/* * H.26L/H.264/AVC/JVT/14496-10/... decoder * Copyright (c) 2003 Michael Niedermayer * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * H.264 / AVC / MPEG4 part10 codec. * @author Michael Niedermayer */ #include "libavutil/avassert.h" #include "libavutil/display.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/stereo3d.h" #include "libavutil/timer.h" #include "internal.h" #include "bytestream.h" #include "cabac.h" #include "cabac_functions.h" #include "error_resilience.h" #include "avcodec.h" #include "h264.h" #include "h2645_parse.h" #include "h264data.h" #include "h264chroma.h" #include "h264_mvpred.h" #include "golomb.h" #include "mathops.h" #include "me_cmp.h" #include "mpegutils.h" #include "profiles.h" #include "rectangle.h" #include "thread.h" #include const uint16_t ff_h264_mb_sizes[4] = { 256, 384, 512, 768 }; static void h264_er_decode_mb(void *opaque, int ref, int mv_dir, int mv_type, int (*mv)[2][4][2], int mb_x, int mb_y, int mb_intra, int mb_skipped) { H264Context *h = opaque; H264SliceContext *sl = &h->slice_ctx[0]; sl->mb_x = mb_x; sl->mb_y = mb_y; sl->mb_xy = mb_x + mb_y * h->mb_stride; memset(sl->non_zero_count_cache, 0, sizeof(sl->non_zero_count_cache)); assert(ref >= 0); /* FIXME: It is possible albeit uncommon that slice references * differ between slices. We take the easy approach and ignore * it for now. If this turns out to have any relevance in * practice then correct remapping should be added. */ if (ref >= sl->ref_count[0]) ref = 0; fill_rectangle(&h->cur_pic.ref_index[0][4 * sl->mb_xy], 2, 2, 2, ref, 1); fill_rectangle(&sl->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1); fill_rectangle(sl->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32((*mv)[0][0][0], (*mv)[0][0][1]), 4); assert(!FRAME_MBAFF(h)); ff_h264_hl_decode_mb(h, &h->slice_ctx[0]); } void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height) { AVCodecContext *avctx = h->avctx; const AVFrame *src = h->cur_pic.f; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt); int vshift = desc->log2_chroma_h; const int field_pic = h->picture_structure != PICT_FRAME; if (field_pic) { height <<= 1; y <<= 1; } height = FFMIN(height, avctx->height - y); if (field_pic && h->first_field && !(avctx->slice_flags & SLICE_FLAG_ALLOW_FIELD)) return; if (avctx->draw_horiz_band) { int offset[AV_NUM_DATA_POINTERS]; int i; offset[0] = y * src->linesize[0]; offset[1] = offset[2] = (y >> vshift) * src->linesize[1]; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); avctx->draw_horiz_band(avctx, src, offset, y, h->picture_structure, height); } } void ff_h264_free_tables(H264Context *h) { int i; av_freep(&h->intra4x4_pred_mode); av_freep(&h->chroma_pred_mode_table); av_freep(&h->cbp_table); av_freep(&h->mvd_table[0]); av_freep(&h->mvd_table[1]); av_freep(&h->direct_table); av_freep(&h->non_zero_count); av_freep(&h->slice_table_base); h->slice_table = NULL; av_freep(&h->list_counts); av_freep(&h->mb2b_xy); av_freep(&h->mb2br_xy); av_buffer_pool_uninit(&h->qscale_table_pool); av_buffer_pool_uninit(&h->mb_type_pool); av_buffer_pool_uninit(&h->motion_val_pool); av_buffer_pool_uninit(&h->ref_index_pool); for (i = 0; i < h->nb_slice_ctx; i++) { H264SliceContext *sl = &h->slice_ctx[i]; av_freep(&sl->dc_val_base); av_freep(&sl->er.mb_index2xy); av_freep(&sl->er.error_status_table); av_freep(&sl->er.er_temp_buffer); av_freep(&sl->bipred_scratchpad); av_freep(&sl->edge_emu_buffer); av_freep(&sl->top_borders[0]); av_freep(&sl->top_borders[1]); sl->bipred_scratchpad_allocated = 0; sl->edge_emu_buffer_allocated = 0; sl->top_borders_allocated[0] = 