/* * ALAC (Apple Lossless Audio Codec) decoder * Copyright (c) 2005 David Hammerton * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * ALAC (Apple Lossless Audio Codec) decoder * @author 2005 David Hammerton * @see http://crazney.net/programs/itunes/alac.html * * Note: This decoder expects a 36-byte QuickTime atom to be * passed through the extradata[_size] fields. This atom is tacked onto * the end of an 'alac' stsd atom and has the following format: * * 32bit atom size * 32bit tag ("alac") * 32bit tag version (0) * 32bit samples per frame (used when not set explicitly in the frames) * 8bit compatible version (0) * 8bit sample size * 8bit history mult (40) * 8bit initial history (14) * 8bit rice param limit (10) * 8bit channels * 16bit maxRun (255) * 32bit max coded frame size (0 means unknown) * 32bit average bitrate (0 means unknown) * 32bit samplerate */ #include "avcodec.h" #include "get_bits.h" #include "bytestream.h" #include "unary.h" #include "mathops.h" #define ALAC_EXTRADATA_SIZE 36 #define MAX_CHANNELS 2 typedef struct { AVCodecContext *avctx; AVFrame frame; GetBitContext gb; int channels; /* buffers */ int32_t *predict_error_buffer[MAX_CHANNELS]; int32_t *output_samples_buffer[MAX_CHANNELS]; int32_t *extra_bits_buffer[MAX_CHANNELS]; uint32_t max_samples_per_frame; uint8_t sample_size; uint8_t rice_history_mult; uint8_t rice_initial_history; uint8_t rice_limit; int extra_bits; /**< number of extra bits beyond 16-bit */ int nb_samples; /**< number of samples in the current frame */ } ALACContext; enum RawDataBlockType { /* At the moment, only SCE, CPE, LFE, and END are recognized. */ TYPE_SCE, TYPE_CPE, TYPE_CCE, TYPE_LFE, TYPE_DSE, TYPE_PCE, TYPE_FIL, TYPE_END }; static inline unsigned int decode_scalar(GetBitContext *gb, int k, int readsamplesize) { unsigned int x = get_unary_0_9(gb); if (x > 8) { /* RICE THRESHOLD */ /* use alternative encoding */ x = get_bits_long(gb, readsamplesize); } else if (k != 1) { int extrabits = show_bits(gb, k); /* multiply x by 2^k - 1, as part of their strange algorithm */ x = (x << k) - x; if (extrabits > 1) { x += extrabits - 1; skip_bits(gb, k); } else skip_bits(gb, k - 1); } return x; } static void bastardized_rice_decompress(ALACContext *alac, int32_t *output_buffer, int output_size, int readsamplesize, int rice_history_mult) { int output_count; unsigned int history = alac->rice_initial_history; int sign_modifier = 0; for (output_count = 0; output_count < output_size; output_count++) { int k; unsigned int x; /* read k, that is bits as is */ k = av_log2((history >> 9) + 3); k = FFMIN(k, alac->rice_limit); x = decode_scalar(&alac->gb, k, readsamplesize); x += sign_modifier; sign_modifier = 0; output_buffer[output_count] = (x >> 1) ^ -(x & 1); /* now update the history */ if (x > 0xffff) history = 0xffff; else history += x * rice_history_mult - ((history * rice_history_mult) >> 9); /* special case: there may be compressed blocks of 0 */ if ((history < 128) && (output_count+1 < output_size)) { int block_size; k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */); k = FFMIN(k, alac->rice_limit); block_size = decode_scalar(&alac->gb, k, 16); if (block_size > 0) { if(block_size >= output_size - output_count){ av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count); block_size= output_size - output_count - 1; } memset(&output_buffer[output_count + 1], 0, block_size * sizeof(*output_buffer)); output_count += block_size; } if (block_size <= 0xffff) sign_modifier = 1; history = 0; } } } static inline int sign_only(int v) { return v ? FFSIGN(v) : 0; } static void predictor_decompress_fir_adapt(int32_t *error_buffer, int32_t *buffer_out, int output_size, int