/* * VP8 compatible video decoder * * Copyright (C) 2010 David Conrad * Copyright (C) 2010 Ronald S. Bultje * Copyright (C) 2010 Jason Garrett-Glaser * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/imgutils.h" #include "avcodec.h" #include "internal.h" #include "vp8.h" #include "vp8data.h" #include "rectangle.h" #include "thread.h" #if ARCH_ARM # include "arm/vp8.h" #endif static void free_buffers(VP8Context *s) { av_freep(&s->macroblocks_base); av_freep(&s->filter_strength); av_freep(&s->intra4x4_pred_mode_top); av_freep(&s->top_nnz); av_freep(&s->edge_emu_buffer); av_freep(&s->top_border); s->macroblocks = NULL; } static int vp8_alloc_frame(VP8Context *s, AVFrame *f) { int ret; if ((ret = ff_thread_get_buffer(s->avctx, f)) < 0) return ret; if (s->num_maps_to_be_freed && !s->maps_are_invalid) { f->ref_index[0] = s->segmentation_maps[--s->num_maps_to_be_freed]; } else if (!(f->ref_index[0] = av_mallocz(s->mb_width * s->mb_height))) { ff_thread_release_buffer(s->avctx, f); return AVERROR(ENOMEM); } return 0; } static void vp8_release_frame(VP8Context *s, AVFrame *f, int prefer_delayed_free, int can_direct_free) { if (f->ref_index[0]) { if (prefer_delayed_free) { /* Upon a size change, we want to free the maps but other threads may still * be using them, so queue them. Upon a seek, all threads are inactive so * we want to cache one to prevent re-allocation in the next decoding * iteration, but the rest we can free directly. */ int max_queued_maps = can_direct_free ? 1 : FF_ARRAY_ELEMS(s->segmentation_maps); if (s->num_maps_to_be_freed < max_queued_maps) { s->segmentation_maps[s->num_maps_to_be_freed++] = f->ref_index[0]; } else if (can_direct_free) /* vp8_decode_flush(), but our queue is full */ { av_free(f->ref_index[0]); } /* else: MEMLEAK (should never happen, but better that than crash) */ f->ref_index[0] = NULL; } else /* vp8_decode_free() */ { av_free(f->ref_index[0]); } } ff_thread_release_buffer(s->avctx, f); } static void vp8_decode_flush_impl(AVCodecContext *avctx, int prefer_delayed_free, int can_direct_free, int free_mem) { VP8Context *s = avctx->priv_data; int i; if (!avctx->internal->is_copy) { for (i = 0; i < 5; i++) if (s->frames[i].data[0]) vp8_release_frame(s, &s->frames[i], prefer_delayed_free, can_direct_free); } memset(s->framep, 0, sizeof(s->framep)); if (free_mem) { free_buffers(s); s->maps_are_invalid = 1; } } static void vp8_decode_flush(AVCodecContext *avctx) { vp8_decode_flush_impl(avctx, 1, 1, 0); } static int update_dimensions(VP8Context *s, int width, int height) { if (width != s->avctx->width || height != s->avctx->height) { if (av_image_check_size(width, height, 0, s->avctx)) return AVERROR_INVALIDDATA; vp8_decode_flush_impl(s->avctx, 1, 0, 1); avcodec_set_dimensions(s->avctx, width, height); } s->mb_width = (s->avctx->coded_width +15) / 16; s->mb_height = (s->avctx->coded_height+15) / 16; s->macroblocks_base = av_mallocz((s->mb_width+s->mb_height*2+1)*sizeof(*s->macroblocks)); s->filter_strength = av_mallocz(s->mb_width*sizeof(*s->filter_strength)); s->intra4x4_pred_mode_top = av_mallocz(s->mb_width*4); s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz)); s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border)); if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_top || !s->top_nnz || !s->top_border) return AVERROR(ENOMEM); s->macroblocks = s->macroblocks_base + 1; return 0; } static void parse_segment_info(VP8Context *s) { VP56RangeCoder *c = &s->c; int i; s->segmentation.update_map = vp8_rac_get(c); if (vp8_rac_get(c)) { // update segment feature data s->segmentation.absolute_vals = vp8_rac_get(c); for (i = 0; i < 4; i++) s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); for (i = 0; i < 4; i++) s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); } if (s->segmentation.update_map) for (i = 0; i < 3; i++) s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; } static void update_lf_deltas(VP8Context *s) { VP56RangeCoder *c = &s->c; int i; for (i = 0; i < 4; i++) s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6); for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6); } static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) { const uint8_t *sizes = buf; int i; s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); buf += 3*(s->num_coeff_partitions-1); buf_size -= 3*(s->num_coeff_partitions-1); if (buf_size < 0) return -1; for (i = 0; i < s->num_coeff_partitions-1; i++) { int size = AV_RL24(sizes + 3*i); if (buf_size - size < 0) return -1; ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size); buf += size; buf_size -= size; } ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); return 0; } static void get_quants(VP8Context *s) { VP56RangeCoder *c = &s->c; int i, base_qi; int yac_qi = vp8_rac_get_uint(c, 7); int ydc_delta = vp8_rac_get_sint(c, 4); int y2dc_delta = vp8_rac_get_sint(c, 4); int y2ac_delta = vp8_rac_get_sint(c, 4); int uvdc_delta = vp8_rac_get_sint(c, 4); int uvac_delta = vp8_rac_get_sint(c, 4); for (i = 0; i < 4; i++) { if (s->segmentation.enabled) { base_qi = s->segmentation.base_quant[i]; if (!s->segmentation.absolute_vals) base_qi += yac_qi; } else base_qi = yac_qi; s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + ydc_delta , 7)]; s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi , 7)]; s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip_uintp2(base_qi + y2dc_delta, 7)]; s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip_uintp2(base_qi + y2ac_delta, 7)] / 100; s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + uvdc_delta, 7)]; s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + uvac_delta, 7)]; s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); } } /** * Determine which buffers golden and altref should be updated with after this frame. * The spec isn't clear here, so I'm going by my understanding of what libvpx does * * Intra frames update all 3 references * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set * If the update (golden|altref) flag is set, it's updated with the current