/* * Copyright (c) 2011 Stefano Sabatini * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Compute a look-up table for binding the input value to the output * value, and apply it to input video. */ #include "libavutil/common.h" #include "libavutil/eval.h" #include "libavutil/mathematics.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" static const char *const var_names[] = { "E", "PHI", "PI", "w", ///< width of the input video "h", ///< height of the input video "val", ///< input value for the pixel "maxval", ///< max value for the pixel "minval", ///< min value for the pixel "negval", ///< negated value "clipval", NULL }; enum var_name { VAR_E, VAR_PHI, VAR_PI, VAR_W, VAR_H, VAR_VAL, VAR_MAXVAL, VAR_MINVAL, VAR_NEGVAL, VAR_CLIPVAL, VAR_VARS_NB }; typedef struct { const AVClass *class; uint8_t lut[4][256]; ///< lookup table for each component char *comp_expr_str[4]; AVExpr *comp_expr[4]; int hsub, vsub; double var_values[VAR_VARS_NB]; int is_rgb, is_yuv; int rgba_map[4]; int step; int negate_alpha; /* only used by negate */ } LutContext; #define Y 0 #define U 1 #define V 2 #define R 0 #define G 1 #define B 2 #define A 3 #define OFFSET(x) offsetof(LutContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM static const AVOption lut_options[] = { { "c0", "set component #0 expression", OFFSET(comp_expr_str[0]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "c1", "set component #1 expression", OFFSET(comp_expr_str[1]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "c2", "set component #2 expression", OFFSET(comp_expr_str[2]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "c3", "set component #3 expression", OFFSET(comp_expr_str[3]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "y", "set Y expression", OFFSET(comp_expr_str[Y]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "u", "set U expression", OFFSET(comp_expr_str[U]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "v", "set V expression", OFFSET(comp_expr_str[V]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "r", "set R expression", OFFSET(comp_expr_str[R]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "g", "set G expression", OFFSET(comp_expr_str[G]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "b", "set B expression", OFFSET(comp_expr_str[B]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { "a", "set A expression", OFFSET(comp_expr_str[A]), AV_OPT_TYPE_STRING, { .str = "val" }, .flags = FLAGS }, { NULL }, }; static int init(AVFilterContext *ctx, const char *args) { LutContext *lut = ctx->priv; lut->var_values[VAR_PHI] = M_PHI; lut->var_values[VAR_PI] = M_PI; lut->var_values[VAR_E ] = M_E; lut->is_rgb = !strcmp(ctx->filter->name, "lutrgb"); lut->is_yuv = !strcmp(ctx->filter->name, "lutyuv"); return 0; } static av_cold void uninit(AVFilterContext *ctx) { LutContext *lut = ctx->priv; int i; for (i = 0; i < 4; i++) { av_expr_free(lut->comp_expr[i]); lut->comp_expr[i] = NULL; av_freep(&lut->comp_expr_str[i]); } } #define YUV_FORMATS \ AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, \ AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, \ AV_PIX_FMT_YUVA420P, \ AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, \ AV_PIX_FMT_YUVJ440P #define RGB_FORMATS \ AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, \ AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, \ AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24 static enum AVPixelFormat yuv_pix_fmts[] = { YUV_FORMATS, AV_PIX_FMT_NONE }; static enum AVPixelFormat rgb_pix_fmts[] = { RGB_FORMATS, AV_PIX_FMT_NONE }; static enum AVPixelFormat all_pix_fmts[] = { RGB_FORMATS, YUV_FORMATS, AV_PIX_FMT_NONE }; static int query_formats(AVFilterContext *ctx) { LutContext *lut = ctx->priv; enum AVPixelFormat *pix_fmts = lut->is_rgb ? rgb_pix_fmts : lut->is_yuv ? yuv_pix_fmts : all_pix_fmts; ff_set_common_formats(ctx, ff_make_format_list(pix_fmts)); return 0; } /** * Clip value val in the minval - maxval range. */ static double clip(void *opaque, double val) { LutContext *lut = opaque; double minval = lut->var_values[VAR_MINVAL]; double maxval = lut->var_values[VAR_MAXVAL]; return av_clip(val, minval, maxval); } /** * Compute gamma correction for value val, assuming the minval-maxval * range, val is clipped to a value contained in the same interval. */ static double compute_gammaval(void *opaque, double gamma) { LutContext *lut = opaque; double val = lut->var_values[VAR_CLIPVAL]; double minval = lut->var_values[VAR_MINVAL]; double maxval = lut->var_values[VAR_MAXVAL]; return pow((val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval; } static double (* const funcs1[])(void *, double) = { clip, compute_gammaval, NULL }; static const char * const funcs1_names[] = { "clip", "gammaval", NULL }; static int config_props(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; LutContext *lut = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int min[4], max[4]; int val, comp, ret; lut->hsub = desc->log2_chroma_w; lut->vsub = desc->log2_chroma_h; lut->var_values[VAR_W] = inlink->w; lut->var_values[VAR_H] = inlink->h; switch (inlink->format) { case