/* * Copyright (c) 2014-2015 Muhammad Faiz * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include "config.h" #include "libavcodec/avfft.h" #include "libavutil/avassert.h" #include "libavutil/opt.h" #include "libavutil/xga_font_data.h" #include "libavutil/eval.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "internal.h" #include "lavfutils.h" #include "lswsutils.h" #if CONFIG_LIBFREETYPE #include #include FT_FREETYPE_H #endif #include "avf_showcqt.h" #define BASEFREQ 20.01523126408007475 #define ENDFREQ 20495.59681441799654 #define TLENGTH "384*tc/(384+tc*f)" #define TLENGTH_MIN 0.001 #define VOLUME_MAX 100.0 #define FONTCOLOR "st(0, (midi(f)-59.5)/12);" \ "st(1, if(between(ld(0),0,1), 0.5-0.5*cos(2*PI*ld(0)), 0));" \ "r(1-ld(1)) + b(ld(1))" #define OFFSET(x) offsetof(ShowCQTContext, x) #define FLAGS (AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM) static const AVOption showcqt_options[] = { { "size", "set video size", OFFSET(width), AV_OPT_TYPE_IMAGE_SIZE, { .str = "1920x1080" }, 0, 0, FLAGS }, { "s", "set video size", OFFSET(width), AV_OPT_TYPE_IMAGE_SIZE, { .str = "1920x1080" }, 0, 0, FLAGS }, { "fps", "set video rate", OFFSET(rate), AV_OPT_TYPE_VIDEO_RATE, { .str = "25" }, 0, 0, FLAGS }, { "rate", "set video rate", OFFSET(rate), AV_OPT_TYPE_VIDEO_RATE, { .str = "25" }, 0, 0, FLAGS }, { "r", "set video rate", OFFSET(rate), AV_OPT_TYPE_VIDEO_RATE, { .str = "25" }, 0, 0, FLAGS }, { "bar_h", "set bargraph height", OFFSET(bar_h), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, FLAGS }, { "axis_h", "set axis height", OFFSET(axis_h), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, FLAGS }, { "sono_h", "set sonogram height", OFFSET(sono_h), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, INT_MAX, FLAGS }, { "fullhd", "set fullhd size", OFFSET(fullhd), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, FLAGS }, { "sono_v", "set sonogram volume", OFFSET(sono_v), AV_OPT_TYPE_STRING, { .str = "16" }, CHAR_MIN, CHAR_MAX, FLAGS }, { "volume", "set sonogram volume", OFFSET(sono_v), AV_OPT_TYPE_STRING, { .str = "16" }, CHAR_MIN, CHAR_MAX, FLAGS }, { "bar_v", "set bargraph volume", OFFSET(bar_v), AV_OPT_TYPE_STRING, { .str = "sono_v" }, CHAR_MIN, CHAR_MAX, FLAGS }, { "volume2", "set bargraph volume", OFFSET(bar_v), AV_OPT_TYPE_STRING, { .str = "sono_v" }, CHAR_MIN, CHAR_MAX, FLAGS }, { "sono_g", "set sonogram gamma", OFFSET(sono_g), AV_OPT_TYPE_FLOAT, { .dbl = 3.0 }, 1.0, 7.0, FLAGS }, { "gamma", "set sonogram gamma", OFFSET(sono_g), AV_OPT_TYPE_FLOAT, { .dbl = 3.0 }, 1.0, 7.0, FLAGS }, { "bar_g", "set bargraph gamma", OFFSET(bar_g), AV_OPT_TYPE_FLOAT, { .dbl = 1.0 }, 1.0, 7.0, FLAGS }, { "gamma2", "set bargraph gamma", OFFSET(bar_g), AV_OPT_TYPE_FLOAT, { .dbl = 1.0 }, 1.0, 7.0, FLAGS }, { "timeclamp", "set timeclamp", OFFSET(timeclamp), AV_OPT_TYPE_DOUBLE, { .dbl = 0.17 }, 0.1, 1.0, FLAGS }, { "tc", "set timeclamp", OFFSET(timeclamp), AV_OPT_TYPE_DOUBLE, { .dbl = 0.17 }, 0.1, 1.0, FLAGS }, { "basefreq", "set base frequency", OFFSET(basefreq), AV_OPT_TYPE_DOUBLE, { .dbl = BASEFREQ }, 10.0, 100000.0, FLAGS }, { "endfreq", "set end frequency", OFFSET(endfreq), AV_OPT_TYPE_DOUBLE, { .dbl = ENDFREQ }, 10.0, 100000.0, FLAGS }, { "coeffclamp", "set coeffclamp", OFFSET(coeffclamp), AV_OPT_TYPE_FLOAT, { .dbl = 1.0 }, 0.1, 10.0, FLAGS }, { "tlength", "set tlength", OFFSET(tlength), AV_OPT_TYPE_STRING, { .str = TLENGTH }, CHAR_MIN, CHAR_MAX, FLAGS }, { "count", "set transform count", OFFSET(count), AV_OPT_TYPE_INT, { .i64 = 6 }, 1, 30, FLAGS }, { "fcount", "set frequency count", OFFSET(fcount), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 10, FLAGS }, { "fontfile", "set axis font", OFFSET(fontfile), AV_OPT_TYPE_STRING, { .str = NULL }, CHAR_MIN, CHAR_MAX, FLAGS }, { "fontcolor", "set font color", OFFSET(fontcolor), AV_OPT_TYPE_STRING, { .str = FONTCOLOR }, CHAR_MIN, CHAR_MAX, FLAGS }, { "axisfile", "set axis image", OFFSET(axisfile), AV_OPT_TYPE_STRING, { .str = NULL }, CHAR_MIN, CHAR_MAX, FLAGS }, { "axis", "draw axis", OFFSET(axis), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, FLAGS }, { "text", "draw axis", OFFSET(axis), AV_OPT_TYPE_BOOL, { .i64 = 1 }, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showcqt); static void common_uninit(ShowCQTContext *s) { int k; /* axis_frame may be non reference counted frame */ if (s->axis_frame && !s->axis_frame->buf[0]) { av_freep(s->axis_frame->data); for (k = 0; k < 4; k++) s->axis_frame->data[k] = NULL; } av_frame_free(&s->axis_frame); av_frame_free(&s->sono_frame); av_fft_end(s->fft_ctx); s->fft_ctx = NULL; if (s->coeffs) for (k = 0; k < s->cqt_len * 2; k++) av_freep(&s->coeffs[k].val); av_freep(&s->coeffs); av_freep(&s->fft_data); av_freep(&s->fft_result); av_freep(&s->cqt_result); av_freep(&s->c_buf); av_freep(&s->h_buf); av_freep(&s->rcp_h_buf); av_freep(&s->freq); av_freep(&s->sono_v_buf); av_freep(&s->bar_v_buf); } static double *create_freq_table(double base, double end, int n) { double log_base, log_end; double rcp_n = 1.0 / n; double *freq; int x; freq = av_malloc_array(n, sizeof(*freq)); if (!freq) return NULL; log_base = log(base); log_end = log(end); for (x = 0; x < n; x++) { double log_freq = log_base + (x + 0.5) * (log_end - log_base) * rcp_n; freq[x] = exp(log_freq); } return freq; } static double clip_with_log(void *log_ctx, const char *name, double val, double min, double max, double nan_replace, int idx) { int level = AV_LOG_WARNING; if (isnan(val)) { av_log(log_ctx, level, "[%d] %s is nan, setting it to %g.\n", idx, name, nan_replace); val = nan_replace; } else if (val < min) { av_log(log_ctx, level, "[%d] %s is too low (%g), setting it to %g.\n", idx, name, val, min); val = min; } else if (val > max) { av_log(log_ctx, level, "[%d] %s it too high (%g), setting it to %g.\n", idx, name, val, max); val = max; } return val; } static double a_weighting(void *p, double f) { double ret = 12200.0*12200.0 * (f*f*f*f); ret /= (f*f + 20.6*20.6) * (f*f + 12200.0*12200.0) * sqrt((f*f + 107.7*107.7) * (f*f + 737.9*737.9)); return ret; } static double b_weighting(void *p, double f) { double ret = 12200.0*12200.0 * (f*f*f); ret /= (f*f + 20.6*20.6) * (f*f + 12200.0*12200.0) * sqrt(f*f + 158.5*158.5); return ret; } static double c_weighting(void *p, double f) { double ret = 12200.0*12200.0 * (f*f); ret /= (f*f + 20.6*20.6) * (f*f + 12200.0*12200.0); return ret; } static int init_volume(ShowCQTContext *s) { const char *func_names[] = { "a_weighting", "b_weighting", "c_weighting", NULL }; const char *sono_names[] = { "timeclamp", "tc", "frequency", "freq", "f", "bar_v", NULL }; const char *bar_names[] = { "timeclamp", "tc", "frequency", "freq", "f", "sono_v", NULL }; double (*funcs[])(void *, double) = { a_weighting, b_weighting, c_weighting }; AVExpr *sono = NULL, *bar = NULL; int x, ret = AVERROR(ENOMEM); s->sono_v_buf = av_malloc_array(s->cqt_len, sizeof(*s->sono_v_buf)); s->bar_v_buf = av_malloc_array(s->cqt_len, sizeof(*s->bar_v_buf)); if (!s->sono_v_buf || !s->bar_v_buf) goto error; if ((ret = av_expr_parse(&sono, s->sono_v, sono_names, func_names, funcs, NULL, NULL, 0, s->ctx)) < 0) goto error; if ((ret = av_expr_parse(&bar, s->bar_v, bar_names, func_names, funcs, NULL, NULL, 0, s->ctx)) < 0) goto error; for (x = 0; x < s->cqt_len; x++) { double vars[] = { s->timeclamp, s->timeclamp, s->freq[x], s->freq[x], s->freq[x], 0.0 }; double vol = clip_with_log(s->ctx, "sono_v", av_expr_eval(sono, vars, NULL), 0.0, VOLUME_MAX, 0.0, x); vars[5] = vol; vol = clip_with_log(s->ctx, "bar_v", av_expr_eval(bar, vars, NULL), 0.0, VOLUME_MAX, 0.0, x); s->bar_v_buf[x] = vol * vol; vars[5] = vol; vol = clip_with_log(s->ctx, "sono_v", av_expr_eval(sono, vars, NULL), 0.0, VOLUME_MAX, 0.0, x); s->sono_v_buf[x] = vol * vol; } av_expr_free(sono); av_expr_free(bar); return 0; error: av_freep(&s->sono_v_buf); av_freep(&s->bar_v_buf); av_expr_free(sono); av_expr_free(bar); return ret; } static void cqt_calc(FFTComplex *dst, const FFTComplex *src, const Coeffs *coeffs, int len, int fft_len) { int k, x, i, j; for (k = 0; k < len; k++) { FFTComplex l, r, a = {0,0}, b = {0,0}; for (x = 0; x < coeffs[k].len; x++) { FFTSample u = coeffs[k].val[x]; i = coeffs[k].start + x; j = fft_len - i; a.re += u * src[i].re; a.im += u * src[i].im; b.re += u * src[j].re; b.im += u * src[j].im; } /* separate left and right, (and multiply by 2.0) */ l.re = a.re + b.re; l.im = a.im - b.im; r.re = b.im + a.im; r.im = b.re - a.re; dst[k].re = l.re * l.re + l.im * l.im; dst[k].im = r.re * r.re + r.im * r.im; } } #if 0 static void cqt_calc_interleave(FFTComplex *dst, const FFTComplex *src, const Coeffs *coeffs, int len, int fft_len) { int k, x, i, m; for (k = 0; k < len; k++) { FFTComplex l, r, a = {0,0}, b = {0,0}; m = 2 * k; for (x = 0; x < coeffs[m].len; x++) { FFTSample u = coeffs[m].val[x]; i = coeffs[m].start + x; a.re += u * src[i].re; a.im += u * src[i].im; } m++; for (x = 0; x < coeffs[m].len; x++) { FFTSample u = coeffs[m].val[x]; i = coeffs[m].start + x; b.re += u * src[i].re; b.im += u * src[i].im; } /* separate left and right, (and multiply by 2.0) */ l.re = a.re + b.re; l.im = a.im - b.im; r.re = b.im + a.im; r.im = b.re - a.re; dst[k].re = l.re * l.re + l.im * l.im; dst[k].im = r.re * r.re + r.im * r.im; } } #endif static int init_cqt(ShowCQTContext *s) { const char *var_names[] = { "timeclamp", "tc", "frequency", "freq", "f", NULL }; AVExpr *expr = NULL; int rate = s->ctx->inputs[0]->sample_rate; int nb_cqt_coeffs = 0, nb_cqt_coeffs_r = 0; int k, x, ret; if ((ret = av_expr_parse(&expr, s->tlength, var_names, NULL, NULL, NULL, NULL, 0, s->ctx)) < 0) goto error; ret = AVERROR(ENOMEM); if (!