frame * if update_last is set, and VP56_FRAME_PREVIOUS otherwise. * If the flag is not set, the number read means: * 0: no update * 1: VP56_FRAME_PREVIOUS * 2: update golden with altref, or update altref with golden */ static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) { VP56RangeCoder *c = &s->c; if (update) return VP56_FRAME_CURRENT; switch (vp8_rac_get_uint(c, 2)) { case 1: return VP56_FRAME_PREVIOUS; case 2: return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN; } return VP56_FRAME_NONE; } static void update_refs(VP8Context *s) { VP56RangeCoder *c = &s->c; int update_golden = vp8_rac_get(c); int update_altref = vp8_rac_get(c); s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); } static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) { VP56RangeCoder *c = &s->c; int header_size, hscale, vscale, i, j, k, l, m, ret; int width = s->avctx->width; int height = s->avctx->height; s->keyframe = !(buf[0] & 1); s->profile = (buf[0]>>1) & 7; s->invisible = !(buf[0] & 0x10); header_size = AV_RL24(buf) >> 5; buf += 3; buf_size -= 3; if (s->profile > 3) av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile); if (!s->profile) memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); else // profile 1-3 use bilinear, 4+ aren't defined so whatever memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab)); if (header_size > buf_size - 7*s->keyframe) { av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); return AVERROR_INVALIDDATA; } if (s->keyframe) { if (AV_RL24(buf) != 0x2a019d) { av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf)); return AVERROR_INVALIDDATA; } width = AV_RL16(buf+3) & 0x3fff; height = AV_RL16(buf+5) & 0x3fff; hscale = buf[4] >> 6; vscale = buf[6] >> 6; buf += 7; buf_size -= 7; if (hscale || vscale) av_log_missing_feature(s->avctx, "Upscaling", 1); s->update_golden = s->update_altref = VP56_FRAME_CURRENT; for (i = 0; i < 4; i++) for (j = 0; j < 16; j++) memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]], sizeof(s->prob->token[i][j])); memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c)); memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc)); memset(&s->segmentation, 0, sizeof(s->segmentation)); } if (!s->macroblocks_base || /* first frame */ width != s->avctx->width || height != s->avctx->height) { if ((ret = update_dimensions(s, width, height)) < 0) return ret; } ff_vp56_init_range_decoder(c, buf, header_size); buf += header_size; buf_size -= header_size; if (s->keyframe) { if (vp8_rac_get(c)) av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); vp8_rac_get(c); // whether we can skip clamping in dsp functions } if ((s->segmentation.enabled = vp8_rac_get(c))) parse_segment_info(s); else s->segmentation.update_map = 0; // FIXME: move this to some init function? s->filter.simple = vp8_rac_get(c); s->filter.level = vp8_rac_get_uint(c, 6); s->filter.sharpness = vp8_rac_get_uint(c, 3); if ((s->lf_delta.enabled = vp8_rac_get(c))) if (vp8_rac_get(c)) update_lf_deltas(s); if (setup_partitions(s, buf, buf_size)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); return AVERROR_INVALIDDATA; } get_quants(s); if (!s->keyframe) { update_refs(s); s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c); } // if we aren't saving this frame's probabilities for future frames, // make a copy of the current probabilities if (!(s->update_probabilities = vp8_rac_get(c))) s->prob[1] = s->prob[0]; s->update_last = s->keyframe || vp8_rac_get(c); for (i = 0; i < 4; i++) for (j = 0; j < 8; j++) for (k = 0; k < 3; k++) for (l = 0; l < NUM_DCT_TOKENS-1; l++) if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) { int prob = vp8_rac_get_uint(c, 8); for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++) s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob; } if ((s->mbskip_enabled = vp8_rac_get(c))) s->prob->mbskip = vp8_rac_get_uint(c, 8); if (!s->keyframe) { s->prob->intra = vp8_rac_get_uint(c, 8); s->prob->last = vp8_rac_get_uint(c, 8); s->prob->golden = vp8_rac_get_uint(c, 8); if (vp8_rac_get(c)) for (i = 0; i < 4; i++) s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8); if (vp8_rac_get(c)) for (i = 0; i < 3; i++) s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8); // 17.2 MV probability update for (i = 0; i < 2; i++) for (j = 0; j < 19; j++) if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j])) s->prob->mvc[i][j] = vp8_rac_get_nn(c); } return 0; } static av_always_inline void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src) { dst->x = av_clip(src->x, s->mv_min.x, s->mv_max.x); dst->y = av_clip(src->y, s->mv_min.y, s->mv_max.y); } /** * Motion vector coding, 17.1. */ static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) { int bit, x = 0; if (vp56_rac_get_prob_branchy(c, p[0])) { int i; for (i = 0; i < 3; i++) x += vp56_rac_get_prob(c, p[9 + i]) << i; for (i = 9; i > 3; i--) x += vp56_rac_get_prob(c, p[9 + i]) << i; if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) x += 8; } else { // small_mvtree const uint8_t *ps = p+2; bit = vp56_rac_get_prob(c, *ps); ps += 1 + 3*bit; x += 4*bit; bit = vp56_rac_get_prob(c, *ps); ps += 1 + bit; x += 2*bit; x += vp56_rac_get_prob(c, *ps); } return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; } static av_always_inline const uint8_t *get_submv_prob(uint32_t left, uint32_t top) { if (left == top) return vp8_submv_prob[4-!!left]; if (!top) return vp8_submv_prob[2]; return vp8_submv_prob[1-!!left]; } /** * Split motion vector prediction, 16.4. * @returns the number of motion vectors parsed (2, 4 or 16) */ static av_always_inline int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb) { int part_idx; int n, num; VP8Macroblock *top_mb = &mb[2]; VP8Macroblock *left_mb = &mb[-1]; const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning], *mbsplits_top = vp8_mbsplits[top_mb->partitioning], *mbsplits_cur, *firstidx; VP56mv *top_mv = top_mb->bmv; VP56mv *left_mv = left_mb->bmv; VP56mv *cur_mv = mb->bmv; if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) { if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) { part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]); } else { part_idx = VP8_SPLITMVMODE_8x8; } } else { part_idx = VP8_SPLITMVMODE_4x4; } num = vp8_mbsplit_count[part_idx]; mbsplits_cur = vp8_mbsplits[part_idx], firstidx = vp8_mbfirstidx[part_idx]; mb->partitioning = part_idx; for (n = 0; n < num; n++) { int k = firstidx[n]; uint32_t left, above; const uint8_t *submv_prob; if (!