0; sl->top_borders_allocated[1] = 0; } } int ff_h264_alloc_tables(H264Context *h) { const int big_mb_num = h->mb_stride * (h->mb_height + 1); const int row_mb_num = h->mb_stride * 2 * h->avctx->thread_count; int x, y; FF_ALLOCZ_OR_GOTO(h->avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail) h->slice_ctx[0].intra4x4_pred_mode = h->intra4x4_pred_mode; FF_ALLOCZ_OR_GOTO(h->avctx, h->non_zero_count, big_mb_num * 48 * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->slice_table_base, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail) FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[0], 16 * row_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mvd_table[1], 16 * row_mb_num * sizeof(uint8_t), fail); h->slice_ctx[0].mvd_table[0] = h->mvd_table[0]; h->slice_ctx[0].mvd_table[1] = h->mvd_table[1]; FF_ALLOCZ_OR_GOTO(h->avctx, h->direct_table, 4 * big_mb_num * sizeof(uint8_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail) memset(h->slice_table_base, -1, (big_mb_num + h->mb_stride) * sizeof(*h->slice_table_base)); h->slice_table = h->slice_table_base + h->mb_stride * 2 + 1; FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2b_xy, big_mb_num * sizeof(uint32_t), fail); FF_ALLOCZ_OR_GOTO(h->avctx, h->mb2br_xy, big_mb_num * sizeof(uint32_t), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) { const int mb_xy = x + y * h->mb_stride; const int b_xy = 4 * x + 4 * y * h->b_stride; h->mb2b_xy[mb_xy] = b_xy; h->mb2br_xy[mb_xy] = 8 * (FMO ? mb_xy : (mb_xy % (2 * h->mb_stride))); } return 0; fail: ff_h264_free_tables(h); return AVERROR(ENOMEM); } /** * Init context * Allocate buffers which are not shared amongst multiple threads. */ int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl) { ERContext *er = &sl->er; int mb_array_size = h->mb_height * h->mb_stride; int y_size = (2 * h->mb_width + 1) * (2 * h->mb_height + 1); int c_size = h->mb_stride * (h->mb_height + 1); int yc_size = y_size + 2 * c_size; int x, y, i; sl->ref_cache[0][scan8[5] + 1] = sl->ref_cache[0][scan8[7] + 1] = sl->ref_cache[0][scan8[13] + 1] = sl->ref_cache[1][scan8[5] + 1] = sl->ref_cache[1][scan8[7] + 1] = sl->ref_cache[1][scan8[13] + 1] = PART_NOT_AVAILABLE; if (CONFIG_ERROR_RESILIENCE) { /* init ER */ er->avctx = h->avctx; er->decode_mb = h264_er_decode_mb; er->opaque = h; er->quarter_sample = 1; er->mb_num = h->mb_num; er->mb_width = h->mb_width; er->mb_height = h->mb_height; er->mb_stride = h->mb_stride; er->b8_stride = h->mb_width * 2 + 1; // error resilience code looks cleaner with this FF_ALLOCZ_OR_GOTO(h->avctx, er->mb_index2xy, (h->mb_num + 1) * sizeof(int), fail); for (y = 0; y < h->mb_height; y++) for (x = 0; x < h->mb_width; x++) er->mb_index2xy[x + y * h->mb_width] = x + y * h->mb_stride; er->mb_index2xy[h->mb_height * h->mb_width] = (h->mb_height - 1) * h->mb_stride + h->mb_width; FF_ALLOCZ_OR_GOTO(h->avctx, er->error_status_table, mb_array_size * sizeof(uint8_t), fail); FF_ALLOC_OR_GOTO(h->avctx, er->er_temp_buffer, h->mb_height * h->mb_stride, fail); FF_ALLOCZ_OR_GOTO(h->avctx, sl->dc_val_base, yc_size * sizeof(int16_t), fail); er->dc_val[0] = sl->dc_val_base + h->mb_width * 2 + 2; er->dc_val[1] = sl->dc_val_base + y_size + h->mb_stride + 1; er->dc_val[2] = er->dc_val[1] + c_size; for (i = 0; i < yc_size; i++) sl->dc_val_base[i] = 1024; } return 0; fail: return AVERROR(ENOMEM); // ff_h264_free_tables will clean up for us } static int h264_init_context(AVCodecContext *avctx, H264Context *h) { int i; h->avctx = avctx; h->picture_structure = PICT_FRAME; h->slice_context_count = 1; h->workaround_bugs = avctx->workaround_bugs; h->flags = avctx->flags; h->poc.prev_poc_msb = 1 << 16; h->recovery_frame = -1; h->frame_recovered = 0; h->next_outputed_poc = INT_MIN; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; ff_h264_sei_uninit(&h->sei); avctx->chroma_sample_location = AVCHROMA_LOC_LEFT; h->nb_slice_ctx = (avctx->active_thread_type & FF_THREAD_SLICE) ? H264_MAX_THREADS : 1; h->slice_ctx = av_mallocz_array(h->nb_slice_ctx, sizeof(*h->slice_ctx)); if (!h->slice_ctx) { h->nb_slice_ctx = 0; return AVERROR(ENOMEM); } for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { h->DPB[i].f = av_frame_alloc(); if (!h->DPB[i].f) return AVERROR(ENOMEM); } h->cur_pic.f = av_frame_alloc(); if (!h->cur_pic.f) return AVERROR(ENOMEM); for (i = 0; i < h->nb_slice_ctx; i++) h->slice_ctx[i].h264 = h; return 0; } static AVOnce h264_vlc_init = AV_ONCE_INIT; av_cold int ff_h264_decode_init(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int ret; ret = h264_init_context(avctx, h); if (ret < 0) return ret; ret = ff_thread_once(&h264_vlc_init, ff_h264_decode_init_vlc); if (ret != 0) { av_log(avctx, AV_LOG_ERROR, "pthread_once has failed."); return AVERROR_UNKNOWN; } if (avctx->codec_id == AV_CODEC_ID_H264) { if (avctx->ticks_per_frame == 1) h->avctx->framerate.num *= 2; avctx->ticks_per_frame = 2; } if (avctx->extradata_size > 0 && avctx->extradata) { ret = ff_h264_decode_extradata(avctx->extradata, avctx->extradata_size, &h->ps, &h->is_avc, &h->nal_length_size, avctx->err_recognition, avctx); if (ret < 0) { ff_h264_free_context(h); return ret; } } if (h->ps.sps && h->ps.sps->bitstream_restriction_flag && h->avctx->has_b_frames < h->ps.sps->num_reorder_frames) { h->avctx->has_b_frames = h->ps.sps->num_reorder_frames; } avctx->internal->allocate_progress = 1; if (h->enable_er) { av_log(avctx, AV_LOG_WARNING, "Error resilience is enabled. It is unsafe and unsupported and may crash. " "Use it at your own risk\n"); } return 0; } static int decode_init_thread_copy(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int ret; if (!avctx->internal->is_copy) return 0; memset(h, 0, sizeof(*h)); ret = h264_init_context(avctx, h); if (ret < 0) return ret; h->context_initialized = 0; return 0; } /** * Run setup operations that must be run after slice header decoding. * This includes finding the next displayed frame. * * @param h h264 master context * @param setup_finished enough NALs have been read that we can call * ff_thread_finish_setup() */ static void decode_postinit(H264Context *h, int setup_finished) { const SPS *sps = h->ps.sps; H264Picture *out = h->cur_pic_ptr; H264Picture *cur = h->cur_pic_ptr; int i, pics, out_of_order, out_idx; int invalid = 0, cnt = 0; h->cur_pic_ptr->f->pict_type = h->pict_type; if (h->next_output_pic) return; if (cur->field_poc[0] == INT_MAX || cur->field_poc[1] == INT_MAX) { /* FIXME: if we have two PAFF fields in one packet, we can't start * the next thread here. If we have one field per packet, we can. * The check in decode_nal_units() is not good enough to find this * yet, so we assume the worst for now. */ // if (setup_finished) // ff_thread_finish_setup(h->avctx); return; } cur->f->interlaced_frame = 0; cur->f->repeat_pict = 0; /* Signal interlacing information externally. */ /* Prioritize picture timing SEI information over used * decoding process if it exists. */ if (sps->pic_struct_present_flag) { H264SEIPictureTiming *pt = &h->sei.picture_timing; switch (pt->pic_struct) { case SEI_PIC_STRUCT_FRAME: break; case SEI_PIC_STRUCT_TOP_FIELD: case SEI_PIC_STRUCT_BOTTOM_FIELD: cur->f->interlaced_frame = 