/* * Rate control for video encoders * * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Rate control for video encoders. */ #include "libavutil/attributes.h" #include "avcodec.h" #include "ratecontrol.h" #include "mpegvideo.h" #include "libavutil/eval.h" #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them. #include <assert.h> #ifndef M_E #define M_E 2.718281828 #endif static int init_pass2(MpegEncContext *s); static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num); void ff_write_pass1_stats(MpegEncContext *s) { snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d " "fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n", s->current_picture_ptr->f.display_picture_number, s->current_picture_ptr->f.coded_picture_number, s->pict_type, s->current_picture.f.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits, s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits); } static double get_fps(AVCodecContext *avctx) { return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1); } static inline double qp2bits(RateControlEntry *rce, double qp) { if (qp <= 0.0) { av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n"); } return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp; } static inline double bits2qp(RateControlEntry *rce, double bits) { if (bits < 0.9) { av_log(NULL, AV_LOG_ERROR, "bits<0.9\n"); } return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits; } av_cold int ff_rate_control_init(MpegEncContext *s) { RateControlContext *rcc = &s->rc_context; int i, res; static const char * const const_names[] = { "PI", "E", "iTex", "pTex", "tex", "mv", "fCode", "iCount", "mcVar", "var", "isI", "isP", "isB", "avgQP", "qComp", #if 0 "lastIQP", "lastPQP", "lastBQP", "nextNonBQP", #endif "avgIITex", "avgPITex", "avgPPTex", "avgBPTex", "avgTex", NULL }; static double (* const func1[])(void *, double) = { (void *)bits2qp, (void *)qp2bits, NULL }; static const char * const func1_names[] = { "bits2qp", "qp2bits", NULL }; emms_c(); if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) { if (s->avctx->rc_max_rate) { s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0); } else s->avctx->rc_max_available_vbv_use = 1.0; } res = av_expr_parse(&rcc->rc_eq_eval, s->avctx->rc_eq ? s->avctx->rc_eq : "tex^qComp", const_names, func1_names, func1, NULL, NULL, 0, s->avctx); if (res < 0) { av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->avctx->rc_eq); return res; } for (i = 0; i < 5; i++) { rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0; rcc->pred[i].count = 1.0; rcc->pred[i].decay = 0.4; rcc->i_cplx_sum [i] = rcc->p_cplx_sum [i] = rcc->mv_bits_sum[i] = rcc->qscale_sum [i] = rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5; } rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy; if (!rcc->buffer_index) rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4; if (s->flags & CODEC_FLAG_PASS2) { int i; char *p; /* find number of pics */ p = s->avctx->stats_in; for (i = -1; p; i++) p = strchr(p + 1, ';'); i += s->max_b_frames; if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry)) return -1; rcc->entry = av_mallocz(i * sizeof(RateControlEntry)); rcc->num_entries = i; /* init all to skipped p frames * (with b frames we might have a not encoded frame at the end FIXME) */ for (i = 0; i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P; rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2; rce->misc_bits = s->mb_num + 10; rce->mb_var_sum = s->mb_num * 100; } /* read stats */ p = s->avctx->stats_in; for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) { RateControlEntry *rce; int picture_number; int e; char *next; next = strchr(p, ';'); if (next) { (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write next++; } e = sscanf(p, " in:%d ", &picture_number); assert(picture_number >= 0); assert(picture_number < rcc->num_entries); rce = &rcc->entry[picture_number]; e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d", &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits, &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits); if (e != 14) { av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); return -1; } p = next; } if (init_pass2(s) < 0) return -1; // FIXME maybe move to end if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) { #if CONFIG_LIBXVID return ff_xvid_rate_control_init(s); #else av_log(s->avctx, AV_LOG_ERROR, "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n"); return -1; #endif } } if (!