(k & 3)) left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]); else left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]); if (k <= 3) above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]); else above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]); submv_prob = get_submv_prob(left, above); if (vp56_rac_get_prob_branchy(c, submv_prob[0])) { if (vp56_rac_get_prob_branchy(c, submv_prob[1])) { if (vp56_rac_get_prob_branchy(c, submv_prob[2])) { mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]); mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]); } else { AV_ZERO32(&mb->bmv[n]); } } else { AV_WN32A(&mb->bmv[n], above); } } else { AV_WN32A(&mb->bmv[n], left); } } return num; } static av_always_inline void decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y) { VP8Macroblock *mb_edge[3] = { mb + 2 /* top */, mb - 1 /* left */, mb + 1 /* top-left */ }; enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; int idx = CNT_ZERO; int cur_sign_bias = s->sign_bias[mb->ref_frame]; int8_t *sign_bias = s->sign_bias; VP56mv near_mv[4]; uint8_t cnt[4] = { 0 }; VP56RangeCoder *c = &s->c; AV_ZERO32(&near_mv[0]); AV_ZERO32(&near_mv[1]); AV_ZERO32(&near_mv[2]); /* Process MB on top, left and top-left */ #define MV_EDGE_CHECK(n)\ {\ VP8Macroblock *edge = mb_edge[n];\ int edge_ref = edge->ref_frame;\ if (edge_ref != VP56_FRAME_CURRENT) {\ uint32_t mv = AV_RN32A(&edge->mv);\ if (mv) {\ if (cur_sign_bias != sign_bias[edge_ref]) {\ /* SWAR negate of the values in mv. */\ mv = ~mv;\ mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\ }\ if (!n || mv != AV_RN32A(&near_mv[idx]))\ AV_WN32A(&near_mv[++idx], mv);\ cnt[idx] += 1 + (n != 2);\ } else\ cnt[CNT_ZERO] += 1 + (n != 2);\ }\ } MV_EDGE_CHECK(0) MV_EDGE_CHECK(1) MV_EDGE_CHECK(2) mb->partitioning = VP8_SPLITMVMODE_NONE; if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) { mb->mode = VP8_MVMODE_MV; /* If we have three distinct MVs, merge first and last if they're the same */ if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT])) cnt[CNT_NEAREST] += 1; /* Swap near and nearest if necessary */ if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); } if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) { if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) { /* Choose the best mv out of 0,0 and the nearest mv */ clamp_mv(s, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]); cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + (mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + (mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) { mb->mode = VP8_MVMODE_SPLIT; mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1]; } else { mb->mv.y += read_mv_component(c, s->prob->mvc[0]); mb->mv.x += read_mv_component(c, s->prob->mvc[1]); mb->bmv[0] = mb->mv; } } else { clamp_mv(s, &mb->mv, &near_mv[CNT_NEAR]); mb->bmv[0] = mb->mv; } } else { clamp_mv(s, &mb->mv, &near_mv[CNT_NEAREST]); mb->bmv[0] = mb->mv; } } else { mb->mode = VP8_MVMODE_ZERO; AV_ZERO32(&mb->mv); mb->bmv[0] = mb->mv; } } static av_always_inline void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c, int mb_x, int keyframe) { uint8_t *intra4x4 = s->intra4x4_pred_mode_mb; if (keyframe) { int x, y; uint8_t* const top = s->intra4x4_pred_mode_top + 4 * mb_x; uint8_t* const left = s->intra4x4_pred_mode_left; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { const uint8_t *ctx; ctx = vp8_pred4x4_prob_intra[top[x]][left[y]]; *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); left[y] = top[x] = *intra4x4; intra4x4++; } } } else { int i; for (i = 0; i < 16; i++) intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter); } } static av_always_inline void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment, uint8_t *ref) { VP56RangeCoder *c = &s->c; if (s->segmentation.update_map) *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); else *segment = ref ? *ref : *segment; s->segment = *segment; mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0; if (s->keyframe) { mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); if (mb->mode == MODE_I4x4) { decode_intra4x4_modes(s, c, mb_x, 1); } else { const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u; AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes); AV_WN32A(s->intra4x4_pred_mode_left, modes); } s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); mb->ref_frame = VP56_FRAME_CURRENT; } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) { // inter MB, 16.2 if (vp56_rac_get_prob_branchy(c, s->prob->last)) mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN; else mb->ref_frame = VP56_FRAME_PREVIOUS; s->ref_count[mb->ref_frame-1]++; // motion vectors, 16.3 decode_mvs(s, mb, mb_x, mb_y); } else { // intra MB, 16.1 mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); if (mb->mode == MODE_I4x4) decode_intra4x4_modes(s, c, mb_x, 0); s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); mb->ref_frame = VP56_FRAME_CURRENT; mb->partitioning = VP8_SPLITMVMODE_NONE; AV_ZERO32(&mb->bmv[0]); } } #ifndef decode_block_coeffs_internal /** * @param c arithmetic bitstream reader context * @param block destination for block coefficients * @param probs probabilities to use when reading trees from the bitstream * @param i initial coeff index, 0 unless a separate DC block is coded * @param qmul array holding the dc/ac dequant factor at position 0/1 * @return 0 if no coeffs were decoded * otherwise, the index of the last coeff decoded plus one */ static int decode_block_coeffs_internal(VP56RangeCoder *c, DCTELEM block[16], uint8_t probs[16][3][NUM_DCT_TOKENS-1], int i, uint8_t *token_prob, int16_t qmul[2]) { goto skip_eob; do { int coeff; if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB return i; skip_eob: if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0 if (++i == 16) return i; // invalid input; blocks should end with EOB token_prob = probs[i][0]; goto skip_eob; } if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1 coeff = 1; token_prob = probs[i+1][1]; } else { if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4 coeff = vp56_rac_get_prob_branchy(c, token_prob[4]); if (coeff) coeff += vp56_rac_get_prob(c, token_prob[5]); coeff += 2; } else { // DCT_CAT* if (!vp56_rac_get_prob_branchy(c, token_prob[6])) { if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1 coeff = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]); } else { // DCT_CAT2 coeff = 7; coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1; coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]); } } else { // DCT_CAT3 and up int a = vp56_rac_get_prob(c, token_prob[8]); int b = vp56_rac_get_prob(c, token_prob[9+a]); int cat = (a<<1) + b; coeff = 3 + (8<<cat); coeff += vp8_rac_get_coeff(c, ff_vp8_dct_cat_prob[cat]); } } token_prob = probs[i+1][2]; } block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i]; } while (++i < 16); return i; } #endif /** * @param c arithmetic bitstream reader context * @param block destination for block coefficients * @param probs probabilities to use when reading trees from the bitstream * @param i initial coeff index, 0 unless a separate DC block is coded * @param zero_nhood the initial prediction context for number of surrounding * all-zero blocks (only left/top, so 0-2) * @param qmul array holding the dc/ac dequant factor at position 0/1 * @return 0 if no coeffs were decoded * otherwise, the index of the last coeff decoded plus one */ static av_always_inline int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], uint8_t probs[16][3][NUM_DCT_TOKENS-1], int i, int zero_nhood, int16_t qmul[2]) { uint8_t *token_prob = probs[i][zero_nhood]; if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB return 0; return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul); } static av_always_inline void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9]) { int i, x, y, luma_start = 0, luma_ctx = 3; int nnz_pred, nnz, nnz_total = 0; int segment = s->segment; int block_dc = 0; if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { nnz_pred = t_nnz[8] + l_nnz[8]; // decode DC values and do hadamard nnz = decode_block_coeffs(c, s->block_dc, s->prob->token[1], 0, nnz_pred, s->qmat[segment].luma_dc_qmul); l_nnz[8] = t_nnz[8] = !!nnz; if (nnz) { nnz_total += nnz; block_dc = 1; if (nnz == 1) s->vp8dsp.vp8_luma_dc_wht_dc(s->block, s->block_dc); else s->vp8dsp.vp8_luma_dc_wht(s->block, s->block_dc); } luma_start = 1; luma_ctx = 0; } // luma blocks for (y = 0; y < 4; y++) for (x = 0; x < 4; x++) { nnz_pred = l_nnz[y] + t_nnz[x]; nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, nnz_pred, s->qmat[segment].luma_qmul); // nnz+block_dc may be one more than the actual last index, but we don't care s->non_zero_count_cache[y][x] = nnz + block_dc; t_nnz[x] = l_nnz[y] = !!nnz; nnz_total += nnz; } // chroma blocks // TODO: what to do about dimensions? 2nd dim for luma is x, // but for chroma it's (y<<1)|x for (i = 4; i < 6; i++) for (y = 0; y < 2; y++) for (x = 0; x < 2; x++) { nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, nnz_pred, s->qmat[segment].chroma_qmul); s->non_zero_count_cache[i][(y<<1)+x] = nnz; t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; nnz_total += nnz; } // if there were no coded coeffs despite the macroblock not being marked skip, // we MUST not do the inner loop filter and should not do IDCT // Since skip isn't used for bitstream prediction, just manually set it. if (!nnz_total) mb->skip = 1; } static av_always_inline void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple) { AV_COPY128(top_border, src_y + 15*linesize); if (!simple) { AV_COPY64(top_border+16, src_cb + 7*uvlinesize); AV_COPY64(top_border+24, src_cr + 7*uvlinesize); } } static av_always_inline void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width, int simple, int xchg) { uint8_t *top_border_m1 = top_border-32; // for TL prediction src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; #define XCHG(a,b,xchg) do { \ if (xchg) AV_SWAP64(b,a); \ else AV_COPY64(b,a); \ } while (0) XCHG(top_border_m1+8, src_y-8, xchg); XCHG(top_border, src_y, xchg); XCHG(top_border+8, src_y+8, 1); if (mb_x < mb_width-1) XCHG(top_border+32, src_y+16, 1); // only copy chroma for normal loop filter // or to initialize the top row to 127 if (!simple || !mb_y) { XCHG(top_border_m1+16, src_cb-8, xchg); XCHG(top_border_m1+24, src_cr-8, xchg); XCHG(top_border+16, src_cb, 1); XCHG(top_border+24, src_cr, 1); } } static av_always_inline int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y) { if (!mb_x) { return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8; } else { return mb_y ? mode : LEFT_DC_PRED8x8; } } static av_always_inline int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y) { if (!mb_x) { return mb_y ? VERT_PRED8x8 : DC_129_PRED8x8; } else { return mb_y ? mode : HOR_PRED8x8; } } static av_always_inline int check_intra_pred8x8_mode(int mode, int mb_x, int mb_y) { if (mode == DC_PRED8x8) { return check_dc_pred8x8_mode(mode, mb_x, mb_y); } else { return mode; } } static av_always_inline int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y) { switch (mode) { case DC_PRED8x8: return check_dc_pred8x8_mode(mode, mb_x, mb_y); case VERT_PRED8x8: return !mb_y ? DC_127_PRED8x8 : mode; case HOR_PRED8x8: return !mb_x ? DC_129_PRED8x8 : mode; case PLANE_PRED8x8 /*TM*/: return check_tm_pred8x8_mode(mode, mb_x, mb_y); } return mode; } static av_always_inline int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y) { if (!mb_x) { return mb_y ? VERT_VP8_PRED : DC_129_PRED; } else { return mb_y ? mode : HOR_VP8_PRED; } } static av_always_inline int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf) { switch (mode) { case VERT_PRED: if (!mb_x && mb_y) { *copy_buf = 1; return mode; } /* fall-through */ case DIAG_DOWN_LEFT_PRED: case VERT_LEFT_PRED: return !mb_y ? DC_127_PRED : mode; case HOR_PRED: if (!mb_y) { *copy_buf = 1; return mode; } /* fall-through */ case HOR_UP_PRED: return !mb_x ? DC_129_PRED : mode; case TM_VP8_PRED: return check_tm_pred4x4_mode(mode, mb_x, mb_y); case DC_PRED: // 4x4 DC doesn't use the same "H.264-style" exceptions as 16x16/8x8 DC case DIAG_DOWN_RIGHT_PRED: case VERT_RIGHT_PRED: case HOR_DOWN_PRED: if (!mb_y || !mb_x) *copy_buf = 1; return mode; } return mode; } static av_always_inline void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { AVCodecContext *avctx = s->avctx; int x, y, mode, nnz; uint32_t tr; // for the first row, we need to run xchg_mb_border to init the top edge to 127 // otherwise, skip it if we aren't going to deblock if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y)) xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 1); if (mb->mode < MODE_I4x4) { if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // tested mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y); } else { mode = check_intra_pred8x8_mode(mb->mode, mb_x, mb_y); } s->hpc.pred16x16[mode](dst[0], s->linesize); } else { uint8_t *ptr = dst[0]; uint8_t *intra4x4 = s->intra4x4_pred_mode_mb; uint8_t tr_top[4] = { 127, 127, 127, 127 }; // all blocks on the right edge of the macroblock use bottom edge // the top macroblock for their topright edge uint8_t *tr_right = ptr - s->linesize + 16; // if we're on the right edge of the frame, said edge is extended // from the top macroblock if (!(!mb_y && avctx->flags & CODEC_FLAG_EMU_EDGE) && mb_x == s->mb_width-1) { tr = tr_right[-1]*0x01010101u; tr_right = (uint8_t *)&tr; } if (mb->skip) AV_ZERO128(s->non_zero_count_cache); for (y = 0; y < 4; y++) { uint8_t *topright = ptr + 4 - s->linesize; for (x = 0; x < 4; x++) { int copy = 0, linesize = s->linesize; uint8_t *dst = ptr+4*x; DECLARE_ALIGNED(4, uint8_t, copy_dst)[5*8]; if ((y == 0 || x == 3) && mb_y == 0 && avctx->flags & CODEC_FLAG_EMU_EDGE) { topright = tr_top; } else if (x == 3) topright = tr_right; if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // mb_x+x or mb_y+y is a hack but works mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, ©); if (copy) { dst = copy_dst + 12; linesize = 8; if (!(mb_y + y)) { copy_dst[3] = 127U; AV_WN32A(copy_dst+4, 127U * 0x01010101U); } else { AV_COPY32(copy_dst+4, ptr+4*x-s->linesize); if (!(mb_x + x)) { copy_dst[3] = 129U; } else { copy_dst[3] = ptr[4*x-s->linesize-1]; } } if (!(mb_x + x)) { copy_dst[11] = copy_dst[19] = copy_dst[27] = copy_dst[35] = 129U; } else { copy_dst[11] = ptr[4*x -1]; copy_dst[19] = ptr[4*x+s->linesize -1]; copy_dst[27] = ptr[4*x+s->linesize*2-1]; copy_dst[35] = ptr[4*x+s->linesize*3-1]; } } } else { mode = intra4x4[x]; } s->hpc.pred4x4[mode](dst, topright, linesize); if (copy) { AV_COPY32(ptr+4*x , copy_dst+12); AV_COPY32(ptr+4*x+s->linesize , copy_dst+20); AV_COPY32(ptr+4*x+s->linesize*2, copy_dst+28); AV_COPY32(ptr+4*x+s->linesize*3, copy_dst+36); } nnz = s->non_zero_count_cache[y][x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize); else s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize); } topright += 4; } ptr += 4*s->linesize; intra4x4 += 4; } } if (avctx->flags & CODEC_FLAG_EMU_EDGE) { mode = check_intra_pred8x8_mode_emuedge(s->chroma_pred_mode, mb_x, mb_y); } else { mode = check_intra_pred8x8_mode(s->chroma_pred_mode, mb_x, mb_y); } s->hpc.pred8x8[mode](dst[1], s->uvlinesize); s->hpc.pred8x8[mode](dst[2], s->uvlinesize); if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y)) xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 0); } static const uint8_t subpel_idx[3][8] = { { 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels, // also function pointer index { 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required { 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels }; /** * luma MC function * * @param s VP8 decoding context * @param dst target buffer for block data at block position * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block (16, 8 or 4) * @param block_h height of block (always same as block_w) * @param width width of src/dst plane data * @param height height of src/dst plane data * @param linesize size of a single line of plane data, including padding * @param mc_func motion compensation function pointers (bilinear or sixtap MC) */ static av_always_inline void vp8_mc_luma(VP8Context *s, uint8_t *dst, AVFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, int linesize, vp8_mc_func mc_func[3][3]) { uint8_t *src = ref->data[0]; if (AV_RN32A(mv)) { int mx = (mv->x << 1)&7, mx_idx = subpel_idx[0][mx]; int my = (mv->y << 1)&7, my_idx = subpel_idx[0][my]; x_off += mv->x >> 2; y_off += mv->y >> 2; // edge emulation ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0); src += y_off * linesize + x_off; if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { s->dsp.emulated_edge_mc(s->edge_emu_buffer, src - my_idx * linesize - mx_idx, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src = s->edge_emu_buffer + mx_idx + linesize * my_idx; } mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my); } else { ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0); mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0); } } /** * chroma MC function * * @param s VP8 decoding context * @param dst1 target buffer for block data at block position (U plane) * @param dst2 target buffer for block data at block position (V plane) * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block (16, 8 or 4) * @param block_h height of block (always same as block_w) * @param width width of src/dst plane data * @param height height of src/dst plane data * @param linesize size of a single line of plane data, including padding * @param mc_func motion compensation function pointers (bilinear or sixtap MC) */ static av_always_inline void vp8_mc_chroma(VP8Context *s, uint8_t *dst1, uint8_t *dst2, AVFrame *ref, const VP56mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, int linesize, vp8_mc_func mc_func[3][3]) { uint8_t *src1 = ref->data[1], *src2 = ref->data[2]; if (AV_RN32A(mv)) { int mx = mv->x&7, mx_idx = subpel_idx[0][mx]; int my = mv->y&7, my_idx = subpel_idx[0][my]; x_off += mv->x >> 3; y_off += mv->y >> 3; // edge emulation src1 += y_off * linesize + x_off; src2 += y_off * linesize + x_off; ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0); if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { s->dsp.emulated_edge_mc(s->edge_emu_buffer, src1 - my_idx * linesize - mx_idx, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src1 = s->edge_emu_buffer + mx_idx + linesize * my_idx; mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my); s->dsp.emulated_edge_mc(s->edge_emu_buffer, src2 - my_idx * linesize - mx_idx, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src2 = s->edge_emu_buffer + mx_idx + linesize * my_idx; mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my); } else { mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my); mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my); } } else { ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0); mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0); mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0); } } static av_always_inline void vp8_mc_part(VP8Context *s, uint8_t *dst[3], AVFrame *ref_frame, int x_off, int y_off, int bx_off, int by_off, int block_w, int block_h, int width, int height, VP56mv *mv) { VP56mv uvmv = *mv; /* Y */ vp8_mc_luma(s, dst[0] + by_off * s->linesize + bx_off, ref_frame, mv, x_off + bx_off, y_off + by_off, block_w, block_h, width, height, s->linesize, s->put_pixels_tab[block_w == 8]); /* U/V */ if (s->profile == 3) { uvmv.x &= ~7; uvmv.y &= ~7; } x_off >>= 1; y_off >>= 1; bx_off >>= 1; by_off >>= 1; width >>= 1; height >>= 1; block_w >>= 1; block_h >>= 1; vp8_mc_chroma(s, dst[1] + by_off * s->uvlinesize + bx_off, dst[2] + by_off * s->uvlinesize + bx_off, ref_frame, &uvmv, x_off + bx_off, y_off + by_off, block_w, block_h, width, height, s->uvlinesize, s->put_pixels_tab[1 + (block_w == 4)]); } /* Fetch pixels for estimated mv 4 macroblocks ahead. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */ static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref) { /* Don't prefetch refs that haven't been used very often this frame. */ if (s->ref_count[ref-1] > (mb_xy >> 5)) { int x_off = mb_x << 4, y_off = mb_y << 4; int mx = (mb->mv.x>>2) + x_off + 8; int my = (mb->mv.y>>2) + y_off; uint8_t **src= s->framep[ref]->data; int off= mx + (my + (mb_x&3)*4)*s->linesize + 64; /* For threading, a ff_thread_await_progress here might be useful, but * it actually slows down the decoder. Since a bad prefetch doesn't * generate bad decoder output, we don't run it here. */ s->dsp.prefetch(src[0]+off, s->linesize, 4); off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64; s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); } } /** * Apply motion vectors to prediction buffer, chapter 18. */ static av_always_inline void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { int x_off = mb_x << 4, y_off = mb_y << 4; int width = 16*s->mb_width, height = 16*s->mb_height; AVFrame *ref = s->framep[mb->ref_frame]; VP56mv *bmv = mb->bmv; switch (mb->partitioning) { case VP8_SPLITMVMODE_NONE: vp8_mc_part(s, dst, ref, x_off, y_off, 0, 0, 16, 16, width, height, &mb->mv); break; case VP8_SPLITMVMODE_4x4: { int x, y; VP56mv uvmv; /* Y */ for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { vp8_mc_luma(s, dst[0] + 4*y*s->linesize + x*4, ref, &bmv[4*y + x], 4*x + x_off, 4*y + y_off, 4, 4, width, height, s->linesize, s->put_pixels_tab[2]); } } /* U/V */ x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + mb->bmv[ 2*y * 4 + 2*x+1].x + mb->bmv[(2*y+1) * 4 + 2*x ].x + mb->bmv[(2*y+1) * 4 + 2*x+1].x; uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + mb->bmv[ 2*y * 4 + 2*x+1].y + mb->bmv[(2*y+1) * 4 + 2*x ].y + mb->bmv[(2*y+1) * 4 + 2*x+1].y; uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2; uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2; if (s->profile == 3) { uvmv.x &= ~7; uvmv.y &= ~7; } vp8_mc_chroma(s, dst[1] + 4*y*s->uvlinesize + x*4, dst[2] + 4*y*s->uvlinesize + x*4, ref, &uvmv, 4*x + x_off, 4*y + y_off, 4, 4, width, height, s->uvlinesize, s->put_pixels_tab[2]); } } break; } case VP8_SPLITMVMODE_16x8: vp8_mc_part(s, dst, ref, x_off, y_off, 0, 0, 16, 8, width, height, &bmv[0]); vp8_mc_part(s, dst, ref, x_off, y_off, 0, 8, 16, 8, width, height, &bmv[1]); break; case VP8_SPLITMVMODE_8x16: vp8_mc_part(s, dst, ref, x_off, y_off, 0, 0, 8, 16, width, height, &bmv[0]); vp8_mc_part(s, dst, ref, x_off, y_off, 8, 0, 8, 16, width, height, &bmv[1]); break; case VP8_SPLITMVMODE_8x8: vp8_mc_part(s, dst, ref, x_off, y_off, 0, 0, 8, 8, width, height, &bmv[0]); vp8_mc_part(s, dst, ref, x_off, y_off, 8, 0, 8, 8, width, height, &bmv[1]); vp8_mc_part(s, dst, ref, x_off, y_off, 0, 8, 8, 8, width, height, &bmv[2]); vp8_mc_part(s, dst, ref, x_off, y_off, 8, 8, 8, 8, width, height, &bmv[3]); break; } } static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb) { int x, y, ch; if (mb->mode != MODE_I4x4) { uint8_t *y_dst = dst[0]; for (y = 0; y < 4; y++) { uint32_t nnz4 = AV_RL32(s->non_zero_count_cache[y]); if (nnz4) { if (nnz4&~0x01010101) { for (x = 0; x < 4; x++) { if ((uint8_t)nnz4 == 1) s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize); else if((uint8_t)nnz4 > 1) s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize); nnz4 >>= 8; if (!nnz4) break; } } else { s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize); } } y_dst += 4*s->linesize; } } for (ch = 0; ch < 2; ch++) { uint32_t nnz4 = AV_RL32(s->non_zero_count_cache[4+ch]); if (nnz4) { uint8_t *ch_dst = dst[1+ch]; if (nnz4&~0x01010101) { for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { if ((uint8_t)nnz4 == 1) s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize); else if((uint8_t)nnz4 > 