_count == 4) { mv_predictor[pred_count + 1][0] /= 2; mv_predictor[pred_count + 1][1] /= 2; ref[pred_count + 1] /= 2; } pred_count += 2; } skip_mean_and_median: /* zero MV */ pred_count++; if (!fixed[mb_xy] && 0) { if (s->avctx->codec_id == CODEC_ID_H264) { // FIXME } else { ff_thread_await_progress(&s->last_picture_ptr->f, mb_y, 0); } if (!s->last_picture.f.motion_val[0] || !s->last_picture.f.ref_index[0]) goto skip_last_mv; prev_x = s->last_picture.f.motion_val[0][mot_index][0]; prev_y = s->last_picture.f.motion_val[0][mot_index][1]; prev_ref = s->last_picture.f.ref_index[0][4 * mb_xy]; } else { prev_x = s->current_picture.f.motion_val[0][mot_index][0]; prev_y = s->current_picture.f.motion_val[0][mot_index][1]; prev_ref = s->current_picture.f.ref_index[0][4 * mb_xy]; } /* last MV */ mv_predictor[pred_count][0] = prev_x; mv_predictor[pred_count][1] = prev_y; ref[pred_count] = prev_ref; pred_count++; skip_last_mv: s->mv_dir = MV_DIR_FORWARD; s->mb_intra = 0; s->mv_type = MV_TYPE_16X16; s->mb_skipped = 0; s->dsp.clear_blocks(s->block[0]); s->mb_x = mb_x; s->mb_y = mb_y; for (j = 0; j < pred_count; j++) { int score = 0; uint8_t *src = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; s->current_picture.f.motion_val[0][mot_index][0] = s->mv[0][0][0] = mv_predictor[j][0]; s->current_picture.f.motion_val[0][mot_index][1] = s->mv[0][0][1] = mv_predictor[j][1]; // predictor intra or otherwise not available if (ref[j] < 0) continue; decode_mb(s, ref[j]); if (mb_x > 0 && fixed[mb_xy - 1]) { int k; for (k = 0; k < 16; k++) score += FFABS(src[k * s->linesize - 1] - src[k * s->linesize]); } if (mb_x + 1 < mb_width && fixed[mb_xy + 1]) { int k; for (k = 0; k < 16; k++) score += FFABS(src[k * s->linesize + 15] - src[k * s->linesize + 16]); } if (mb_y > 0 && fixed[mb_xy - mb_stride]) { int k; for (k = 0; k < 16; k++) score += FFABS(src[k - s->linesize] - src[k]); } if (mb_y + 1 < mb_height && fixed[mb_xy + mb_stride]) { int k; for (k = 0; k < 16; k++) score += FFABS(src[k + s->linesize * 15] - src[k + s->linesize * 16]); } if (score <= best_score) { // <= will favor the last MV best_score = score; best_pred = j; } } score_sum += best_score; s->mv[0][0][0] = mv_predictor[best_pred][0]; s->mv[0][0][1] = mv_predictor[best_pred][1]; for (i = 0; i < mot_step; i++) for (j = 0; j < mot_step; j++) { s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][0] = s->mv[0][0][0]; s->current_picture.f.motion_val[0][mot_index + i + j * mot_stride][1] = s->mv[0][0][1]; } decode_mb(s, ref[best_pred]); if (s->mv[0][0][0] != prev_x || s->mv[0][0][1] != prev_y) { fixed[mb_xy] = MV_CHANGED; changed++; } else fixed[mb_xy] = MV_UNCHANGED; } } // printf(".%d/%d", changed, score_sum); fflush(stdout); } if (none_left) goto end; for (i = 0; i < s->mb_num; i++) { int mb_xy = s->mb_index2xy[i]; if (fixed[mb_xy]) fixed[mb_xy] = MV_FROZEN; } // printf(":"); fflush(stdout); } end: av_free(fixed); } static int is_intra_more_likely(MpegEncContext *s) { int is_intra_likely, i, j, undamaged_count, skip_amount, mb_x, mb_y; if (!s->last_picture_ptr || !s->last_picture_ptr->f.data[0]) return 1; // no previous frame available -> use spatial prediction undamaged_count = 0; for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; const int error = s->error_status_table[mb_xy]; if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR))) undamaged_count++; } if (s->codec_id == CODEC_ID_H264) { H264Context *h = (void*) s; if (h->list_count <= 0 || h->ref_count[0] <= 0 || !h->ref_list[0][0].f.data[0]) return 1; } if (undamaged_count < 5) return 0; // almost all MBs damaged -> use temporal prediction // prevent