AV_PIX_FMT_YUV410P: case AV_PIX_FMT_YUV411P: case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV440P: case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_YUVA420P: min[Y] = min[U] = min[V] = 16; max[Y] = 235; max[U] = max[V] = 240; min[A] = 0; max[A] = 255; break; default: min[0] = min[1] = min[2] = min[3] = 0; max[0] = max[1] = max[2] = max[3] = 255; } lut->is_yuv = lut->is_rgb = 0; if (ff_fmt_is_in(inlink->format, yuv_pix_fmts)) lut->is_yuv = 1; else if (ff_fmt_is_in(inlink->format, rgb_pix_fmts)) lut->is_rgb = 1; if (lut->is_rgb) { switch (inlink->format) { case AV_PIX_FMT_ARGB: lut->rgba_map[A] = 0; lut->rgba_map[R] = 1; lut->rgba_map[G] = 2; lut->rgba_map[B] = 3; break; case AV_PIX_FMT_ABGR: lut->rgba_map[A] = 0; lut->rgba_map[B] = 1; lut->rgba_map[G] = 2; lut->rgba_map[R] = 3; break; case AV_PIX_FMT_RGBA: case AV_PIX_FMT_RGB24: lut->rgba_map[R] = 0; lut->rgba_map[G] = 1; lut->rgba_map[B] = 2; lut->rgba_map[A] = 3; break; case AV_PIX_FMT_BGRA: case AV_PIX_FMT_BGR24: lut->rgba_map[B] = 0; lut->rgba_map[G] = 1; lut->rgba_map[R] = 2; lut->rgba_map[A] = 3; break; } lut->step = av_get_bits_per_pixel(desc) >> 3; } for (comp = 0; comp < desc->nb_components; comp++) { double res; /* create the parsed expression */ ret = av_expr_parse(&lut->comp_expr[comp], lut->comp_expr_str[comp], var_names, funcs1_names, funcs1, NULL, NULL, 0, ctx); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Error when parsing the expression '%s' for the component %d.\n", lut->comp_expr_str[comp], comp); return AVERROR(EINVAL); } /* compute the lut */ lut->var_values[VAR_MAXVAL] = max[comp]; lut->var_values[VAR_MINVAL] = min[comp]; for (val = 0; val < 256; val++) { lut->var_values[VAR_VAL] = val; lut->var_values[VAR_CLIPVAL] = av_clip(val, min[comp], max[comp]); lut->var_values[VAR_NEGVAL] = av_clip(min[comp] + max[comp] - lut->var_values[VAR_VAL], min[comp], max[comp]); res = av_expr_eval(lut->comp_expr[comp], lut->var_values, lut); if (isnan(res)) { av_log(ctx, AV_LOG_ERROR, "Error when evaluating the expression '%s' for the value %d for the component #%d.\n", lut->comp_expr_str[comp], val, comp); return AVERROR(EINVAL); } lut->lut[comp][val] = av_clip((int)res, min[comp], max[comp]); av_log(ctx, AV_LOG_DEBUG, "val[%d][%d] = %d\n", comp, val, lut->lut[comp][val]); } } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LutContext *lut = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; uint8_t *inrow, *outrow, *inrow0, *outrow0; int i, j, k, plane; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); if (lut->is_rgb) { /* packed */ inrow0 = in ->data[0]; outrow0 = out->data[0]; for (i = 0; i < in->height; i ++) { inrow = inrow0; outrow = outrow0; for (j = 0; j < inlink->w; j++) { for (k = 0; k < lut->step; k++) outrow[k] = lut->lut[lut->rgba_map[k]][inrow[k]]; outrow += lut->step; inrow += lut->step; } inrow0 += in ->linesize[0]; outrow0 += out->linesize[0]; } } else { /* planar */ for (plane = 0; plane < 4 && in->data[plane]; plane++) { int vsub = plane == 1 || plane == 2 ? lut->vsub : 0; int hsub = plane == 1 || plane == 2 ? lut->hsub : 0; inrow = in ->data[plane]; outrow = out->data[plane]; for (i = 0; i < in->height >> vsub; i ++) { for (j = 0; j < inlink->w>>hsub; j++) outrow[j] = lut->lut[plane][inrow[j]]; inrow += in ->linesize[plane]; outrow += out->linesize[plane]; } } } av_frame_free(&in); return ff_filter_frame(outlink, out); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_props, }, { .name = NULL} }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { .name = NULL} }; #define DEFINE_LUT_FILTER(name_, description_, init_, options) \ static const AVClass name_ ## _class = { \ .class_name = #name_, \ .item_name = av_default_item_name, \ .option = options, \ .version = LIBAVUTIL_VERSION_INT, \ }; \ AVFilter avfilter_vf_##name_ = { \ .name = #name_, \ .description = NULL_IF_CONFIG_SMALL(description_), \ .priv_size = sizeof(LutContext), \ .priv_class = &name_ ## _class, \ \ .init = init_, \ .uninit = uninit, \ .query_formats = query_formats, \ \ .inputs = inputs, \ .outputs = outputs, \ } #if CONFIG_LUT_FILTER DEFINE_LUT_FILTER(lut, "Compute and apply a lookup table to the RGB/YUV input video.", init, lut_options); #endif #if CONFIG_LUTYUV_FILTER DEFINE_LUT_FILTER(lutyuv, "Compute and apply a lookup table to the YUV input video.", init, lut_options); #endif #if CONFIG_LUTRGB_FILTER DEFINE_LUT_FILTER(lutrgb, "Compute and apply a lookup table to the RGB input video.", init, lut_options); #endif #if CONFIG_NEGATE_FILTER static const AVOption negate_options[] = { { "negate_alpha", NULL, OFFSET(negate_alpha), AV_OPT_TYPE_INT, { .i64 = 0 }, .flags = FLAGS }, { NULL }, }; static int negate_init(AVFilterContext *ctx, const char *args) { LutContext *lut = ctx->priv; int i; av_log(ctx, AV_LOG_DEBUG, "negate_alpha:%d\n", lut->negate_alpha); for (i = 0; i < 4; i++) { lut->comp_expr_str[i] = av_strdup((i == 3 && lut->negate_alpha) ? "val" : "negval"); if (!lut->comp_expr_str[i]) { uninit(ctx); return AVERROR(ENOMEM); } } return init(ctx, NULL); } DEFINE_LUT_FILTER(negate, "Negate input video.", negate_init, negate_options); #endif