1; break; case SEI_PIC_STRUCT_TOP_BOTTOM: case SEI_PIC_STRUCT_BOTTOM_TOP: if (FIELD_OR_MBAFF_PICTURE(h)) cur->f->interlaced_frame = 1; else // try to flag soft telecine progressive cur->f->interlaced_frame = h->prev_interlaced_frame; break; case SEI_PIC_STRUCT_TOP_BOTTOM_TOP: case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM: /* Signal the possibility of telecined film externally * (pic_struct 5,6). From these hints, let the applications * decide if they apply deinterlacing. */ cur->f->repeat_pict = 1; break; case SEI_PIC_STRUCT_FRAME_DOUBLING: cur->f->repeat_pict = 2; break; case SEI_PIC_STRUCT_FRAME_TRIPLING: cur->f->repeat_pict = 4; break; } if ((pt->ct_type & 3) && pt->pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP) cur->f->interlaced_frame = (pt->ct_type & (1 << 1)) != 0; } else { /* Derive interlacing flag from used decoding process. */ cur->f->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h); } h->prev_interlaced_frame = cur->f->interlaced_frame; if (cur->field_poc[0] != cur->field_poc[1]) { /* Derive top_field_first from field pocs. */ cur->f->top_field_first = cur->field_poc[0] < cur->field_poc[1]; } else { if (cur->f->interlaced_frame || sps->pic_struct_present_flag) { /* Use picture timing SEI information. Even if it is a * information of a past frame, better than nothing. */ if (h->sei.picture_timing.pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM || h->sei.picture_timing.pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP) cur->f->top_field_first = 1; else cur->f->top_field_first = 0; } else { /* Most likely progressive */ cur->f->top_field_first = 0; } } if (h->sei.frame_packing.present && h->sei.frame_packing.arrangement_type >= 0 && h->sei.frame_packing.arrangement_type <= 6 && h->sei.frame_packing.content_interpretation_type > 0 && h->sei.frame_packing.content_interpretation_type < 3) { H264SEIFramePacking *fp = &h->sei.frame_packing; AVStereo3D *stereo = av_stereo3d_create_side_data(cur->f); if (!stereo) return; switch (fp->arrangement_type) { case 0: stereo->type = AV_STEREO3D_CHECKERBOARD; break; case 1: stereo->type = AV_STEREO3D_COLUMNS; break; case 2: stereo->type = AV_STEREO3D_LINES; break; case 3: if (fp->quincunx_subsampling) stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX; else stereo->type = AV_STEREO3D_SIDEBYSIDE; break; case 4: stereo->type = AV_STEREO3D_TOPBOTTOM; break; case 5: stereo->type = AV_STEREO3D_FRAMESEQUENCE; break; case 6: stereo->type = AV_STEREO3D_2D; break; } if (fp->content_interpretation_type == 2) stereo->flags = AV_STEREO3D_FLAG_INVERT; } if (h->sei.display_orientation.present && (h->sei.display_orientation.anticlockwise_rotation || h->sei.display_orientation.hflip || h->sei.display_orientation.vflip)) { H264SEIDisplayOrientation *o = &h->sei.display_orientation; double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16); AVFrameSideData *rotation = av_frame_new_side_data(cur->f, AV_FRAME_DATA_DISPLAYMATRIX, sizeof(int32_t) * 9); if (!rotation) return; av_display_rotation_set((int32_t *)rotation->data, angle); av_display_matrix_flip((int32_t *)rotation->data, o->hflip, o->vflip); } if (h->sei.afd.present) { AVFrameSideData *sd = av_frame_new_side_data(cur->f, AV_FRAME_DATA_AFD, sizeof(uint8_t)); if (!sd) return; *sd->data = h->sei.afd.active_format_description; h->sei.afd.present = 0; } if (h->sei.a53_caption.a53_caption) { H264SEIA53Caption *a53 = &h->sei.a53_caption; AVFrameSideData *sd = av_frame_new_side_data(cur->f, AV_FRAME_DATA_A53_CC, a53->a53_caption_size); if (!sd) return; memcpy(sd->data, a53->a53_caption, a53->a53_caption_size); av_freep(&a53->a53_caption); a53->a53_caption_size = 0; } // FIXME do something with unavailable reference frames /* Sort B-frames into display order */ if (sps->bitstream_restriction_flag || h->avctx->strict_std_compliance >= FF_COMPLIANCE_NORMAL) { h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames); } pics = 0; while (h->delayed_pic[pics]) pics++; assert(pics <= MAX_DELAYED_PIC_COUNT); h->delayed_pic[pics++] = cur; if (cur->reference == 0) cur->reference = DELAYED_PIC_REF; /* Frame reordering. This code takes pictures from coding order and sorts * them by their incremental POC value into display order. It supports POC * gaps, MMCO reset codes and random resets. * A "display group" can start either with a IDR frame (f.key_frame = 1), * and/or can be closed down with a MMCO reset code. In sequences where * there is no delay, we can't detect that (since the frame was already * output to the user), so we also set h->mmco_reset to detect the MMCO * reset code. * FIXME: if we detect insufficient delays (as per h->avctx->has_b_frames), * we increase the delay between input and output. All frames affected by * the lag (e.g. those that should have been output before another frame * that we already returned to the user) will be dropped. This is a bug * that we will fix later. */ for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) { cnt += out->poc < h->last_pocs[i]; invalid += out->poc == INT_MIN; } if (!h->mmco_reset && !cur->f->key_frame && cnt + invalid == MAX_DELAYED_PIC_COUNT && cnt > 0) { h->mmco_reset = 2; if (pics > 1) h->delayed_pic[pics - 2]->mmco_reset = 2; } if (h->mmco_reset || cur->f->key_frame) { for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; cnt = 0; invalid = MAX_DELAYED_PIC_COUNT; } out = h->delayed_pic[0]; out_idx = 0; for (i = 1; i < MAX_DELAYED_PIC_COUNT && h->delayed_pic[i] && !h->delayed_pic[i - 1]->mmco_reset && !h->delayed_pic[i]->f->key_frame; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } if (h->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f->key_frame || h->mmco_reset)) h->next_outputed_poc = INT_MIN; out_of_order = !out->f->key_frame && !h->mmco_reset && (out->poc < h->next_outputed_poc); if (sps->bitstream_restriction_flag && h->avctx->has_b_frames >= sps->num_reorder_frames) { } else if (out_of_order && pics - 1 == h->avctx->has_b_frames && h->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT) { if (invalid + cnt < MAX_DELAYED_PIC_COUNT) { h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, cnt); } } else if (!h->avctx->has_b_frames && ((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2) || cur->f->pict_type == AV_PICTURE_TYPE_B)) { h->avctx->has_b_frames++; } if (pics > h->avctx->has_b_frames) { out->reference &= ~DELAYED_PIC_REF; for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; } memmove(h->last_pocs, &h->last_pocs[1], sizeof(*h->last_pocs) * (MAX_DELAYED_PIC_COUNT - 1)); h->last_pocs[MAX_DELAYED_PIC_COUNT - 1] = cur->poc; if (!out_of_order && pics > h->avctx->has_b_frames) { h->next_output_pic = out; if (out->mmco_reset) { if (out_idx > 0) { h->next_outputed_poc = out->poc; h->delayed_pic[out_idx - 1]->mmco_reset = out->mmco_reset; } else { h->next_outputed_poc = INT_MIN; } } else { if (out_idx == 0 && pics > 1 && h->delayed_pic[0]->f->key_frame) { h->next_outputed_poc = INT_MIN; } else { h->next_outputed_poc = out->poc; } } h->mmco_reset = 0; } else { av_log(h->avctx, AV_LOG_DEBUG, "no picture\n"); } if (h->next_output_pic) { if (h->next_output_pic->recovered) { // We have reached an recovery point and