1) s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize); nnz4 >>= 8; if (!nnz4) goto chroma_idct_end; } ch_dst += 4*s->uvlinesize; } } else { s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize); } } chroma_idct_end: ; } } static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f ) { int interior_limit, filter_level; if (s->segmentation.enabled) { filter_level = s->segmentation.filter_level[s->segment]; if (!s->segmentation.absolute_vals) filter_level += s->filter.level; } else filter_level = s->filter.level; if (s->lf_delta.enabled) { filter_level += s->lf_delta.ref[mb->ref_frame]; filter_level += s->lf_delta.mode[mb->mode]; } filter_level = av_clip_uintp2(filter_level, 6); interior_limit = filter_level; if (s->filter.sharpness) { interior_limit >>= (s->filter.sharpness + 3) >> 2; interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); } interior_limit = FFMAX(interior_limit, 1); f->filter_level = filter_level; f->inner_limit = interior_limit; f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT; } static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y) { int mbedge_lim, bedge_lim, hev_thresh; int filter_level = f->filter_level; int inner_limit = f->inner_limit; int inner_filter = f->inner_filter; int linesize = s->linesize; int uvlinesize = s->uvlinesize; static const uint8_t hev_thresh_lut[2][64] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } }; if (!filter_level) return; bedge_lim = 2*filter_level + inner_limit; mbedge_lim = bedge_lim + 4; hev_thresh = hev_thresh_lut[s->keyframe][filter_level]; if (mb_x) { s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize, mbedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize, mbedge_lim, inner_limit, hev_thresh); } if (inner_filter) { s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, uvlinesize, bedge_lim, inner_limit, hev_thresh); } if (mb_y) { s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize, mbedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize, mbedge_lim, inner_limit, hev_thresh); } if (inner_filter) { s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize, linesize, bedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize, dst[2] + 4 * uvlinesize, uvlinesize, bedge_lim, inner_limit, hev_thresh); } } static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y) { int mbedge_lim, bedge_lim; int filter_level = f->filter_level; int inner_limit = f->inner_limit; int inner_filter = f->inner_filter; int linesize = s->linesize; if (!filter_level) return; bedge_lim = 2*filter_level + inner_limit; mbedge_lim = bedge_lim + 4; if (mb_x) s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim); if (inner_filter) { s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim); } if (mb_y) s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim); if (inner_filter) { s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim); } } static void filter_mb_row(VP8Context *s, AVFrame *curframe, int mb_y) { VP8FilterStrength *f = s->filter_strength; uint8_t *dst[3] = { curframe->data[0] + 16*mb_y*s->linesize, curframe->data[1] + 8*mb_y*s->uvlinesize, curframe->data[2] + 8*mb_y*s->uvlinesize }; int mb_x; for (mb_x = 0; mb_x < s->mb_width; mb_x++) { backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); filter_mb(s, dst, f++, mb_x, mb_y); dst[0] += 16; dst[1] += 8; dst[2] += 8; } } static void filter_mb_row_simple(VP8Context *s, AVFrame *curframe, int mb_y) { VP8FilterStrength *f = s->filter_strength; uint8_t *dst = curframe->data[0] + 16*mb_y*s->linesize; int mb_x; for (mb_x = 0; mb_x < s->mb_width; mb_x++) { backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1); filter_mb_simple(s, dst, f++, mb_x, mb_y); dst += 16; } } static void release_queued_segmaps(VP8Context *s, int is_close) { int leave_behind = is_close ? 0 : !s->maps_are_invalid; while (s->num_maps_to_be_freed > leave_behind) av_freep(&s->segmentation_maps[--s->num_maps_to_be_freed]); s->maps_are_invalid = 0; } static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { VP8Context *s = avctx->priv_data; int ret, mb_x, mb_y, i, y, referenced; enum AVDiscard skip_thresh; AVFrame *av_uninit(curframe), *prev_frame; release_queued_segmaps(s, 0); if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) goto err; prev_frame = s->framep[VP56_FRAME_CURRENT]; referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT || s->update_altref == VP56_FRAME_CURRENT; skip_thresh = !referenced ? AVDISCARD_NONREF : !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; if (avctx->skip_frame >= skip_thresh) { s->invisible = 1; memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4); goto skip_decode; } s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh; // release no longer referenced frames for (i = 0; i < 5; i++) if (s->frames[i].data[0] && &s->frames[i] != prev_frame && &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) vp8_release_frame(s, &s->frames[i], 1, 0); // find a free buffer for (i = 0; i < 5; i++) if (&s->frames[i] != prev_frame && &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; break; } if (i == 5) { av_log(avctx, AV_LOG_FATAL, "Ran out of free frames!\n"); abort(); } if (curframe->data[0]) vp8_release_frame(s, curframe, 1, 0); // Given that arithmetic probabilities are updated every frame, it's quite likely // that the values we have on a random interframe are complete junk if we didn't // start decode on a keyframe. So just don't display anything rather than junk. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] || !s->framep[VP56_FRAME_GOLDEN] || !s->framep[VP56_FRAME_GOLDEN2])) { av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); ret = AVERROR_INVALIDDATA; goto err; } curframe->key_frame = s->keyframe; curframe->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; curframe->reference = referenced ? 