(s->coeffs = av_calloc(s->cqt_len * 2, sizeof(*s->coeffs)))) goto error; for (k = 0; k < s->cqt_len; k++) { double vars[] = { s->timeclamp, s->timeclamp, s->freq[k], s->freq[k], s->freq[k] }; double flen, center, tlength; int start, end, m = (s->cqt_coeffs_type == COEFFS_TYPE_INTERLEAVE) ? (2 * k) : k; if (s->freq[k] > 0.5 * rate) continue; tlength = clip_with_log(s->ctx, "tlength", av_expr_eval(expr, vars, NULL), TLENGTH_MIN, s->timeclamp, s->timeclamp, k); flen = 8.0 * s->fft_len / (tlength * rate); center = s->freq[k] * s->fft_len / rate; start = FFMAX(0, ceil(center - 0.5 * flen)); end = FFMIN(s->fft_len, floor(center + 0.5 * flen)); s->coeffs[m].start = start & ~(s->cqt_align - 1); s->coeffs[m].len = (end | (s->cqt_align - 1)) + 1 - s->coeffs[m].start; nb_cqt_coeffs += s->coeffs[m].len; if (!(s->coeffs[m].val = av_calloc(s->coeffs[m].len, sizeof(*s->coeffs[m].val)))) goto error; if (s->cqt_coeffs_type == COEFFS_TYPE_INTERLEAVE) { s->coeffs[m+1].start = (s->fft_len - end) & ~(s->cqt_align - 1); s->coeffs[m+1].len = ((s->fft_len - start) | (s->cqt_align - 1)) + 1 - s->coeffs[m+1].start; nb_cqt_coeffs_r += s->coeffs[m+1].len; if (!(s->coeffs[m+1].val = av_calloc(s->coeffs[m+1].len, sizeof(*s->coeffs[m+1].val)))) goto error; } for (x = start; x <= end; x++) { int sign = (x & 1) ? (-1) : 1; double y = 2.0 * M_PI * (x - center) * (1.0 / flen); /* nuttall window */ double w = 0.355768 + 0.487396 * cos(y) + 0.144232 * cos(2*y) + 0.012604 * cos(3*y); w *= sign * (1.0 / s->fft_len); s->coeffs[m].val[x - s->coeffs[m].start] = w; if (s->cqt_coeffs_type == COEFFS_TYPE_INTERLEAVE) s->coeffs[m+1].val[(s->fft_len - x) - s->coeffs[m+1].start] = w; } } av_expr_free(expr); if (s->cqt_coeffs_type == COEFFS_TYPE_DEFAULT) av_log(s->ctx, AV_LOG_INFO, "nb_cqt_coeffs = %d.\n", nb_cqt_coeffs); else av_log(s->ctx, AV_LOG_INFO, "nb_cqt_coeffs = {%d,%d}.\n", nb_cqt_coeffs, nb_cqt_coeffs_r); return 0; error: av_expr_free(expr); if (s->coeffs) for (k = 0; k < s->cqt_len * 2; k++) av_freep(&s->coeffs[k].val); av_freep(&s->coeffs); return ret; } static AVFrame *alloc_frame_empty(enum AVPixelFormat format, int w, int h) { AVFrame *out; out = av_frame_alloc(); if (!out) return NULL; out->format = format; out->width = w; out->height = h; if (av_frame_get_buffer(out, 32) < 0) { av_frame_free(&out); return NULL; } if (format == AV_PIX_FMT_RGB24 || format == AV_PIX_FMT_RGBA) { memset(out->data[0], 0, out->linesize[0] * h); } else { int hh = (format == AV_PIX_FMT_YUV420P || format == AV_PIX_FMT_YUVA420P) ? h / 2 : h; memset(out->data[0], 16, out->linesize[0] * h); memset(out->data[1], 128, out->linesize[1] * hh); memset(out->data[2], 128, out->linesize[2] * hh); if (out->data[3]) memset(out->data[3], 0, out->linesize[3] * h); } return out; } static enum AVPixelFormat convert_axis_pixel_format(enum AVPixelFormat format) { switch (format) { case AV_PIX_FMT_RGB24: format = AV_PIX_FMT_RGBA; break; case AV_PIX_FMT_YUV444P: format = AV_PIX_FMT_YUVA444P; break; case AV_PIX_FMT_YUV422P: format = AV_PIX_FMT_YUVA422P; break; case AV_PIX_FMT_YUV420P: format = AV_PIX_FMT_YUVA420P; break; } return format; } static int init_axis_empty(ShowCQTContext *s) { if (!(s->axis_frame = alloc_frame_empty(convert_axis_pixel_format(s->format), s->width, s->axis_h))) return AVERROR(ENOMEM); return 0; } static int init_axis_from_file(ShowCQTContext *s) { uint8_t *tmp_data[4] = { NULL }; int tmp_linesize[4]; enum AVPixelFormat tmp_format; int tmp_w, tmp_h, ret; if ((ret = ff_load_image(tmp_data, tmp_linesize, &tmp_w, &tmp_h, &tmp_format, s->axisfile, s->ctx)) < 0) goto error; ret = AVERROR(ENOMEM); if (!