all frames after it in // display order are "recovered". h->frame_recovered |= FRAME_RECOVERED_SEI; } h->next_output_pic->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI); } if (setup_finished && !h->avctx->hwaccel) { ff_thread_finish_setup(h->avctx); if (h->avctx->active_thread_type & FF_THREAD_FRAME) h->setup_finished = 1; } } /** * instantaneous decoder refresh. */ static void idr(H264Context *h) { ff_h264_remove_all_refs(h); h->poc.prev_frame_num = h->poc.prev_frame_num_offset = h->poc.prev_poc_msb = h->poc.prev_poc_lsb = 0; } /* forget old pics after a seek */ void ff_h264_flush_change(H264Context *h) { int i; for (i = 0; i < MAX_DELAYED_PIC_COUNT; i++) h->last_pocs[i] = INT_MIN; h->next_outputed_poc = INT_MIN; h->prev_interlaced_frame = 1; idr(h); if (h->cur_pic_ptr) h->cur_pic_ptr->reference = 0; h->first_field = 0; ff_h264_sei_uninit(&h->sei); h->recovery_frame = -1; h->frame_recovered = 0; } /* forget old pics after a seek */ static void flush_dpb(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; int i; memset(h->delayed_pic, 0, sizeof(h->delayed_pic)); ff_h264_flush_change(h); for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) ff_h264_unref_picture(h, &h->DPB[i]); h->cur_pic_ptr = NULL; ff_h264_unref_picture(h, &h->cur_pic); h->mb_y = 0; ff_h264_free_tables(h); h->context_initialized = 0; } static int get_last_needed_nal(H264Context *h) { int nals_needed = 0; int i; for (i = 0; i < h->pkt.nb_nals; i++) { H2645NAL *nal = &h->pkt.nals[i]; GetBitContext gb; /* packets can sometimes contain multiple PPS/SPS, * e.g. two PAFF field pictures in one packet, or a demuxer * which splits NALs strangely if so, when frame threading we * can't start the next thread until we've read all of them */ switch (nal->type) { case NAL_SPS: case NAL_PPS: nals_needed = i; break; case NAL_DPA: case NAL_IDR_SLICE: case NAL_SLICE: init_get_bits(&gb, nal->data + 1, (nal->size - 1) * 8); if (!get_ue_golomb(&gb)) nals_needed = i; } } return nals_needed; } static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size) { AVCodecContext *const avctx = h->avctx; unsigned context_count = 0; int nals_needed = 0; ///< number of NALs that need decoding before the next frame thread starts int i, ret = 0; h->max_contexts = h->slice_context_count; if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) { h->current_slice = 0; if (!h->first_field) h->cur_pic_ptr = NULL; ff_h264_sei_uninit(&h->sei); } ret = ff_h2645_packet_split(&h->pkt, buf, buf_size, avctx, h->is_avc, h->nal_length_size, avctx->codec_id); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error splitting the input into NAL units.\n"); return ret; } if (avctx->active_thread_type & FF_THREAD_FRAME) nals_needed = get_last_needed_nal(h); for (i = 0; i < h->pkt.nb_nals; i++) { H2645NAL *nal = &h->pkt.nals[i]; H264SliceContext *sl = &h->slice_ctx[context_count]; int err; if (avctx->skip_frame >= AVDISCARD_NONREF && nal->ref_idc == 0 && nal->type != NAL_SEI) continue; again: // FIXME these should stop being context-global variables h->nal_ref_idc = nal->ref_idc; h->nal_unit_type = nal->type; err = 0; switch (nal->type) { case NAL_IDR_SLICE: if (nal->type != NAL_IDR_SLICE) { av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices\n"); ret = -1; goto end; } idr(h); // FIXME ensure we don't lose some frames if there is reordering case NAL_SLICE: sl->gb = nal->gb; if ((err = ff_h264_decode_slice_header(h, sl))) break; if (h->sei.recovery_point.recovery_frame_cnt >= 0 && h->recovery_frame < 0) { h->recovery_frame = (h->poc.frame_num + h->sei.recovery_point.recovery_frame_cnt) & ((1 << h->ps.sps->log2_max_frame_num) - 1); } h->cur_pic_ptr->f->key_frame |= (nal->type == NAL_IDR_SLICE) || (h->sei.recovery_point.recovery_frame_cnt >= 0); if (nal->type == NAL_IDR_SLICE || h->recovery_frame == h->poc.frame_num) { h->recovery_frame = -1; h->cur_pic_ptr->recovered = 1; } // If we have an IDR, all frames after it in decoded order are // "recovered". if (nal->type == NAL_IDR_SLICE) h->frame_recovered |= FRAME_RECOVERED_IDR; h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR); if (h->current_slice == 1) { if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS)) decode_postinit(h, i >= nals_needed); if (h->avctx->hwaccel && (ret = h->avctx->hwaccel->start_frame(h->avctx, NULL, 0)) < 0) return ret; } if (sl->redundant_pic_count == 0 && (avctx->skip_frame < AVDISCARD_NONREF || nal->ref_idc) && (avctx->skip_frame < AVDISCARD_BIDIR || sl->slice_type_nos != AV_PICTURE_TYPE_B) && (avctx->skip_frame < AVDISCARD_NONKEY || h->cur_pic_ptr->f->key_frame) && avctx->skip_frame < AVDISCARD_ALL) { if (avctx->hwaccel) { ret = avctx->hwaccel->decode_slice(avctx, nal->raw_data, nal->raw_size); if (ret < 0) return ret; } else context_count++; } break; case NAL_DPA: case NAL_DPB: case NAL_DPC: avpriv_request_sample(avctx, "data partitioning"); ret = AVERROR(ENOSYS); goto end; break; case NAL_SEI: ret = ff_h264_sei_decode(&h->sei, &nal->gb, &h->ps, avctx); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case NAL_SPS: ret = ff_h264_decode_seq_parameter_set(&nal->gb, avctx, &h->ps); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case NAL_PPS: ret = ff_h264_decode_picture_parameter_set(&nal->gb, avctx, &h->ps, nal->size_bits); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; break; case NAL_AUD: case NAL_END_SEQUENCE: case NAL_END_STREAM: case NAL_FILLER_DATA: case NAL_SPS_EXT: case NAL_AUXILIARY_SLICE: break; case NAL_FF_IGNORE: break; default: av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", nal->type, nal->size_bits); } if (context_count == h->max_contexts) { ret = ff_h264_execute_decode_slices(h, context_count); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; context_count = 0; } if (err < 0) { av_log(h->avctx, AV_LOG_ERROR, "decode_slice_header error\n"); sl->ref_count[0] = sl->ref_count[1] = sl->list_count = 0; } else if (err == 1) { /* Slice could not be decoded in parallel mode, restart. Note * that rbsp_buffer is not transferred, but since we no longer * run in parallel mode this should not be an issue. */ sl = &h->slice_ctx[0]; goto again; } } if (context_count) { ret = ff_h264_execute_decode_slices(h, context_count); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) goto end; } ret = 0; end: /* clean up */ if (h->cur_pic_ptr && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } return (ret < 0) ? ret : buf_size; } /** * Return the number of bytes consumed for building the current frame. */ static int get_consumed_bytes(int pos, int buf_size) { if (pos == 0) pos = 1; // avoid infinite loops (I doubt that is needed but...) if (pos + 10 > buf_size) pos = buf_size; // oops ;) return pos; } static int output_frame(H264Context *h, AVFrame *dst, AVFrame *src) { int i; int ret = av_frame_ref(dst, src); if (ret < 0) return ret; if (!h->ps.sps || !h->ps.sps->crop) return 0; for (i = 0; i < 3; i++) { int hshift = (i > 0) ? h->chroma_x_shift : 0; int vshift = (i > 0) ? h->chroma_y_shift : 0; int off = ((h->ps.sps->crop_left >> hshift) << h->pixel_shift) + (h->ps.sps->crop_top >> vshift) * dst->linesize[i]; dst->data[i] += off; } return 0; } static int