(s->flags & CODEC_FLAG_PASS2)) { rcc->short_term_qsum = 0.001; rcc->short_term_qcount = 0.001; rcc->pass1_rc_eq_output_sum = 0.001; rcc->pass1_wanted_bits = 0.001; if (s->avctx->qblur > 1.0) { av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n"); return -1; } /* init stuff with the user specified complexity */ if (s->avctx->rc_initial_cplx) { for (i = 0; i < 60 * 30; i++) { double bits = s->avctx->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num; RateControlEntry rce; if (i % ((s->gop_size + 3) / 4) == 0) rce.pict_type = AV_PICTURE_TYPE_I; else if (i % (s->max_b_frames + 1)) rce.pict_type = AV_PICTURE_TYPE_B; else rce.pict_type = AV_PICTURE_TYPE_P; rce.new_pict_type = rce.pict_type; rce.mc_mb_var_sum = bits * s->mb_num / 100000; rce.mb_var_sum = s->mb_num; rce.qscale = FF_QP2LAMBDA * 2; rce.f_code = 2; rce.b_code = 1; rce.misc_bits = 1; if (s->pict_type == AV_PICTURE_TYPE_I) { rce.i_count = s->mb_num; rce.i_tex_bits = bits; rce.p_tex_bits = 0; rce.mv_bits = 0; } else { rce.i_count = 0; // FIXME we do know this approx rce.i_tex_bits = 0; rce.p_tex_bits = bits * 0.9; rce.mv_bits = bits * 0.1; } rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale; rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale; rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits; rcc->frame_count[rce.pict_type]++; get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i); // FIXME misbehaves a little for variable fps rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx); } } } return 0; } av_cold void ff_rate_control_uninit(MpegEncContext *s) { RateControlContext *rcc = &s->rc_context; emms_c(); av_expr_free(rcc->rc_eq_eval); av_freep(&rcc->entry); #if CONFIG_LIBXVID if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) ff_xvid_rate_control_uninit(s); #endif } int ff_vbv_update(MpegEncContext *s, int frame_size) { RateControlContext *rcc = &s->rc_context; const double fps = get_fps(s->avctx); const int buffer_size = s->avctx->rc_buffer_size; const double min_rate = s->avctx->rc_min_rate / fps; const double max_rate = s->avctx->rc_max_rate / fps; av_dlog(s, "%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate); if (buffer_size) { int left; rcc->buffer_index -= frame_size; if (rcc->buffer_index < 0) { av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n"); if (frame_size > max_rate && s->qscale == s->avctx->qmax) { av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n"); } rcc->buffer_index = 0; } left = buffer_size - rcc->buffer_index - 1; rcc->buffer_index += av_clip(left, min_rate, max_rate); if (rcc->buffer_index > buffer_size) { int stuffing = ceil((rcc->buffer_index - buffer_size) / 8); if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4) stuffing = 4; rcc->buffer_index -= 8 * stuffing; if (s->avctx->debug & FF_DEBUG_RC) av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing); return stuffing; } } return 0; } /** * Modify the bitrate curve from pass1 for one frame. */ static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num) { RateControlContext *rcc = &s->rc_context; AVCodecContext *a = s->avctx; const int pict_type = rce->new_pict_type; const double mb_num = s->mb_num; double q, bits; int i; double const_values[] = { M_PI, M_E, rce->i_tex_bits * rce->qscale, rce->p_tex_bits * rce->qscale, (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale, rce->mv_bits / mb_num, rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code, rce->i_count / mb_num, rce->mc_mb_var_sum / mb_num, rce->mb_var_sum / mb_num, rce->pict_type == AV_PICTURE_TYPE_I, rce->pict_type == AV_PICTURE_TYPE_P, rce->pict_type == AV_PICTURE_TYPE_B, rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type], a->qcompress, #if 0 rcc->last_qscale_for[AV_PICTURE_TYPE_I], rcc->last_qscale_for[AV_PICTURE_TYPE_P], rcc->last_qscale_for[AV_PICTURE_TYPE_B], rcc->next_non_b_qscale, #endif rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I], rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P], rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B], (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type], 0 }; bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce); if (isnan(bits)) { av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->avctx->rc_eq); return -1; } rcc->pass1_rc_eq_output_sum += bits; bits *= rate_factor; if (bits < 0.0) bits = 0.0; bits += 1.0; // avoid 1/0 issues /* user override */ for (i = 0; i < s->avctx->rc_override_count; i++) { RcOverride *rco = s->avctx->rc_override; if (rco[i].start_frame > frame_num) continue; if (rco[i].end_frame < frame_num) continue; if (rco[i].qscale) bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it? else bits *= rco[i].quality_factor; } q = bits2qp(rce, bits); /* I/B difference */ if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0) q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset; else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0) q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset; if (q < 1) q = 1; return q; } static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q) { RateControlContext *rcc = &s->rc_context; AVCodecContext *a = s->avctx; const int pict_type = rce->new_pict_type; const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P]; const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type]; if (pict_type == AV_PICTURE_TYPE_I && (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P)) q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset; else if (pict_type == AV_PICTURE_TYPE_B && a->b_quant_factor > 0.0) q = last_non_b_q * a->b_quant_factor + a->b_quant_offset; if (q < 1) q = 1; /* last qscale / qdiff stuff */ if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) { double last_q = rcc->last_qscale_for[pict_type]; const int maxdiff = FF_QP2LAMBDA * a->max_qdiff; if (q > last_q + maxdiff) q = last_q + maxdiff; else if (q < last_q - maxdiff) q = last_q - maxdiff; } rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring if (pict_type != AV_PICTURE_TYPE_B) rcc->last_non_b_pict_type = pict_type; return q; } /** * Get the qmin & qmax for pict_type. */ static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type) { int qmin = s->avctx->lmin; int qmax = s->avctx->lmax; assert(qmin <= qmax); switch (pict_type) { case AV_PICTURE_TYPE_B: qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5); break; case AV_PICTURE_TYPE_I: qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5); break; } qmin = av_clip(qmin, 1, FF_LAMBDA_MAX); qmax = av_clip(qmax, 1, FF_LAMBDA_MAX); if (qmax < qmin) qmax = qmin; *qmin_ret = qmin; *qmax_ret = qmax; } static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num) { RateControlContext *rcc = &s->rc_context; const double buffer_size = s->avctx->rc_buffer_size; const double fps = get_fps(s->avctx); const double min_rate = s->avctx->rc_min_rate / fps; const double max_rate = s->avctx->rc_max_rate / fps; const int pict_type = rce->new_pict_type; int qmin, qmax; get_qminmax(&qmin, &qmax, s, pict_type); /* modulation */ if (s->avctx->rc_qmod_freq && frame_num % s->avctx->rc_qmod_freq == 0 && pict_type == AV_PICTURE_TYPE_P) q *= s->avctx->rc_qmod_amp; /* buffer overflow/underflow protection */ if (buffer_size) { double expected_size = rcc->buffer_index; double q_limit; if (min_rate) { double d = 2 * (buffer_size - expected_size) / buffer_size; if (d > 1.0) d = 1.0; else if (d < 0.0001) d = 0.0001; q *= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity); q_limit = bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index) * s->avctx->rc_min_vbv_overflow_use, 1)); if (q > q_limit) { if (s->avctx->debug & FF_DEBUG_RC) av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); q = q_limit; } } if (max_rate) { double d = 2 * expected_size / buffer_size; if (d > 1.0) d = 1.0; else if (d < 0.0001) d = 0.0001; q /= pow(d, 1.0 / s->avctx->rc_buffer_aggressivity); q_limit = bits2qp(rce, FFMAX(rcc->buffer_index * s->avctx->rc_max_available_vbv_use, 1)); if (q < q_limit) { if (s->avctx->debug & FF_DEBUG_RC) av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit); q = q_limit; } } } av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n", q, max_rate, min_rate, buffer_size, rcc->buffer_index, s->avctx->rc_buffer_aggressivity); if (s->avctx->rc_qsquish == 0.0 || qmin == qmax) { if (q < qmin) q = qmin; else if (q > qmax) q = qmax; } else { double min2 = log(qmin); double max2 = log(qmax); q = log(q); q = (q - min2) / (max2 - min2) - 0.5; q *= -4.0; q = 1.0 / (1.0 + exp(q)); q = q * (max2 - min2) + min2; q = exp(q); } return q; } // ---------------------------------- // 1 Pass Code static double predict_size(Predictor *p, double q, double var) { return p->coeff * var / (q * p->count); } static void update_predictor(Predictor *p, double q, double var, double size) { double new_coeff = size * q / (var + 1); if (var < 10) return; p->count *= p->decay; p->coeff *= p->decay; p->count++; p->coeff += new_coeff; } static void adaptive_quantization(MpegEncContext *s, double q) { int i; const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0); const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0); const float temp_cplx_masking = s->avctx->temporal_cplx_masking; const float spatial_cplx_masking = s->avctx->spatial_cplx_masking; const float p_masking = s->avctx->p_masking; const float border_masking = s->avctx->border_masking; float bits_sum = 0.0; float cplx_sum = 0.0; float *cplx_tab = s->cplx_tab; float *bits_tab = s->bits_tab; const int qmin = s->avctx->mb_lmin; const int qmax = s->avctx->mb_lmax; Picture *const pic = &s->current_picture; const int mb_width = s->mb_width; const int mb_height = s->mb_height; for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow() float spat_cplx = sqrt(pic->mb_var[mb_xy]); const int lumi = pic->mb_mean[mb_xy]; float bits, cplx, factor; int mb_x = mb_xy % s->mb_stride; int mb_y = mb_xy / s->mb_stride; int mb_distance; float mb_factor = 0.0; if (spat_cplx < 4) spat_cplx = 4; // FIXME finetune if (temp_cplx < 4) temp_cplx = 4; // FIXME finetune if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode cplx = spat_cplx; factor = 1.0 + p_masking; } else { cplx = temp_cplx; factor = pow(temp_cplx, -temp_cplx_masking); } factor *= pow(spat_cplx, -spatial_cplx_masking); if (lumi > 127) factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking); else factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking); if (mb_x < mb_width / 5) { mb_distance = mb_width / 5 - mb_x; mb_factor = (float)mb_distance / (float)(mb_width / 5); } else if (mb_x > 4 * mb_width / 5) { mb_distance = mb_x - 4 * mb_width / 5; mb_factor = (float)mb_distance / (float)(mb_width / 5); } if (mb_y < mb_height / 5) { mb_distance = mb_height / 5 - mb_y; mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height / 5)); } else if (mb_y > 4 * mb_height / 5) { mb_distance = mb_y - 4 * mb_height / 5; mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height / 5)); } factor *= 1.0 - border_masking * mb_factor; if (factor < 0.00001) factor = 0.00001; bits = cplx * factor; cplx_sum += cplx; bits_sum += bits; cplx_tab[i] = cplx; bits_tab[i] = bits; } /* handle qmin/qmax clipping */ if (s->flags & CODEC_FLAG_NORMALIZE_AQP) { float factor = bits_sum / cplx_sum; for (i = 0; i < s->mb_num; i++) { float newq = q * cplx_tab[i] / bits_tab[i]; newq *= factor; if (newq > qmax) { bits_sum -= bits_tab[i]; cplx_sum -= cplx_tab[i] * q / qmax; } else if (newq < qmin) { bits_sum -= bits_tab[i]; cplx_sum -= cplx_tab[i] * q / qmin; } } if (bits_sum < 0.001) bits_sum = 0.001; if (cplx_sum < 0.001) cplx_sum = 0.001; } for (i = 0; i < s->mb_num; i++) { const int mb_xy = s->mb_index2xy[i]; float newq = q * cplx_tab[i] / bits_tab[i]; int intq; if (s->flags & CODEC_FLAG_NORMALIZE_AQP) { newq *= bits_sum / cplx_sum; } intq = (int)(newq + 0.5); if (intq > qmax) intq = qmax; else if (intq < qmin) intq = qmin; s->lambda_table[mb_xy] = intq; } } void ff_get_2pass_fcode(MpegEncContext *s) { RateControlContext *rcc = &s->rc_context; RateControlEntry *rce = &rcc->entry[s->picture_number]; s->f_code = rce->f_code; s->b_code = rce->b_code; } // FIXME rd or at least approx for dquant