(s->axis_frame = av_frame_alloc())) goto error; if ((ret = ff_scale_image(s->axis_frame->data, s->axis_frame->linesize, s->width, s->axis_h, convert_axis_pixel_format(s->format), tmp_data, tmp_linesize, tmp_w, tmp_h, tmp_format, s->ctx)) < 0) goto error; s->axis_frame->width = s->width; s->axis_frame->height = s->axis_h; s->axis_frame->format = convert_axis_pixel_format(s->format); av_freep(tmp_data); return 0; error: av_frame_free(&s->axis_frame); av_freep(tmp_data); return ret; } static double midi(void *p, double f) { return log2(f/440.0) * 12.0 + 69.0; } static double r_func(void *p, double x) { x = av_clipd(x, 0.0, 1.0); return (int)(x*255.0+0.5) << 16; } static double g_func(void *p, double x) { x = av_clipd(x, 0.0, 1.0); return (int)(x*255.0+0.5) << 8; } static double b_func(void *p, double x) { x = av_clipd(x, 0.0, 1.0); return (int)(x*255.0+0.5); } static int init_axis_color(ShowCQTContext *s, AVFrame *tmp) { const char *var_names[] = { "timeclamp", "tc", "frequency", "freq", "f", NULL }; const char *func_names[] = { "midi", "r", "g", "b", NULL }; double (*funcs[])(void *, double) = { midi, r_func, g_func, b_func }; AVExpr *expr = NULL; double *freq = NULL; int x, y, ret; if (s->basefreq != BASEFREQ || s->endfreq != ENDFREQ) { av_log(s->ctx, AV_LOG_WARNING, "font axis rendering is not implemented in non-default frequency range," " please use axisfile option instead.\n"); return AVERROR(EINVAL); } if (s->cqt_len == 1920) freq = s->freq; else if (!(freq = create_freq_table(s->basefreq, s->endfreq, 1920))) return AVERROR(ENOMEM); if ((ret = av_expr_parse(&expr, s->fontcolor, var_names, func_names, funcs, NULL, NULL, 0, s->ctx)) < 0) { if (freq != s->freq) av_freep(&freq); return ret; } for (x = 0; x < 1920; x++) { double vars[] = { s->timeclamp, s->timeclamp, freq[x], freq[x], freq[x] }; int color = (int) av_expr_eval(expr, vars, NULL); uint8_t r = (color >> 16) & 0xFF, g = (color >> 8) & 0xFF, b = color & 0xFF; uint8_t *data = tmp->data[0]; int linesize = tmp->linesize[0]; for (y = 0; y < 32; y++) { data[linesize * y + 4 * x] = r; data[linesize * y + 4 * x + 1] = g; data[linesize * y + 4 * x + 2] = b; data[linesize * y + 4 * x + 3] = 0; } } av_expr_free(expr); if (freq != s->freq) av_freep(&freq); return 0; } static int render_freetype(ShowCQTContext *s, AVFrame *tmp) { #if CONFIG_LIBFREETYPE const char *str = "EF G A BC D "; uint8_t *data = tmp->data[0]; int linesize = tmp->linesize[0]; FT_Library lib = NULL; FT_Face face = NULL; int font_width = 16, font_height = 32; int font_repeat = font_width * 12; int linear_hori_advance = font_width * 65536; int non_monospace_warning = 0; int x; if (!s->fontfile) return AVERROR(EINVAL); if (FT_Init_FreeType(&lib)) goto fail; if (FT_New_Face(lib, s->fontfile, 0, &face)) goto fail; if (FT_Set_Char_Size(face, 16*64, 0, 0, 0)) goto fail; if (FT_Load_Char(face, 'A', FT_LOAD_RENDER)) goto fail; if (FT_Set_Char_Size(face, 16*64 * linear_hori_advance / face->glyph->linearHoriAdvance, 0, 0, 0)) goto fail; for (x = 0; x < 12; x++) { int sx, sy, rx, bx, by, dx, dy; if (str[x] == ' ') continue; if (FT_Load_Char(face, str[x], FT_LOAD_RENDER)) goto fail; if (face->glyph->advance.x != font_width*64 && !non_monospace_warning) { av_log(s->ctx, AV_LOG_WARNING, "font is not monospace.\n"); non_monospace_warning = 1; } sy = font_height - 8 - face->glyph->bitmap_top; for (rx = 0; rx < 10; rx++) { sx = rx * font_repeat + x * font_width + face->glyph->bitmap_left; for (by = 0; by < face->glyph->bitmap.rows; by++) { dy = by + sy; if (dy < 0) continue; if (dy >= font_height) break; for (bx = 0; bx < face->glyph->bitmap.width; bx++) { dx = bx + sx; if (dx < 0) continue; if (dx >= 1920) break; data[dy*linesize+4*dx+3] = face->glyph->bitmap.buffer[by*face->glyph->bitmap.width+bx]; } } } } FT_Done_Face(face); FT_Done_FreeType(lib); return 0; fail: av_log(s->ctx, AV_LOG_WARNING, "error while loading freetype font, using default font instead.\n"); FT_Done_Face(face); FT_Done_FreeType(lib); return AVERROR(EINVAL); #else if (s->fontfile) av_log(s->ctx, AV_LOG_WARNING, "freetype is not available, ignoring fontfile option.\n"); return AVERROR(EINVAL); #endif } static int render_default_font(AVFrame *tmp) { const char *str = "EF G A BC D "; int x, u, v, mask; uint8_t *data = tmp->data[0]; int linesize = tmp->linesize[0]; for (x = 0; x < 1920; x += 192) { uint8_t *startptr = data + 4 * x; for (u = 0; u < 12; u++) { for (v = 0; v < 16; v++) { uint8_t *p = startptr + 2 * v * linesize + 16 * 4 * u; for (mask = 0x80; mask; mask >>= 1, p += 8) { if (mask & avpriv_vga16_font[str[u] * 16 + v]) { p[3] = 255; p[7] = 255; p[linesize+3] = 255; p[linesize+7] = 255; } } } } } return 0; } static int init_axis_from_font(ShowCQTContext *s) { AVFrame *tmp = NULL; int ret = AVERROR(ENOMEM); if (!(tmp = alloc_frame_empty(AV_PIX_FMT_RGBA, 1920, 32))) goto fail; if (!