3 : 0; if ((ret = vp8_alloc_frame(s, curframe))) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n"); goto err; } // check if golden and altref are swapped if (s->update_altref != VP56_FRAME_NONE) { s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; } else { s->next_framep[VP56_FRAME_GOLDEN2] = s->framep[VP56_FRAME_GOLDEN2]; } if (s->update_golden != VP56_FRAME_NONE) { s->next_framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; } else { s->next_framep[VP56_FRAME_GOLDEN] = s->framep[VP56_FRAME_GOLDEN]; } if (s->update_last) { s->next_framep[VP56_FRAME_PREVIOUS] = curframe; } else { s->next_framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_PREVIOUS]; } s->next_framep[VP56_FRAME_CURRENT] = curframe; ff_thread_finish_setup(avctx); s->linesize = curframe->linesize[0]; s->uvlinesize = curframe->linesize[1]; if (!s->edge_emu_buffer) s->edge_emu_buffer = av_malloc(21*s->linesize); memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); /* Zero macroblock structures for top/top-left prediction from outside the frame. */ memset(s->macroblocks + s->mb_height*2 - 1, 0, (s->mb_width+1)*sizeof(*s->macroblocks)); // top edge of 127 for intra prediction if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) { s->top_border[0][15] = s->top_border[0][23] = 127; memset(s->top_border[1]-1, 127, s->mb_width*sizeof(*s->top_border)+1); } memset(s->ref_count, 0, sizeof(s->ref_count)); if (s->keyframe) memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width*4); #define MARGIN (16 << 2) s->mv_min.y = -MARGIN; s->mv_max.y = ((s->mb_height - 1) << 6) + MARGIN; for (mb_y = 0; mb_y < s->mb_height; mb_y++) { VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)]; VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2; int mb_xy = mb_y*s->mb_width; uint8_t *dst[3] = { curframe->data[0] + 16*mb_y*s->linesize, curframe->data[1] + 8*mb_y*s->uvlinesize, curframe->data[2] + 8*mb_y*s->uvlinesize }; memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock memset(s->left_nnz, 0, sizeof(s->left_nnz)); AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101); // left edge of 129 for intra prediction if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) { for (i = 0; i < 3; i++) for (y = 0; y < 16>>!!i; y++) dst[i][y*curframe->linesize[i]-1] = 129; if (mb_y == 1) // top left edge is also 129 s->top_border[0][15] = s->top_border[0][23] = s->top_border[0][31] = 129; } s->mv_min.x = -MARGIN; s->mv_max.x = ((s->mb_width - 1) << 6) + MARGIN; if (prev_frame && s->segmentation.enabled && !s->segmentation.update_map) ff_thread_await_progress(prev_frame, mb_y, 0); for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { /* Prefetch the current frame, 4 MBs ahead */ s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4); s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2); decode_mb_mode(s, mb, mb_x, mb_y, curframe->ref_index[0] + mb_xy, prev_frame && prev_frame->ref_index[0] ? prev_frame->ref_index[0] + mb_xy : NULL); prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS); if (!mb->skip) decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); if (mb->mode <= MODE_I4x4) intra_predict(s, dst, mb, mb_x, mb_y); else inter_predict(s, dst, mb, mb_x, mb_y); prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN); if (!mb->skip) { idct_mb(s, dst, mb); } else { AV_ZERO64(s->left_nnz); AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned // Reset DC block predictors if they would exist if the mb had coefficients if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { s->left_nnz[8] = 0; s->top_nnz[mb_x][8] = 0; } } if (s->deblock_filter) filter_level_for_mb(s, mb, &s->filter_strength[mb_x]); prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2); dst[0] += 16; dst[1] += 8; dst[2] += 8; s->mv_min.x -= 64; s->mv_max.x -= 64; } if (s->deblock_filter) { if (s->filter.simple) filter_mb_row_simple(s, curframe, mb_y); else filter_mb_row(s, curframe, mb_y); } s->mv_min.y -= 64; s->mv_max.y -= 64; ff_thread_report_progress(curframe, mb_y, 0); } ff_thread_report_progress(curframe, INT_MAX, 0); memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4); skip_decode: // if future frames don't use the updated probabilities, // reset them to the values we saved if (!s->update_probabilities) s->prob[0] = s->prob[1]; if (!s->invisible) { *(AVFrame*)data = *curframe; *data_size = sizeof(AVFrame); } return avpkt->size; err: memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4); return ret; } static av_cold int vp8_decode_init(AVCodecContext *avctx) { VP8Context *s = avctx->priv_data; s->avctx = avctx; avctx->pix_fmt = PIX_FMT_YUV420P; ff_dsputil_init(&s->dsp, avctx); ff_h264_pred_init(&s->hpc, CODEC_ID_VP8, 8, 1); ff_vp8dsp_init(&s->vp8dsp); return 0; } static av_cold int vp8_decode_free(AVCodecContext *avctx) { vp8_decode_flush_impl(avctx, 0, 1, 1); release_queued_segmaps(avctx->priv_data, 1); return 0; } static av_cold int vp8_decode_init_thread_copy(AVCodecContext *avctx) { VP8Context *s = avctx->priv_data; s->avctx = avctx; return 0; } #define REBASE(pic) \ pic ? pic - &s_src->frames[0] + &s->frames[0] : NULL static int vp8_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { VP8Context *s = dst->priv_data, *s_src = src->priv_data; if (s->macroblocks_base && (s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) { free_buffers(s); s->maps_are_invalid = 1; } s->prob[0] = s_src->prob[!s_src->update_probabilities]; s->segmentation = s_src->segmentation; s->lf_delta = s_src->lf_delta; memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias)); memcpy(&s->frames, &s_src->frames, sizeof(s->frames)); s->framep[0] = REBASE(s_src->next_framep[0]); s->framep[1] = REBASE(s_src->next_framep[1]); s->framep[2] = REBASE(s_src->next_framep[2]); s->framep[3] = REBASE(s_src->next_framep[3]); return 0; } AVCodec ff_vp8_decoder = { .name = "vp8", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_VP8, .priv_data_size = sizeof(VP8Context), .init = vp8_decode_init, .close = vp8_decode_free, .decode = vp8_decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS, .flush = vp8_decode_flush, .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"), .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp8_decode_init_thread_copy), .update_thread_context = ONLY_IF_THREADS_ENABLED(vp8_decode_update_thread_context), };