float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run) { float q; int qmin, qmax; float br_compensation; double diff; double short_term_q; double fps; int picture_number = s->picture_number; int64_t wanted_bits; RateControlContext *rcc = &s->rc_context; AVCodecContext *a = s->avctx; RateControlEntry local_rce, *rce; double bits; double rate_factor; int var; const int pict_type = s->pict_type; Picture * const pic = &s->current_picture; emms_c(); #if CONFIG_LIBXVID if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) return ff_xvid_rate_estimate_qscale(s, dry_run); #endif get_qminmax(&qmin, &qmax, s, pict_type); fps = get_fps(s->avctx); /* update predictors */ if (picture_number > 2 && !dry_run) { const int last_var = s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum; av_assert1(s->frame_bits >= s->stuffing_bits); update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits - s->stuffing_bits); } if (s->flags & CODEC_FLAG_PASS2) { assert(picture_number >= 0); if (picture_number >= rcc->num_entries) { av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n"); return -1; } rce = &rcc->entry[picture_number]; wanted_bits = rce->expected_bits; } else { Picture *dts_pic; rce = &local_rce; /* FIXME add a dts field to AVFrame and ensure it is set and use it * here instead of reordering but the reordering is simpler for now * until H.264 B-pyramid must be handled. */ if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) dts_pic = s->current_picture_ptr; else dts_pic = s->last_picture_ptr; if (!dts_pic || dts_pic->f.pts == AV_NOPTS_VALUE) wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps); else wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f.pts / fps); } diff = s->total_bits - wanted_bits; br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance; if (br_compensation <= 0.0) br_compensation = 0.001; var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum; short_term_q = 0; /* avoid warning */ if (s->flags & CODEC_FLAG_PASS2) { if (pict_type != AV_PICTURE_TYPE_I) assert(pict_type == rce->new_pict_type); q = rce->new_qscale / br_compensation; av_dlog(s, "%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type); } else { rce->pict_type = rce->new_pict_type = pict_type; rce->mc_mb_var_sum = pic->mc_mb_var_sum; rce->mb_var_sum = pic->mb_var_sum; rce->qscale = FF_QP2LAMBDA * 2; rce->f_code = s->f_code; rce->b_code = s->b_code; rce->misc_bits = 1; bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var)); if (pict_type == AV_PICTURE_TYPE_I) { rce->i_count = s->mb_num; rce->i_tex_bits = bits; rce->p_tex_bits = 0; rce->mv_bits = 0; } else { rce->i_count = 0; // FIXME we do know this approx rce->i_tex_bits = 0; rce->p_tex_bits = bits * 0.9; rce->mv_bits = bits * 0.1; } rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale; rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale; rcc->mv_bits_sum[pict_type] += rce->mv_bits; rcc->frame_count[pict_type]++; bits = rce->i_tex_bits + rce->p_tex_bits; rate_factor = rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum * br_compensation; q = get_qscale(s, rce, rate_factor, picture_number); if (q < 0) return -1; assert(q > 0.0); q = get_diff_limited_q(s, rce, q); assert(q > 0.0); // FIXME type dependent blur like in 2-pass if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) { rcc->short_term_qsum *= a->qblur; rcc->short_term_qcount *= a->qblur; rcc->short_term_qsum += q; rcc->short_term_qcount++; q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount; } assert(q > 0.0); q = modify_qscale(s, rce, q, picture_number); rcc->pass1_wanted_bits += s->bit_rate / fps; assert(q > 0.0); } if (s->avctx->debug & FF_DEBUG_RC) { av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f " "size:%d var:%d/%d br:%d fps:%d\n", av_get_picture_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits / 1000, (int)s->total_bits / 1000, br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate / 1000, (int)fps); } if (q < qmin) q = qmin; else if (q > qmax) q = qmax; if (s->adaptive_quant) adaptive_quantization(s, q); else q = (int)(q + 0.5); if (!dry_run) { rcc->last_qscale = q; rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum; rcc->last_mb_var_sum = pic->mb_var_sum; } return q; } // ---------------------------------------------- // 2-Pass code static int init_pass2(MpegEncContext *s) { RateControlContext *rcc = &s->rc_context; AVCodecContext *a = s->avctx; int i, toobig; double fps = get_fps(s->avctx); double complexity[5] = { 0 }; // approximate bits at quant=1 uint64_t const_bits[5] = { 0 }; // quantizer independent bits uint64_t all_const_bits; uint64_t all_available_bits = (uint64_t)(s->bit_rate * (double)rcc->num_entries / fps); double rate_factor = 0; double step; const int filter_size = (int)(a->qblur * 4) | 1; double expected_bits = 0; // init to silence gcc warning double *qscale, *blurred_qscale, qscale_sum; /* find complexity & const_bits & decide the pict_types */ for (i = 0; i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; rce->new_pict_type = rce->pict_type; rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits; rcc->frame_count[rce->pict_type]++; complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale; const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits; } all_const_bits = const_bits[AV_PICTURE_TYPE_I] + const_bits[AV_PICTURE_TYPE_P] + const_bits[AV_PICTURE_TYPE_B]; if (all_available_bits < all_const_bits) { av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n"); return -1; } qscale = av_malloc(sizeof(double) * rcc->num_entries); blurred_qscale = av_malloc(sizeof(double) * rcc->num_entries); toobig = 0; for (step = 256 * 256; step > 0.0000001; step *= 0.5) { expected_bits = 0; rate_factor += step; rcc->buffer_index = s->avctx->rc_buffer_size / 2; /* find qscale */ for (i = 0; i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i); rcc->last_qscale_for[rce->pict_type] = qscale[i]; } assert(filter_size % 2 == 1); /* fixed I/B QP relative to P mode */ for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; qscale[i] = get_diff_limited_q(s, rce, qscale[i]); } for (i = rcc->num_entries - 1; i >= 0; i--) { RateControlEntry *rce = &rcc->entry[i]; qscale[i] = get_diff_limited_q(s, rce, qscale[i]); } /* smooth curve */ for (i = 0; i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; const int pict_type = rce->new_pict_type; int j; double q = 0.0, sum = 0.0; for (j = 0; j < filter_size; j++) { int index = i + j - filter_size / 2; double d = index - i; double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur)); if (index < 0 || index >= rcc->num_entries) continue; if (pict_type != rcc->entry[index].new_pict_type) continue; q += qscale[index] * coeff; sum += coeff; } blurred_qscale[i] = q / sum; } /* find expected bits */ for (i = 0; i < rcc->num_entries; i++) { RateControlEntry *rce = &rcc->entry[i]; double bits; rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i); bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits; bits += 8 * ff_vbv_update(s, bits); rce->expected_bits = expected_bits; expected_bits += bits; } av_dlog(s->avctx, "expected_bits: %f all_available_bits: %d rate_factor: %f\n", expected_bits, (int)all_available_bits, rate_factor); if (expected_bits > all_available_bits) { rate_factor -= step; ++toobig; } } av_free(qscale); av_free(blurred_qscale); /* check bitrate calculations and print info */ qscale_sum = 0.0; for (i = 0; i < rcc->num_entries; i++) { av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n", i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax); } assert(toobig <= 40); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n", s->bit_rate, (int)(expected_bits / ((double)all_available_bits / s->bit_rate))); av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] estimated target average qp: %.3f\n", (float)qscale_sum / rcc->num_entries); if (toobig == 0) { av_log(s->avctx, AV_LOG_INFO, "[lavc rc] Using all of requested bitrate is not " "necessary for this video with these parameters.\n"); } else if (toobig == 40) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: bitrate too low for this video " "with these parameters.\n"); return -1; } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) { av_log(s->avctx, AV_LOG_ERROR, "[lavc rc] Error: 2pass curve failed to converge\n"); return -1; } return 0; }