(s->axis_frame = av_frame_alloc())) goto fail; if ((ret = init_axis_color(s, tmp)) < 0) goto fail; if (render_freetype(s, tmp) < 0 && (ret = render_default_font(tmp)) < 0) goto fail; if ((ret = ff_scale_image(s->axis_frame->data, s->axis_frame->linesize, s->width, s->axis_h, convert_axis_pixel_format(s->format), tmp->data, tmp->linesize, 1920, 32, AV_PIX_FMT_RGBA, s->ctx)) < 0) goto fail; av_frame_free(&tmp); s->axis_frame->width = s->width; s->axis_frame->height = s->axis_h; s->axis_frame->format = convert_axis_pixel_format(s->format); return 0; fail: av_frame_free(&tmp); av_frame_free(&s->axis_frame); return ret; } static float calculate_gamma(float v, float g) { if (g == 1.0f) return v; if (g == 2.0f) return sqrtf(v); if (g == 3.0f) return cbrtf(v); if (g == 4.0f) return sqrtf(sqrtf(v)); return expf(logf(v) / g); } static void rgb_from_cqt(ColorFloat *c, const FFTComplex *v, float g, int len) { int x; for (x = 0; x < len; x++) { c[x].rgb.r = 255.0f * calculate_gamma(FFMIN(1.0f, v[x].re), g); c[x].rgb.g = 255.0f * calculate_gamma(FFMIN(1.0f, 0.5f * (v[x].re + v[x].im)), g); c[x].rgb.b = 255.0f * calculate_gamma(FFMIN(1.0f, v[x].im), g); } } static void yuv_from_cqt(ColorFloat *c, const FFTComplex *v, float gamma, int len) { int x; for (x = 0; x < len; x++) { float r, g, b; r = calculate_gamma(FFMIN(1.0f, v[x].re), gamma); g = calculate_gamma(FFMIN(1.0f, 0.5f * (v[x].re + v[x].im)), gamma); b = calculate_gamma(FFMIN(1.0f, v[x].im), gamma); c[x].yuv.y = 16.0f + 65.481f * r + 128.553f * g + 24.966f * b; c[x].yuv.u = 128.0f - 37.797f * r - 74.203f * g + 112.0f * b; c[x].yuv.v = 128.0f + 112.0f * r - 93.786f * g - 18.214 * b; } } static void draw_bar_rgb(AVFrame *out, const float *h, const float *rcp_h, const ColorFloat *c, int bar_h) { int x, y, w = out->width; float mul, ht, rcp_bar_h = 1.0f / bar_h; uint8_t *v = out->data[0], *lp; int ls = out->linesize[0]; for (y = 0; y < bar_h; y++) { ht = (bar_h - y) * rcp_bar_h; lp = v + y * ls; for (x = 0; x < w; x++) { if (h[x] <= ht) { *lp++ = 0; *lp++ = 0; *lp++ = 0; } else { mul = (h[x] - ht) * rcp_h[x]; *lp++ = mul * c[x].rgb.r + 0.5f; *lp++ = mul * c[x].rgb.g + 0.5f; *lp++ = mul * c[x].rgb.b + 0.5f; } } } } static void draw_bar_yuv(AVFrame *out, const float *h, const float *rcp_h, const ColorFloat *c, int bar_h) { int x, y, yh, w = out->width; float mul, ht, rcp_bar_h = 1.0f / bar_h; uint8_t *vy = out->data[0], *vu = out->data[1], *vv = out->data[2]; uint8_t *lpy, *lpu, *lpv; int lsy = out->linesize[0], lsu = out->linesize[1], lsv = out->linesize[2]; int fmt = out->format; for (y = 0; y < bar_h; y += 2) { yh = (fmt == AV_PIX_FMT_YUV420P) ? y / 2 : y; ht = (bar_h - y) * rcp_bar_h; lpy = vy + y * lsy; lpu = vu + yh * lsu; lpv = vv + yh * lsv; for (x = 0; x < w; x += 2) { if (h[x] <= ht) { *lpy++ = 16; *lpu++ = 128; *lpv++ = 128; } else { mul = (h[x] - ht) * rcp_h[x]; *lpy++ = mul * c[x].yuv.y + (1.0f - mul) * 16.0f + 0.5f; *lpu++ = mul * c[x].yuv.u + (1.0f - mul) * 128.0f + 0.5f; *lpv++ = mul * c[x].yuv.v + (1.0f - mul) * 128.0f + 0.5f; } /* u and v are skipped on yuv422p and yuv420p */ if (fmt == AV_PIX_FMT_YUV444P) { if (h[x+1] <= ht) { *lpy++ = 16; *lpu++ = 128; *lpv++ = 128; } else { mul = (h[x+1] - ht) * rcp_h[x+1]; *lpy++ = mul * c[x+1].yuv.y + (1.0f - mul) * 16.0f + 0.5f; *lpu++ = mul * c[x+1].yuv.u + (1.0f - mul) * 128.0f + 0.5f; *lpv++ = mul * c[x+1].yuv.v + (1.0f - mul) * 128.0f + 0.5f; } } else { if (h[x+1] <= ht) { *lpy++ = 16; } else { mul = (h[x+1] - ht) * rcp_h[x+1]; *lpy++ = mul * c[x+1].yuv.y + (1.0f - mul) * 16.0f + 0.5f; } } } ht = (bar_h - (y+1)) * rcp_bar_h; lpy = vy + (y+1) * lsy; lpu = vu + (y+1) * lsu; lpv = vv + (y+1) * lsv; for (x = 0; x < w; x += 2) { /* u and v are skipped on yuv420p */ if (fmt != AV_PIX_FMT_YUV420P) { if (h[x] <= ht) { *lpy++ = 16; *lpu++ = 128; *lpv++ = 128; } else { mul = (h[x] - ht) * rcp_h[x]; *lpy++ = mul * c[x].yuv.y + (1.0f - mul) * 16.0f + 0.5f; *lpu++ = mul * c[x].yuv.u + (1.0f - mul) * 128.0f + 0.5f; *lpv++ = mul * c[x].yuv.v + (1.0f - mul) * 128.0f + 0.5f; } } else { if (h[x] <= ht) { *lpy++ = 16; } else { mul = (h[x] - ht) * rcp_h[x]; *lpy++ = mul * c[x].yuv.y + (1.0f - mul) * 16.0f + 0.5f; } } /* u and v are skipped on yuv422p and yuv420p */ if (out->format == AV_PIX_FMT_YUV444P) { if (h[x+1] <= ht) { *lpy++ = 16; *lpu++ = 128; *lpv++ = 128; } else { mul = (h[x+1] - ht) * rcp_h[x+1]; *lpy++ = mul * c[x+1].yuv.y + (1.0f - mul) * 16.0f + 0.5f; *lpu++ = mul * c[x+1].yuv.u + (1.0f - mul) * 128.0f + 0.5f; *lpv++ = mul * c[x+1].yuv.v + (1.0f - mul) * 128.0f + 0.5f; } } else { if (h[x+1] <= ht) { *lpy++ = 16; } else { mul = (h[x+1] - ht) * rcp_h[x+1]; *lpy++ = mul * c[x+1].yuv.y + (1.0f - mul) * 16.0f + 0.5f; } } } } } static void draw_axis_rgb(AVFrame *out, AVFrame *axis, const ColorFloat *c, int off) { int x, y, w = axis->width, h = axis->height; float