/* * AAC Spectral Band Replication decoding functions * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl ) * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include "libavutil/attributes.h" #include "libavutil/intfloat.h" #include "sbrdsp.h" static void sbr_sum64x5_c(float *z) { int k; for (k = 0; k < 64; k++) { float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256]; z[k] = f; } } static float sbr_sum_square_c(float (*x)[2], int n) { float sum0 = 0.0f, sum1 = 0.0f; int i; for (i = 0; i < n; i += 2) { sum0 += x[i + 0][0] * x[i + 0][0]; sum1 += x[i + 0][1] * x[i + 0][1]; sum0 += x[i + 1][0] * x[i + 1][0]; sum1 += x[i + 1][1] * x[i + 1][1]; } return sum0 + sum1; } static void sbr_neg_odd_64_c(float *x) { union av_intfloat32 *xi = (union av_intfloat32*) x; int i; for (i = 1; i < 64; i += 4) { xi[i + 0].i ^= 1U << 31; xi[i + 2].i ^= 1U << 31; } } static void sbr_qmf_pre_shuffle_c(float *z) { union av_intfloat32 *zi = (union av_intfloat32*) z; int k; zi[64].i = zi[0].i; zi[65].i = zi[1].i; for (k = 1; k < 31; k += 2) { zi[64 + 2 * k + 0].i = zi[64 - k].i ^ (1U << 31); zi[64 + 2 * k + 1].i = zi[ k + 1].i; zi[64 + 2 * k + 2].i = zi[63 - k].i ^ (1U << 31); zi[64 + 2 * k + 3].i = zi[ k + 2].i; } zi[64 + 2 * 31 + 0].i = zi[64 - 31].i ^ (1U << 31); zi[64 + 2 * 31 + 1].i = zi[31 + 1].i; } static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z) { const union av_intfloat32 *zi = (const union av_intfloat32*) z; union av_intfloat32 *Wi = (union av_intfloat32*) W; int k; for (k = 0; k < 32; k += 2) { Wi[2 * k + 0].i = zi[63 - k].i ^ (1U << 31); Wi[2 * k + 1].i = zi[ k + 0].i; Wi[2 * k + 2].i = zi[62 - k].i ^ (1U << 31); Wi[2 * k + 3].i = zi[ k + 1].i; } } static void sbr_qmf_deint_neg_c(float *v, const float *src) { const union av_intfloat32 *si = (const union av_intfloat32*)src; union av_intfloat32 *vi = (union av_intfloat32*)v; int i; for (i = 0; i < 32; i++) { vi[ i].i = si[63 - 2 * i ].i; vi[63 - i].i = si[63 - 2 * i - 1].i ^ (1U << 31); } } static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1) { int i; for (i = 0; i < 64; i++) { v[ i] = src0[i] - src1[63 - i]; v[127 - i] = src0[i] + src1[63 - i]; } } static av_always_inline void autocorrelate(const float x[40][2], float phi[3][2][2], int lag) { int i; float real_sum = 0.0f; float imag_sum = 0.0f; if (lag) { for (i = 1; i < 38; i++) { real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1]; imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0]; } phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1]; phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0]; if (lag == 1) { phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1]; phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0]; } } else { for (i = 1; i < 38; i++) { real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1]; } phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1]; } } static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2]) { #if 0 /* This code is slower because it multiplies memory accesses. * It is left for educational purposes and because it may offer * a better reference for writing arch-specific DSP functions. */ autocorrelate(x, phi, 0); autocorrelate(x, phi, 1); autocorrelate(x, phi, 2); #else float real_sum2 = x[0][0] * x[2][0] + x[0][1] * x[2][1]; float imag_sum2 = x[0][0] * x[2][1] - x[0][1] * x[2][0]; float real_sum1 = 0.0f, imag_sum1 = 0.0f, real_sum0 = 0.0f; int i; for (i = 1; i < 38; i++) { real_sum0 += x[i][0] * x[i ][0] + x[i][1] * x[i ][1]; real_sum1 += x[i][0] * x[i + 1][0] + x[i][1] * x[i + 1][1]; imag_sum1 += x[i][0] * x[i + 1][1] - x[i][1] * x[i + 1][0]; real_sum2 += x[i][0] * x[i + 2][0] + x[i][1] * x[i + 2][1]; imag_sum2 += x[i][0] * x[i + 2][1] - x[i][1] * x[i + 2][0]; } phi[2 - 2][1][0] = real_sum2; phi[2 - 2][1][1] = imag_sum2; phi[2 ][1][0] = real_sum0 + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1]; phi[1 ][0][0] = real_sum0 + x[38][0] * x[38][0] + x[38][1] * x[38][1]; phi[2 - 1][1][0] = real_sum1 + x[ 0][0] * x[ 1][0] + x[ 0][1] * x[ 1][1]; phi[2 - 1][1][1] = imag_sum1 + x[ 0][0] * x[ 1][1] - x[ 0][1] * x[ 1][0]; phi[0 ][0][0] = real_sum1 + x[38][0] * x[39][0] + x[38][1] * x[39][1]; phi[0 ][0][1] = imag_sum1 + x[38][0] * x[39][1] - x[38][1] * x[39][0]; #endif } static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2], const float alpha0[2], const float alpha1[2], float bw, int start, int end) { float alpha[4]; int i; alpha[0] = alpha1[0] * bw * bw; alpha[1] = alpha1[1] * bw * bw; alpha[2] = alpha0[0] * bw; alpha[3] = alpha0[1] * bw; for (i = start; i < end; i++) { X_high[i][0] = X_low[i - 2][0] * alpha[0] - X_low[i - 2][1] * alpha[1] + X_low[i - 1][0] * alpha[2] - X_low[i - 1][1] * alpha[3] + X_low[i][0]; X_high[i][1] = X_low[i - 2][1] * alpha[0] + X_low[i - 2][0] * alpha[1] + X_low[i - 1][1] * alpha[2] + X_low[i - 1][0] * alpha[3] + X_low[i][1]; } } static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2], const float *g_filt, int m_max, intptr_t ixh) { int m; for (m = 0; m < m_max; m++) { Y[m][0] = X_high[m][ixh][0] * g_filt[m]; Y[m][1] = X_high[m][ixh][1] * g_filt[m]; } } static av_always_inline void sbr_hf_apply_noise(float (*Y)[2], const float *s_m, const float *q_filt, int noise, float phi_sign0, float phi_sign1, int m_max) { int m; for (m = 0; m < m_max; m++) { float y0 = Y[m][0]; float y1 = Y[m][1]; noise = (noise + 1) & 0x1ff; if (s_m[m]) { y0 += s_m[m] * phi_sign0; y1 += s_m[m] * phi_sign1; } else { y0 += q_filt[m] * ff_sbr_noise_table[noise][0]; y1 += q_filt[m] * ff_sbr_noise_table[noise][1]; } Y[m][0] = y0; Y[m][1] = y1; phi_sign1 = -phi_sign1; } } static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max) { sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max); } static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max) { float phi_sign = 1 - 2 * (kx & 1); sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max); } static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max) { sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max); } static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m, const float *q_filt, int noise, int kx, int m_max) { float phi_sign = 1 - 2 * (kx & 1); sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max); } av_cold void ff_sbrdsp_init(SBRDSPContext *s) { s->sum64x5 = sbr_sum64x5_c; s->sum_square = sbr_sum_square_c; s->neg_odd_64 = sbr_neg_odd_64_c; s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c; s->qmf_post_shuffle = sbr_qmf_post_shuffle_c; s->qmf_deint_neg = sbr_qmf_deint_neg_c; s->qmf_deint_bfly = sbr_qmf_deint_bfly_c; s->autocorrelate = sbr_autocorrelate_c; s->hf_gen = sbr_hf_gen_c; s->hf_g_filt = sbr_hf_g_filt_c; s->hf_apply_noise[0] = sbr_hf_apply_noise_0; s->hf_apply_noise[1] = sbr_hf_apply_noise_1; s->hf_apply_noise[2] = sbr_hf_apply_noise_2; s->hf_apply_noise[3] = sbr_hf_apply_noise_3; if (ARCH_ARM) ff_sbrdsp_init_arm(s); if (ARCH_X86) ff_sbrdsp_init_x86(s); if (ARCH_MIPS) ff_sbrdsp_init_mips(s); }