dsp.sad() check, that requires access to the image if (CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration && s->pict_type == AV_PICTURE_TYPE_I) return 1; skip_amount = FFMAX(undamaged_count / 50, 1); // check only up to 50 MBs is_intra_likely = 0; j = 0; for (mb_y = 0; mb_y < s->mb_height - 1; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { int error; const int mb_xy = mb_x + mb_y * s->mb_stride; error = s->error_status_table[mb_xy]; if ((error & ER_DC_ERROR) && (error & ER_MV_ERROR)) continue; // skip damaged j++; // skip a few to speed things up if ((j % skip_amount) != 0) continue; if (s->pict_type == AV_PICTURE_TYPE_I) { uint8_t *mb_ptr = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; uint8_t *last_mb_ptr = s->last_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; if (s->avctx->codec_id == CODEC_ID_H264) { // FIXME } else { ff_thread_await_progress(&s->last_picture_ptr->f, mb_y, 0); } is_intra_likely += s->dsp.sad[0](NULL, last_mb_ptr, mb_ptr , s->linesize, 16); // FIXME need await_progress() here is_intra_likely -= s->dsp.sad[0](NULL, last_mb_ptr, last_mb_ptr+s->linesize*16, s->linesize, 16); } else { if (IS_INTRA(s->current_picture.f.mb_type[mb_xy])) is_intra_likely++; else is_intra_likely--; } } } // printf("is_intra_likely: %d type:%d\n", is_intra_likely, s->pict_type); return is_intra_likely > 0; } void ff_er_frame_start(MpegEncContext *s) { if (!s->err_recognition) return; memset(s->error_status_table, ER_MB_ERROR | VP_START | ER_MB_END, s->mb_stride * s->mb_height * sizeof(uint8_t)); s->error_count = 3 * s->mb_num; s->error_occurred = 0; } /** * Add a slice. * @param endx x component of the last macroblock, can be -1 * for the last of the previous line * @param status the status at the end (ER_MV_END, ER_AC_ERROR, ...), it is * assumed that no earlier end or error of the same type occurred */ void ff_er_add_slice(MpegEncContext *s, int startx, int starty, int endx, int endy, int status) { const int start_i = av_clip(startx + starty * s->mb_width, 0, s->mb_num - 1); const int end_i = av_clip(endx + endy * s->mb_width, 0, s->mb_num); const int start_xy = s->mb_index2xy[start_i]; const int end_xy = s->mb_index2xy[end_i]; int mask = -1; if (s->avctx->hwaccel) return; if (start_i > end_i || start_xy > end_xy) { av_log(s->avctx, AV_LOG_ERROR, "internal error, slice end before start\n"); return; } if (!s->err_recognition) return; mask &= ~VP_START; if (status & (ER_AC_ERROR | ER_AC_END)) { mask &= ~(ER_AC_ERROR | ER_AC_END); s->error_count -= end_i - start_i + 1; } if (status & (ER_DC_ERROR | ER_DC_END)) { mask &= ~(ER_DC_ERROR | ER_DC_END); s->error_count -= end_i - start_i + 1; } if (status & (ER_MV_ERROR | ER_MV_END)) { mask &= ~(ER_MV_ERROR | ER_MV_END); s->error_count -= end_i - start_i + 1; } if (status & ER_MB_ERROR) { s->error_occurred = 1; s->error_count = INT_MAX; } if (mask == ~0x7F) { memset(&s->error_status_table[start_xy], 0, (end_xy - start_xy) * sizeof(uint8_t)); } else { int i; for (i = start_xy; i < end_xy; i++) s->error_status_table[i] &= mask; } if (end_i == s->mb_num) s->error_count = INT_MAX; else { s->error_status_table[end_xy] &= mask; s->error_status_table[end_xy] |= status; } s->error_status_table[start_xy] |= VP_START; if (start_xy > 0 && s->avctx->thread_count <= 1 && s->avctx->skip_top * s->mb_width < start_i) { int prev_status = s->error_status_table[s->mb_index2xy[start_i - 1]]; prev_status &= ~ VP_START; if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END)) s->error_count = INT_MAX; } } void ff_er_frame_end(MpegEncContext *s) { int i, mb_x, mb_y, error, error_type, dc_error, mv_error, ac_error; int