a, rcp_255 = 1.0f / 255.0f; uint8_t *lp, *lpa; for (y = 0; y < h; y++) { lp = out->data[0] + (off + y) * out->linesize[0]; lpa = axis->data[0] + y * axis->linesize[0]; for (x = 0; x < w; x++) { a = rcp_255 * lpa[3]; *lp++ = a * lpa[0] + (1.0f - a) * c[x].rgb.r + 0.5f; *lp++ = a * lpa[1] + (1.0f - a) * c[x].rgb.g + 0.5f; *lp++ = a * lpa[2] + (1.0f - a) * c[x].rgb.b + 0.5f; lpa += 4; } } } static void draw_axis_yuv(AVFrame *out, AVFrame *axis, const ColorFloat *c, int off) { int fmt = out->format, x, y, yh, w = axis->width, h = axis->height; int offh = (fmt == AV_PIX_FMT_YUV420P) ? off / 2 : off; float a, rcp_255 = 1.0f / 255.0f; uint8_t *vy = out->data[0], *vu = out->data[1], *vv = out->data[2]; uint8_t *vay = axis->data[0], *vau = axis->data[1], *vav = axis->data[2], *vaa = axis->data[3]; int lsy = out->linesize[0], lsu = out->linesize[1], lsv = out->linesize[2]; int lsay = axis->linesize[0], lsau = axis->linesize[1], lsav = axis->linesize[2], lsaa = axis->linesize[3]; uint8_t *lpy, *lpu, *lpv, *lpay, *lpau, *lpav, *lpaa; for (y = 0; y < h; y += 2) { yh = (fmt == AV_PIX_FMT_YUV420P) ? y / 2 : y; lpy = vy + (off + y) * lsy; lpu = vu + (offh + yh) * lsu; lpv = vv + (offh + yh) * lsv; lpay = vay + y * lsay; lpau = vau + yh * lsau; lpav = vav + yh * lsav; lpaa = vaa + y * lsaa; for (x = 0; x < w; x += 2) { a = rcp_255 * (*lpaa++); *lpy++ = a * (*lpay++) + (1.0f - a) * c[x].yuv.y + 0.5f; *lpu++ = a * (*lpau++) + (1.0f - a) * c[x].yuv.u + 0.5f; *lpv++ = a * (*lpav++) + (1.0f - a) * c[x].yuv.v + 0.5f; /* u and v are skipped on yuv422p and yuv420p */ a = rcp_255 * (*lpaa++); *lpy++ = a * (*lpay++) + (1.0f - a) * c[x+1].yuv.y + 0.5f; if (fmt == AV_PIX_FMT_YUV444P) { *lpu++ = a * (*lpau++) + (1.0f - a) * c[x+1].yuv.u + 0.5f; *lpv++ = a * (*lpav++) + (1.0f - a) * c[x+1].yuv.v + 0.5f; } } lpy = vy + (off + y + 1) * lsy; lpu = vu + (off + y + 1) * lsu; lpv = vv + (off + y + 1) * lsv; lpay = vay + (y + 1) * lsay; lpau = vau + (y + 1) * lsau; lpav = vav + (y + 1) * lsav; lpaa = vaa + (y + 1) * lsaa; for (x = 0; x < out->width; x += 2) { /* u and v are skipped on yuv420p */ a = rcp_255 * (*lpaa++); *lpy++ = a * (*lpay++) + (1.0f - a) * c[x].yuv.y + 0.5f; if (fmt != AV_PIX_FMT_YUV420P) { *lpu++ = a * (*lpau++) + (1.0f - a) * c[x].yuv.u + 0.5f; *lpv++ = a * (*lpav++) + (1.0f - a) * c[x].yuv.v + 0.5f; } /* u and v are skipped on yuv422p and yuv420p */ a = rcp_255 * (*lpaa++); *lpy++ = a * (*lpay++) + (1.0f - a) * c[x+1].yuv.y + 0.5f; if (fmt == AV_PIX_FMT_YUV444P) { *lpu++ = a * (*lpau++) + (1.0f - a) * c[x+1].yuv.u + 0.5f; *lpv++ = a * (*lpav++) + (1.0f - a) * c[x+1].yuv.v + 0.5f; } } } } static void draw_sono(AVFrame *out, AVFrame *sono, int off, int idx) { int fmt = out->format, h = sono->height; int nb_planes = (fmt == AV_PIX_FMT_RGB24) ? 1 : 3; int offh = (fmt == AV_PIX_FMT_YUV420P) ? off / 2 : off; int inc = (fmt == AV_PIX_FMT_YUV420P) ? 2 : 1; int ls, i, y, yh; ls = FFMIN(out->linesize[0], sono->linesize[0]); for (y = 0; y < h; y++) { memcpy(out->data[0] + (off + y) * out->linesize[0], sono->data[0] + (idx + y) % h * sono->linesize[0], ls); } for (i = 1; i < nb_planes; i++) { ls = FFMIN(out->linesize[i], sono->linesize[i]); for (y = 0; y < h; y += inc) { yh = (fmt == AV_PIX_FMT_YUV420P) ? y / 2 : y; memcpy(out->data[i] + (offh + yh) * out->linesize[i], sono->data[i] + (idx + y) % h * sono->linesize[i], ls); } } } static void update_sono_rgb(AVFrame *sono, const ColorFloat *c, int idx) { int x, w = sono->width; uint8_t *lp = sono->data[0] + idx * sono->linesize[0]; for (x = 0; x < w; x++) { *lp++ = c[x].rgb.r + 0.5f; *lp++ = c[x].rgb.g + 0.5f; *lp++ = c[x].rgb.b + 0.5f; } } static void update_sono_yuv(AVFrame *sono, const ColorFloat *c, int idx) { int x, fmt = sono->format, w = sono->width; uint8_t *lpy = sono->data[0] + idx * sono->linesize[0]; uint8_t *lpu = sono->data[1] + idx * sono->linesize[1]; uint8_t *lpv = sono->data[2] + idx * sono->linesize[2]; for (x = 0; x < w; x += 2) { *lpy++ = c[x].yuv.y + 0.5f; *lpu++ = c[x].yuv.u + 0.5f; *lpv++ = c[x].yuv.v + 0.5f; *lpy++ = c[x+1].yuv.y + 0.5f; if (fmt == AV_PIX_FMT_YUV444P) { *lpu++ = c[x+1].yuv.u + 0.5f; *lpv++ = c[x+1].yuv.v + 0.5f; } } } static void process_cqt(ShowCQTContext *s) { int x, i; if (!s->sono_count) { for (x = 0; x < s->cqt_len; x++) { s->h_buf[x] = s->bar_v_buf[x] * 0.5f * (s->cqt_result[x].re + s->cqt_result[x].im); } if (s->fcount > 1) { float rcp_fcount = 1.0f / s->fcount; for (x = 0; x < s->width; x++) { float h = 0.0f; for (i = 0; i < s->fcount; i++) h += s->h_buf[s->fcount * x + i]; s->h_buf[x] = rcp_fcount * h; } } for (x = 0; x < s->width; x++) { s->h_buf[x] = calculate_gamma(s->h_buf[x], s->bar_g); s->rcp_h_buf[x] = 1.0f / (s->h_buf[x] + 0.0001f); } } for (x = 0; x < s->cqt_len; x++) { s->cqt_result[x].re *= s->sono_v_buf[x]; s->cqt_result[x].im *= s->sono_v_buf[x]; } if (s->fcount > 1) { float rcp_fcount = 1.0f / s->fcount; for (x = 0; x < s->width; x++) { FFTComplex result = {0.0f, 0.0f}; for (i = 0; i < s->fcount; i++) { result.re += s->cqt_result[s->fcount * x + i].re; result.im += s->cqt_result[s->fcount * x + i].im; } s->cqt_result[x].re = rcp_fcount * result.re; s->cqt_result[x].im = rcp_fcount * result.im; } } if (s->format == AV_PIX_FMT_RGB24) rgb_from_cqt(s->c_buf, s->cqt_result, s->sono_g, s->width); else yuv_from_cqt(s->c_buf, s->cqt_result, s->sono_g, s->width); } static int plot_cqt(AVFilterContext *ctx) { AVFilterLink *outlink = ctx->outputs[0]; ShowCQTContext *s = ctx->priv; int ret; memcpy(s->fft_result, s->fft_data, s->fft_len * sizeof(*s->fft_data)); av_fft_permute(s->fft_ctx, s->fft_result); av_fft_calc(s->fft_ctx, s->fft_result); s->fft_result[s->fft_len] = s->fft_result[0]; s->cqt_calc(s->cqt_result, s->fft_result, s->coeffs, s->cqt_len, s->fft_len); process_cqt(s); if (s->sono_h) s->update_sono(s->sono_frame, s->c_buf, s->sono_idx); if (!s->sono_count) { AVFrame *out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return AVERROR(ENOMEM); if (s->bar_h) s->draw_bar(out, s->h_buf, s->rcp_h_buf, s->c_buf, s->bar_h); if (s->axis_h) s->draw_axis(out, s->axis_frame, s->c_buf, s->bar_h); if (s->sono_h) s->draw_sono(out, s->sono_frame, s->bar_h + s->axis_h, s->sono_idx); out->pts = s->frame_count; ret = ff_filter_frame(outlink, out); s->frame_count++; } s->sono_count = (s->sono_count + 1) % s->count; if (s->sono_h) s->sono_idx = (s->sono_idx + s->sono_h - 1) % s->sono_h; return ret; } /* main filter control */ static av_cold int init(AVFilterContext *ctx) { ShowCQTContext *s = ctx->priv; s->ctx = ctx; if (!s->fullhd) { av_log(ctx, AV_LOG_WARNING, "fullhd option is deprecated, use size/s option instead.\n"); if (s->width != 1920 || s->height != 1080) { av_log(ctx, AV_LOG_ERROR, "fullhd set to 0 but with custom dimension.\n"); return AVERROR(EINVAL); } s->width /= 2; s->height /= 2; s->fullhd = 1; } if (s->axis_h < 0) { s->axis_h = s->width / 60; if (s->axis_h & 1) s->axis_h++; if (s->bar_h >= 0 && s->sono_h >= 0) s->axis_h = s->height - s->bar_h - s->sono_h; if (s->bar_h >= 0 && s->sono_h < 0) s->axis_h = FFMIN(s->axis_h, s->height - s->bar_h); if (s->bar_h < 0 && s->sono_h >= 0) s->axis_h = FFMIN(s->axis_h, s->height - s->sono_h); } if (s->bar_h < 0) { s->bar_h = (s->height - s->axis_h) / 2; if (s->bar_h & 1) s->bar_h--; if (s->sono_h >= 0) s->bar_h = s->height - s->sono_h - s->axis_h; } if (s->sono_h < 0) s->sono_h = s->height - s->axis_h - s->bar_h; if ((s->width & 1) || (s->height & 1) || (s->bar_h & 1) || (s->axis_h & 1) || (s->sono_h & 1) || (s->bar_h < 0) || (s->axis_h < 0) || (s->sono_h < 0) || (s->bar_h > s->height) || (s->axis_h > s->height) || (s->sono_h > s->height) || (s->bar_h + s->axis_h + s->sono_h != s->height)) { av_log(ctx, AV_LOG_ERROR, "invalid dimension.\n"); return AVERROR(EINVAL); } if (!s->fcount) { do { s->fcount++; } while(s->fcount * s->width < 1920 && s->fcount < 10); } return 0; } static av_cold void uninit(AVFilterContext *ctx) { common_uninit(ctx->priv); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_NONE }; enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE }; int64_t channel_layouts[] = { AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_STEREO_DOWNMIX, -1 }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0) return ret; layouts = avfilter_make_format64_list(channel_layouts); if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) return ret; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowCQTContext *s = ctx->priv; int ret; common_uninit(s); outlink->w = s->width; outlink->h = s->height; s->format = outlink->format; outlink->sample_aspect_ratio = av_make_q(1, 1); outlink->frame_rate = s->rate; outlink->time_base = av_inv_q(s->rate); av_log(ctx, AV_LOG_INFO, "video: %dx%d %s %d/%d fps, bar_h = %d, axis_h = %d, sono_h = %d.\n", s->width, s->height, av_get_pix_fmt_name(s->format), s->rate.num, s->rate.den, s->bar_h, s->axis_h, s->sono_h); s->cqt_len = s->width * s->fcount; if (!(s->freq = create_freq_table(s->basefreq, s->endfreq, s->cqt_len))) return AVERROR(ENOMEM); if ((ret = init_volume(s)) < 0) return ret; s->fft_bits = ceil(log2(inlink->sample_rate * s->timeclamp)); s->fft_len = 1 << s->fft_bits; av_log(ctx, AV_LOG_INFO, "fft_len = %d, cqt_len = %d.