h264_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; H264Context *h = avctx->priv_data; AVFrame *pict = data; int buf_index = 0; int ret; h->flags = avctx->flags; h->setup_finished = 0; /* end of stream, output what is still in the buffers */ out: if (buf_size == 0) { H264Picture *out; int i, out_idx; h->cur_pic_ptr = NULL; // FIXME factorize this with the output code below out = h->delayed_pic[0]; out_idx = 0; for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f->key_frame && !h->delayed_pic[i]->mmco_reset; i++) if (h->delayed_pic[i]->poc < out->poc) { out = h->delayed_pic[i]; out_idx = i; } for (i = out_idx; h->delayed_pic[i]; i++) h->delayed_pic[i] = h->delayed_pic[i + 1]; if (out) { ret = output_frame(h, pict, out->f); if (ret < 0) return ret; *got_frame = 1; } return buf_index; } buf_index = decode_nal_units(h, buf, buf_size); if (buf_index < 0) return AVERROR_INVALIDDATA; if (!h->cur_pic_ptr && h->nal_unit_type == NAL_END_SEQUENCE) { buf_size = 0; goto out; } if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) && !h->cur_pic_ptr) { if (avctx->skip_frame >= AVDISCARD_NONREF) return 0; av_log(avctx, AV_LOG_ERROR, "no frame!\n"); return AVERROR_INVALIDDATA; } if (!(avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) || (h->mb_y >= h->mb_height && h->mb_height)) { if (avctx->flags2 & AV_CODEC_FLAG2_CHUNKS) decode_postinit(h, 1); ff_h264_field_end(h, &h->slice_ctx[0], 0); *got_frame = 0; if (h->next_output_pic && ((avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) || h->next_output_pic->recovered)) { if (!h->next_output_pic->recovered) h->next_output_pic->f->flags |= AV_FRAME_FLAG_CORRUPT; ret = output_frame(h, pict, h->next_output_pic->f); if (ret < 0) return ret; *got_frame = 1; } } assert(pict->buf[0] || !*got_frame); return get_consumed_bytes(buf_index, buf_size); } av_cold void ff_h264_free_context(H264Context *h) { int i; ff_h264_free_tables(h); for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) { ff_h264_unref_picture(h, &h->DPB[i]); av_frame_free(&h->DPB[i].f); } h->cur_pic_ptr = NULL; for (i = 0; i < h->nb_slice_ctx; i++) av_freep(&h->slice_ctx[i].rbsp_buffer); av_freep(&h->slice_ctx); h->nb_slice_ctx = 0; for (i = 0; i < MAX_SPS_COUNT; i++) av_buffer_unref(&h->ps.sps_list[i]); for (i = 0; i < MAX_PPS_COUNT; i++) av_buffer_unref(&h->ps.pps_list[i]); ff_h2645_packet_uninit(&h->pkt); } static av_cold int h264_decode_end(AVCodecContext *avctx) { H264Context *h = avctx->priv_data; ff_h264_free_context(h); ff_h264_unref_picture(h, &h->cur_pic); av_frame_free(&h->cur_pic.f); return 0; } #define OFFSET(x) offsetof(H264Context, x) #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM static const AVOption h264_options[] = { { "enable_er", "Enable error resilience on damaged frames (unsafe)", OFFSET(enable_er), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VD }, { NULL }, }; static const AVClass h264_class = { .class_name = "h264", .item_name = av_default_item_name, .option = h264_options, .version = LIBAVUTIL_VERSION_INT, }; AVCodec ff_h264_decoder = { .name = "h264", .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_H264, .priv_data_size = sizeof(H264Context), .init = ff_h264_decode_init, .close = h264_decode_end, .decode = h264_decode_frame, .capabilities = /*AV_CODEC_CAP_DRAW_HORIZ_BAND |*/ AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS, .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, .flush = flush_dpb, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_h264_update_thread_context), .profiles = NULL_IF_CONFIG_SMALL(ff_h264_profiles), .priv_class = &h264_class, };