distance; int threshold_part[4] = { 100, 100, 100 }; int threshold = 50; int is_intra_likely; int size = s->b8_stride * 2 * s->mb_height; Picture *pic = s->current_picture_ptr; /* We do not support ER of field pictures yet, * though it should not crash if enabled. */ if (!s->err_recognition || s->error_count == 0 || s->avctx->lowres || s->avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU || s->picture_structure != PICT_FRAME || s->error_count == 3 * s->mb_width * (s->avctx->skip_top + s->avctx->skip_bottom)) { return; }; if (s->current_picture.f.motion_val[0] == NULL) { av_log(s->avctx, AV_LOG_ERROR, "Warning MVs not available\n"); for (i = 0; i < 2; i++) { pic->f.ref_index[i] = av_mallocz(s->mb_stride * s->mb_height * 4 * sizeof(uint8_t)); pic->motion_val_base[i] = av_mallocz((size + 4) * 2 * sizeof(uint16_t)); pic->f.motion_val[i] = pic->motion_val_base[i] + 4; } pic->f.motion_subsample_log2 = 3; s->current_picture = *s->current_picture_ptr; } if (s->avctx->debug & FF_DEBUG_ER) { for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { int status = s->error_status_table[mb_x + mb_y * s->mb_stride]; av_log(s->avctx, AV_LOG_DEBUG, "%2X ", status); } av_log(s->avctx, AV_LOG_DEBUG, "\n"); } } #if 1 /* handle overlapping slices */ for (error_type = 1; error_type <= 3; error_type++) { int end_ok = 0; for (i = s->mb_num - 1; i >= 0; i--) { const int mb_xy = s->mb_index2xy[i]; int error = s->error_status_table[mb_xy]; if (error & (1 << error_type)) end_ok = 1; if (error & (8 << error_type)) end_ok = 1; if (!end_ok) s->error_status_table[mb_xy] |= 1 << error_type; if (error & VP_START) end_ok = 0; } } #endif #if 1 /* handle slices with partitions of different length */ if (s->partitioned_frame) { int end_ok = 0; for (i = s->mb_num - 1; i >= 0; i--) { const int mb_xy = s->mb_index2xy[i]; int error = s->error_status_table[mb_xy]; if (error & ER_AC_END) end_ok = 0; if ((error & ER_MV_END) || (error & ER_DC_END) || (error & ER_AC_ERROR)) end_ok = 1; if (!end_ok) s->error_status_table[mb_xy]|= ER_AC_ERROR; if (error & VP_START) end_ok = 0; } } #endif /* handle missing slices */ if (s->err_recognition & AV_EF_EXPLODE) { int end_ok = 1; // FIXME + 100 hack for (i = s->mb_num - 2; i >= s->mb_width + 100; i--) { const int mb_xy = s->mb_index2xy[i]; int error1 = s->error_status_table[mb_xy]; int error2 = s->error_status_table[s->mb_index2xy[i + 1]]; if (error1 & VP_START) end_ok = 1; if (error2 == (VP_START | ER_MB_ERROR | ER_MB_END) && error1 != (VP_START | ER_MB_ERROR | ER_MB_END) && ((error1 & ER_AC_END) || (error1 & ER_DC_END) || (error1 & ER_MV_END))) { // end & uninit end_ok = 0; } if (!end_ok) s->error_status_table[mb_xy] |= ER_MB_ERROR; } } #if 1 /* backward mark errors */ distance = 9999999; for (error_type = 1; error_type <= 3; error_type++) { for (i = s->mb_num - 1; i >= 0; i--) { const int mb_xy = s->mb_index2xy[i]; int error = s->error_status_table[mb_xy]; if (!s->mbskip_table[mb_xy]) // FIXME partition specific distance++; if (error & (1 << error_type)) distance = 0; if (s->partitioned_frame) { if (distance < threshold_part[error_type - 1]) s->error_status_table[mb_xy] |= 1 << error_type; } else { if (distance < threshold) s->error_status_table[mb_xy] |= 1 << error_type; } if (error & VP_START) distance = 9999999; } } #endif /* forward mark errors */ error = 0; for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; int old_error = s->error_status_table[mb_xy]; if (old_error & VP_START) { error = old_error & ER_MB_ERROR; } else { error |= old_error & ER_MB_ERROR; s->error_status_table[mb_xy] |= error; } } #if 1 /* handle not