\n", s->fft_len, s->cqt_len); s->fft_ctx = av_fft_init(s->fft_bits, 0); s->fft_data = av_calloc(s->fft_len, sizeof(*s->fft_data)); s->fft_result = av_calloc(s->fft_len + 64, sizeof(*s->fft_result)); s->cqt_result = av_malloc_array(s->cqt_len, sizeof(*s->cqt_result)); if (!s->fft_ctx || !s->fft_data || !s->fft_result || !s->cqt_result) return AVERROR(ENOMEM); s->cqt_align = 1; s->cqt_coeffs_type = COEFFS_TYPE_DEFAULT; s->cqt_calc = cqt_calc; s->draw_sono = draw_sono; if (s->format == AV_PIX_FMT_RGB24) { s->draw_bar = draw_bar_rgb; s->draw_axis = draw_axis_rgb; s->update_sono = update_sono_rgb; } else { s->draw_bar = draw_bar_yuv; s->draw_axis = draw_axis_yuv; s->update_sono = update_sono_yuv; } if ((ret = init_cqt(s)) < 0) return ret; if (s->axis_h) { if (!s->axis) { if ((ret = init_axis_empty(s)) < 0) return ret; } else if (s->axisfile) { if (init_axis_from_file(s) < 0) { av_log(ctx, AV_LOG_WARNING, "loading axis image failed, fallback to font rendering.\n"); if (init_axis_from_font(s) < 0) { av_log(ctx, AV_LOG_WARNING, "loading axis font failed, disable text drawing.\n"); if ((ret = init_axis_empty(s)) < 0) return ret; } } } else { if (init_axis_from_font(s) < 0) { av_log(ctx, AV_LOG_WARNING, "loading axis font failed, disable text drawing.\n"); if ((ret = init_axis_empty(s)) < 0) return ret; } } } if (s->sono_h) { s->sono_frame = alloc_frame_empty((outlink->format == AV_PIX_FMT_YUV420P) ? AV_PIX_FMT_YUV422P : outlink->format, s->width, s->sono_h); if (!s->sono_frame) return AVERROR(ENOMEM); } s->h_buf = av_malloc_array(s->cqt_len, sizeof (*s->h_buf)); s->rcp_h_buf = av_malloc_array(s->width, sizeof(*s->rcp_h_buf)); s->c_buf = av_malloc_array(s->width, sizeof(*s->c_buf)); if (!s->h_buf || !s->rcp_h_buf || !s->c_buf) return AVERROR(ENOMEM); s->sono_count = 0; s->frame_count = 0; s->sono_idx = 0; s->remaining_fill = s->fft_len / 2; s->remaining_frac = 0; s->step_frac = av_div_q(av_make_q(inlink->sample_rate, s->count) , s->rate); s->step = (int)(s->step_frac.num / s->step_frac.den); s->step_frac.num %= s->step_frac.den; if (s->step_frac.num) { av_log(ctx, AV_LOG_INFO, "audio: %d Hz, step = %d + %d/%d.\n", inlink->sample_rate, s->step, s->step_frac.num, s->step_frac.den); av_log(ctx, AV_LOG_WARNING, "fractional step.\n"); } else { av_log(ctx, AV_LOG_INFO, "audio: %d Hz, step = %d.\n", inlink->sample_rate, s->step); } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowCQTContext *s = ctx->priv; int remaining, step, ret, x, i, j, m; float *audio_data; if (!insamples) { while (s->remaining_fill < s->fft_len / 2) { memset(&s->fft_data[s->fft_len - s->remaining_fill], 0, sizeof(*s->fft_data) * s->remaining_fill); ret = plot_cqt(ctx); if (ret < 0) return ret; step = s->step + (s->step_frac.num + s->remaining_frac) / s->step_frac.den; s->remaining_frac = (s->step_frac.num + s->remaining_frac) % s->step_frac.den; for (x = 0; x < (s->fft_len-step); x++) s->fft_data[x] = s->fft_data[x+step]; s->remaining_fill += step; } return AVERROR_EOF; } remaining = insamples->nb_samples; audio_data = (float*) insamples->data[0]; while (remaining) { i = insamples->nb_samples - remaining; j = s->fft_len - s->remaining_fill; if (remaining >= s->remaining_fill) { for (m = 0; m < s->remaining_fill; m++) { s->fft_data[j+m].re = audio_data[2*(i+m)]; s->fft_data[j+m].im = audio_data[2*(i+m)+1]; } ret = plot_cqt(ctx); if (ret < 0) { av_frame_free(&insamples); return ret; } remaining -= s->remaining_fill; step = s->step + (s->step_frac.num + s->remaining_frac) / s->step_frac.den; s->remaining_frac = (s->step_frac.num + s->remaining_frac) % s->step_frac.den; for (m = 0; m < s->fft_len-step; m++) s->fft_data[m] = s->fft_data[m+step]; s->remaining_fill = step; } else { for (m = 0; m < remaining; m++) { s->fft_data[j+m].re = audio_data[2*(i+m)]; s->fft_data[j+m].im = audio_data[2*(i+m)+1]; } s->remaining_fill -= remaining; remaining = 0; } } av_frame_free(&insamples); return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterLink *inlink = outlink->src->inputs[0]; int ret; ret = ff_request_frame(inlink); if (ret == AVERROR_EOF) filter_frame(inlink, NULL); return ret; } static const AVFilterPad showcqt_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad showcqt_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_avf_showcqt = { .name = "showcqt", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a CQT (Constant/Clamped Q Transform) spectrum video output."), .init = init, .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowCQTContext), .inputs = showcqt_inputs, .outputs = showcqt_outputs, .priv_class = &showcqt_class, };