readsamplesize, int16_t *predictor_coef_table, int predictor_coef_num, int predictor_quantitization) { int i; /* first sample always copies */ *buffer_out = *error_buffer; if (output_size <= 1) return; if (!predictor_coef_num) { memcpy(&buffer_out[1], &error_buffer[1], (output_size - 1) * sizeof(*buffer_out)); return; } if (predictor_coef_num == 31) { /* simple 1st-order prediction */ for (i = 1; i < output_size; i++) { buffer_out[i] = sign_extend(buffer_out[i - 1] + error_buffer[i], readsamplesize); } return; } /* read warm-up samples */ for (i = 0; i < predictor_coef_num; i++) { buffer_out[i + 1] = sign_extend(buffer_out[i] + error_buffer[i + 1], readsamplesize); } /* NOTE: 4 and 8 are very common cases that could be optimized. */ /* general case */ for (i = predictor_coef_num; i < output_size - 1; i++) { int j; int val = 0; int error_val = error_buffer[i + 1]; int error_sign; int d = buffer_out[i - predictor_coef_num]; for (j = 0; j < predictor_coef_num; j++) { val += (buffer_out[i - j] - d) * predictor_coef_table[j]; } val = (val + (1 << (predictor_quantitization - 1))) >> predictor_quantitization; val += d + error_val; buffer_out[i + 1] = sign_extend(val, readsamplesize); /* adapt LPC coefficients */ error_sign = sign_only(error_val); if (error_sign) { for (j = predictor_coef_num - 1; j >= 0 && error_val * error_sign > 0; j--) { int sign; val = d - buffer_out[i - j]; sign = sign_only(val) * error_sign; predictor_coef_table[j] -= sign; val *= sign; error_val -= ((val >> predictor_quantitization) * (predictor_coef_num - j)); } } } } static void decorrelate_stereo(int32_t *buffer[MAX_CHANNELS], int numsamples, uint8_t interlacing_shift, uint8_t interlacing_leftweight) { int i; for (i = 0; i < numsamples; i++) { int32_t a, b; a = buffer[0][i]; b = buffer[1][i]; a -= (b * interlacing_leftweight) >> interlacing_shift; b += a; buffer[0][i] = b; buffer[1][i] = a; } } static void append_extra_bits(int32_t *buffer[MAX_CHANNELS], int32_t *extra_bits_buffer[MAX_CHANNELS], int extra_bits, int numchannels, int numsamples) { int i, ch; for (ch = 0; ch < numchannels; ch++) for (i = 0; i < numsamples; i++) buffer[ch][i] = (buffer[ch][i] << extra_bits) | extra_bits_buffer[ch][i]; } static int decode_element(AVCodecContext *avctx, void *data, int ch_index, int channels) { ALACContext *alac = avctx->priv_data; int hassize; unsigned int readsamplesize; int is_compressed; uint8_t interlacing_shift; uint8_t interlacing_leftweight; uint32_t output_samples; int i, ch, ret; skip_bits(&alac->gb, 4); /* element instance tag */ skip_bits(&alac->gb, 12); /* unused header bits */ /* the number of output samples is stored in the frame */ hassize = get_bits1(&alac->gb); alac->extra_bits = get_bits(&alac->gb, 2) << 3; readsamplesize = alac->sample_size - alac->extra_bits + channels - 1; if (readsamplesize > 32) { av_log(avctx, AV_LOG_ERROR, "bps is unsupported: %d\n", readsamplesize); return AVERROR_PATCHWELCOME; } /* whether the frame is compressed */ is_compressed = !get_bits1(&alac->gb); if (hassize) output_samples = get_bits_long(&alac->gb, 32); else output_samples = alac->max_samples_per_frame; if (!output_samples || output_samples > alac->max_samples_per_frame) { av_log(avctx, AV_LOG_ERROR, "invalid samples per frame: %d\n", output_samples); return AVERROR_INVALIDDATA; } if (!alac->nb_samples) { /* get output buffer */ alac->frame.nb_samples = output_samples; if ((ret = avctx->get_buffer(avctx, &alac->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return ret; } if (alac->sample_size > 16) { for (ch = 0; ch < channels; ch++) alac->output_samples_buffer[ch] = (int32_t *)alac->frame.data[ch_index + ch]; } } else if (output_samples != alac->nb_samples) { av_log(avctx, AV_LOG_ERROR, "sample count mismatch: %u != %d\n", output_samples, alac->nb_samples); return AVERROR_INVALIDDATA; } alac->nb_samples = output_samples; if (is_compressed) { int16_t predictor_coef_table[MAX_CHANNELS][32]; int predictor_coef_num[MAX_CHANNELS]; int prediction_type[MAX_CHANNELS]; int prediction_quantitization[MAX_CHANNELS]; int ricemodifier[MAX_CHANNELS]; interlacing_shift = get_bits(&alac->gb, 8); interlacing_leftweight = get_bits(&alac->gb, 8); for (ch = 0; ch < channels; ch++) { prediction_type[ch] = get_bits(&alac->gb, 4); prediction_quantitization[ch] = get_bits(&alac->gb, 4); ricemodifier[ch] = get_bits(&alac->gb, 3); predictor_coef_num[ch] = get_bits(&alac->gb, 5); /* read the predictor table */ for (i = 0; i < predictor_coef_num[ch]; i++) predictor_coef_table[ch][i] = get_sbits(&alac->gb, 16); } if (alac->extra_bits) { for (i = 0; i < alac->nb_samples; i++) { for (ch = 0; ch < channels; ch++) alac->extra_bits_buffer[ch][i] = get_bits(&alac->gb, alac->extra_bits); } } for (ch = 0; ch < channels; ch++) { bastardized_rice_decompress(alac, alac->predict_error_buffer[ch], alac->nb_samples, readsamplesize, ricemodifier[ch] * alac->rice_history_mult / 4); /* adaptive FIR filter */ if (prediction_type[ch] == 15) { /* Prediction type 15 runs the adaptive FIR twice. * The first pass uses the special-case coef_num = 31, while * the second pass uses the coefs from the bitstream. * * However, this prediction type is not currently used by the * reference encoder. */ predictor_decompress_fir_adapt(alac->predict_error_buffer[ch], alac->predict_error_buffer[ch], alac->nb_samples, readsamplesize, NULL, 31, 0); } else if (prediction_type[ch] > 0) { av_log(avctx, AV_LOG_WARNING, "unknown prediction type: %i\n", prediction_type[ch]); } predictor_decompress_fir_adapt(alac->predict_error_buffer[ch], alac->output_samples_buffer[ch], alac->nb_samples, readsamplesize, predictor_coef_table[ch], predictor_coef_num[ch], prediction_quantitization[ch]); } } else { /* not compressed, easy case */ for (i = 0; i < alac->nb_samples; i++) { for (ch = 0; ch < channels; ch++) { alac->output_samples_buffer[ch][i] = get_sbits_long(&alac->gb, alac->sample_size); } } alac->extra_bits = 0; interlacing_shift = 0; interlacing_leftweight = 0; } if (channels == 2 && interlacing_leftweight) { decorrelate_stereo(alac->output_samples_buffer, alac->nb_samples, interlacing_shift, interlacing_leftweight); } if (alac->extra_bits) { append_extra_bits(alac->output_samples_buffer, alac->extra_bits_buffer, alac->extra_bits, channels, alac->nb_samples); } switch(alac->sample_size) { case 16: { for (ch = 0; ch < channels; ch++) { int16_t *outbuffer = (int16_t *)alac->frame.data[ch_index + ch]; for (i = 0; i < alac->nb_samples; i++) *outbuffer++ = alac->output_samples_buffer[ch][i]; }} break; case 24: { for (ch = 0; ch < channels; ch++) { for (i = 0; i < alac->nb_samples; i++) alac->output_samples_buffer[ch][i] <<= 8; }} break; } return 0; } static int alac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt) { ALACContext *alac = avctx->priv_data; enum RawDataBlockType element; int channels; int ch, ret; init_get_bits(&alac->gb, avpkt->data, avpkt->size * 8); alac->nb_samples = 0; ch = 0; while (get_bits_left(&alac->gb)) { element = get_bits(&alac->gb, 3); if (element == TYPE_END) break; if (element > TYPE_CPE && element != TYPE_LFE) { av_log(avctx, AV_LOG_ERROR, "syntax element unsupported: %d", element); return AVERROR_PATCHWELCOME; } channels = (element == TYPE_CPE) ? 