partitioned case */ if (!s->partitioned_frame) { for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; error = s->error_status_table[mb_xy]; if (error & ER_MB_ERROR) error |= ER_MB_ERROR; s->error_status_table[mb_xy] = error; } } #endif dc_error = ac_error = mv_error = 0; for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; error = s->error_status_table[mb_xy]; if (error & ER_DC_ERROR) dc_error++; if (error & ER_AC_ERROR) ac_error++; if (error & ER_MV_ERROR) mv_error++; } av_log(s->avctx, AV_LOG_INFO, "concealing %d DC, %d AC, %d MV errors\n", dc_error, ac_error, mv_error); is_intra_likely = is_intra_more_likely(s); /* set unknown mb-type to most likely */ for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; error = s->error_status_table[mb_xy]; if (!((error & ER_DC_ERROR) && (error & ER_MV_ERROR))) continue; if (is_intra_likely) s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4; else s->current_picture.f.mb_type[mb_xy] = MB_TYPE_16x16 | MB_TYPE_L0; } // change inter to intra blocks if no reference frames are available if (!s->last_picture.f.data[0] && !s->next_picture.f.data[0]) for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; if (!IS_INTRA(s->current_picture.f.mb_type[mb_xy])) s->current_picture.f.mb_type[mb_xy] = MB_TYPE_INTRA4x4; } /* handle inter blocks with damaged AC */ for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { const int mb_xy = mb_x + mb_y * s->mb_stride; const int mb_type = s->current_picture.f.mb_type[mb_xy]; int dir = !s->last_picture.f.data[0]; error = s->error_status_table[mb_xy]; if (IS_INTRA(mb_type)) continue; // intra if (error & ER_MV_ERROR) continue; // inter with damaged MV if (!(error & ER_AC_ERROR)) continue; // undamaged inter s->mv_dir = dir ? MV_DIR_BACKWARD : MV_DIR_FORWARD; s->mb_intra = 0; s->mb_skipped = 0; if (IS_8X8(mb_type)) { int mb_index = mb_x * 2 + mb_y * 2 * s->b8_stride; int j; s->mv_type = MV_TYPE_8X8; for (j = 0; j < 4; j++) { s->mv[0][j][0] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][0]; s->mv[0][j][1] = s->current_picture.f.motion_val[dir][mb_index + (j & 1) + (j >> 1) * s->b8_stride][1]; } } else { s->mv_type = MV_TYPE_16X16; s->mv[0][0][0] = s->current_picture.f.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][0]; s->mv[0][0][1] = s->current_picture.f.motion_val[dir][mb_x * 2 + mb_y * 2 * s->b8_stride][1]; } s->dsp.clear_blocks(s->block[0]); s->mb_x = mb_x; s->mb_y = mb_y; decode_mb(s, 0 /* FIXME h264 partitioned slices need this set */); } } /* guess MVs */ if (s->pict_type == AV_PICTURE_TYPE_B) { for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { int xy = mb_x * 2 + mb_y * 2 * s->b8_stride; const int mb_xy = mb_x + mb_y * s->mb_stride; const int mb_type = s->current_picture.f.mb_type[mb_xy]; error = s->error_status_table[mb_xy]; if (IS_INTRA(mb_type)) continue; if (!(error & ER_MV_ERROR)) continue; // inter with undamaged MV if (!(error & ER_AC_ERROR)) continue; // undamaged inter s->mv_dir = MV_DIR_FORWARD | MV_DIR_BACKWARD; if (!s->last_picture.f.data[0]) s->mv_dir &= ~MV_DIR_FORWARD; if (!s->next_picture.f.data[0]) s->mv_dir &= ~MV_DIR_BACKWARD; s->mb_intra = 0; s->mv_type = MV_TYPE_16X16; s->mb_skipped = 0; if (s->pp_time) { int time_pp = s->pp_time; int time_pb = s->pb_time; if (s->avctx->codec_id == CODEC_ID_H264) { // FIXME } else { ff_thread_await_progress(&s->next_picture_ptr->f, mb_y, 0); } s->mv[0][0][0] = s->next_picture.f.motion_val[0][xy][0] * time_pb / time_pp; s->mv[0][0][1] = s->next_picture.f.motion_val[0][xy][1] * time_pb / time_pp; s->mv[1][0][0] = s->next_picture.f.motion_val[0][xy][0] * (time_pb - time_pp) / time_pp; s->mv[1][0][1] = s->next_picture.f.motion_val[0][xy][1] * (time_pb - time_pp) / time_pp; } else { s->mv[0][0][0] = 0; s->mv[0][0][1] = 0; s->mv[1][0][0] = 0; s->mv[1][0][1] = 0; } s->dsp.clear_blocks(s->block[0]); s->mb_x = mb_x; s->mb_y = mb_y; decode_mb(s, 0); } } } else guess_mv(s); /* the filters below are not XvMC compatible, skip them */ if (CONFIG_MPEG_XVMC_DECODER && s->avctx->xvmc_acceleration) goto ec_clean; /* fill DC for inter blocks */ for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { int dc, dcu, dcv, y, n; int16_t *dc_ptr; uint8_t *dest_y, *dest_cb, *dest_cr; const int mb_xy = mb_x + mb_y * s->mb_stride; const int mb_type = s->current_picture.f.mb_type[mb_xy]; error = s->error_status_table[mb_xy]; if (IS_INTRA(mb_type) && s->partitioned_frame) continue; // if (error & ER_MV_ERROR) // continue; // inter data damaged FIXME is this good? dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dest_cr = s->current_picture.f.data[2] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dc_ptr = &s->dc_val[0][mb_x * 2 + mb_y * 2 * s->b8_stride]; for (n = 0; n < 4; n++) { dc = 0; for (y = 0; y < 8; y++) { int x; for (x = 0; x < 8; x++) dc += dest_y[x + (n & 1) * 8 + (y + (n >> 1) * 8) * s->linesize]; } dc_ptr[(n & 1) + (n >> 1) * s->b8_stride] = (dc + 4) >> 3; } dcu = dcv = 0; for (y = 0; y < 8; y++) { int x; for (x = 0; x < 8; x++) { dcu += dest_cb[x + y * s->uvlinesize]; dcv += dest_cr[x + y * s->uvlinesize]; } } s->dc_val[1][mb_x + mb_y * s->mb_stride] = (dcu + 4) >> 3; s->dc_val[2][mb_x + mb_y * s->mb_stride] = (dcv + 4) >> 3; } } #if 1 /* guess DC for damaged blocks */ guess_dc(s, s->dc_val[0], s->mb_width*2, s->mb_height*2, s->b8_stride, 1); guess_dc(s, s->dc_val[1], s->mb_width , s->mb_height , s->mb_stride, 0); guess_dc(s, s->dc_val[2], s->mb_width , s->mb_height , s->mb_stride, 0); #endif /* filter luma DC */ filter181(s->dc_val[0], s->mb_width * 2, s->mb_height * 2, s->b8_stride); #if 1 /* render DC only intra */ for (mb_y = 0; mb_y < s->mb_height; mb_y++) { for (mb_x = 0; mb_x < s->mb_width; mb_x++) { uint8_t *dest_y, *dest_cb, *dest_cr; const int mb_xy = mb_x + mb_y * s->mb_stride; const int mb_type = s->current_picture.f.mb_type[mb_xy]; error = s->error_status_table[mb_xy]; if (IS_INTER(mb_type)) continue; if (!(error & ER_AC_ERROR)) continue; // undamaged dest_y = s->current_picture.f.data[0] + mb_x * 16 + mb_y * 16 * s->linesize; dest_cb = s->current_picture.f.data[1] + mb_x * 8 + mb_y * 8 * s->uvlinesize; dest_cr = s->current_picture.f.data[2] + mb_x * 8 + mb_y * 8 * s->uvlinesize; put_dc(s, dest_y, dest_cb, dest_cr, mb_x, mb_y); } } #endif if (s->avctx->error_concealment & FF_EC_DEBLOCK) { /* filter horizontal block boundaries */ h_block_filter(s, s->current_picture.f.data[0], s->mb_width * 2, s->mb_height * 2, s->linesize, 1); h_block_filter(s, s->current_picture.f.data[1], s->mb_width, s->mb_height , s->uvlinesize, 0); h_block_filter(s, s->current_picture.f.data[2], s->mb_width, s->mb_height , s->uvlinesize, 0); /* filter vertical block boundaries */ v_block_filter(s, s->current_picture.f.data[0], s->mb_width * 2, s->mb_height * 2, s->linesize, 1); v_block_filter(s, s->current_picture.f.data[1], s->mb_width, s->mb_height , s->uvlinesize, 0); v_block_filter(s, s->current_picture.f.data[2], s->mb_width, s->mb_height , s->uvlinesize, 0); } ec_clean: /* clean a few tables */ for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; int error = s->error_status_table[mb_xy]; if (s->pict_type != AV_PICTURE_TYPE_B && (error & (ER_DC_ERROR | ER_MV_ERROR | ER_AC_ERROR))) { s->mbskip_table[mb_xy] = 0; } s->mbintra_table[mb_xy] = 1; } }