2 : 1; if (ch + channels > alac->channels) { av_log(avctx, AV_LOG_ERROR, "invalid element channel count\n"); return AVERROR_INVALIDDATA; } ret = decode_element(avctx, data, ch, channels); if (ret < 0) return ret; ch += channels; } if (avpkt->size * 8 - get_bits_count(&alac->gb) > 8) av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", avpkt->size * 8 - get_bits_count(&alac->gb)); *got_frame_ptr = 1; *(AVFrame *)data = alac->frame; return avpkt->size; } static av_cold int alac_decode_close(AVCodecContext *avctx) { ALACContext *alac = avctx->priv_data; int ch; for (ch = 0; ch < alac->channels; ch++) { av_freep(&alac->predict_error_buffer[ch]); if (alac->sample_size == 16) av_freep(&alac->output_samples_buffer[ch]); av_freep(&alac->extra_bits_buffer[ch]); } return 0; } static int allocate_buffers(ALACContext *alac) { int ch; for (ch = 0; ch < alac->channels; ch++) { int buf_size = alac->max_samples_per_frame * sizeof(int32_t); FF_ALLOC_OR_GOTO(alac->avctx, alac->predict_error_buffer[ch], buf_size, buf_alloc_fail); if (alac->sample_size == 16) { FF_ALLOC_OR_GOTO(alac->avctx, alac->output_samples_buffer[ch], buf_size, buf_alloc_fail); } FF_ALLOC_OR_GOTO(alac->avctx, alac->extra_bits_buffer[ch], buf_size, buf_alloc_fail); } return 0; buf_alloc_fail: alac_decode_close(alac->avctx); return AVERROR(ENOMEM); } static int alac_set_info(ALACContext *alac) { GetByteContext gb; bytestream2_init(&gb, alac->avctx->extradata, alac->avctx->extradata_size); bytestream2_skipu(&gb, 12); // size:4, alac:4, version:4 alac->max_samples_per_frame = bytestream2_get_be32u(&gb); if (!alac->max_samples_per_frame || alac->max_samples_per_frame > INT_MAX) { av_log(alac->avctx, AV_LOG_ERROR, "max samples per frame invalid: %u\n", alac->max_samples_per_frame); return AVERROR_INVALIDDATA; } bytestream2_skipu(&gb, 1); // compatible version alac->sample_size = bytestream2_get_byteu(&gb); alac->rice_history_mult = bytestream2_get_byteu(&gb); alac->rice_initial_history = bytestream2_get_byteu(&gb); alac->rice_limit = bytestream2_get_byteu(&gb); alac->channels = bytestream2_get_byteu(&gb); bytestream2_get_be16u(&gb); // maxRun bytestream2_get_be32u(&gb); // max coded frame size bytestream2_get_be32u(&gb); // average bitrate bytestream2_get_be32u(&gb); // samplerate return 0; } static av_cold int alac_decode_init(AVCodecContext * avctx) { int ret; ALACContext *alac = avctx->priv_data; alac->avctx = avctx; /* initialize from the extradata */ if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) { av_log(avctx, AV_LOG_ERROR, "alac: expected %d extradata bytes\n", ALAC_EXTRADATA_SIZE); return -1; } if (alac_set_info(alac)) { av_log(avctx, AV_LOG_ERROR, "alac: set_info failed\n"); return -1; } switch (alac->sample_size) { case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; case 24: case 32: avctx->sample_fmt = AV_SAMPLE_FMT_S32P; break; default: av_log_ask_for_sample(avctx, "Sample depth %d is not supported.\n", alac->sample_size); return AVERROR_PATCHWELCOME; } if (alac->channels < 1) { av_log(avctx, AV_LOG_WARNING, "Invalid channel count\n"); alac->channels = avctx->channels; } else { if (alac->channels > MAX_CHANNELS) alac->channels = avctx->channels; else avctx->channels = alac->channels; } if (avctx->channels > MAX_CHANNELS) { av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d\n", avctx->channels); return AVERROR_PATCHWELCOME; } if ((ret = allocate_buffers(alac)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error allocating buffers\n"); return ret; } avcodec_get_frame_defaults(&alac->frame); avctx->coded_frame = &alac->frame; return 0; } AVCodec ff_alac_decoder = { .name = "alac", .type = AVMEDIA_TYPE_AUDIO, .id = CODEC_ID_ALAC, .priv_data_size = sizeof(ALACContext), .init = alac_decode_init, .close = alac_decode_close, .decode = alac_decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"), };