;****************************************************************************** ;* MMX optimized DSP utils ;* Copyright (c) 2008 Loren Merritt ;* Copyright (c) 2003-2013 Michael Niedermayer ;* Copyright (c) 2013 Daniel Kang ;* ;* This file is part of FFmpeg. ;* ;* FFmpeg is free software; you can redistribute it and/or ;* modify it under the terms of the GNU Lesser General Public ;* License as published by the Free Software Foundation; either ;* version 2.1 of the License, or (at your option) any later version. ;* ;* FFmpeg is distributed in the hope that it will be useful, ;* but WITHOUT ANY WARRANTY; without even the implied warranty of ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;* Lesser General Public License for more details. ;* ;* You should have received a copy of the GNU Lesser General Public ;* License along with FFmpeg; if not, write to the Free Software ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;****************************************************************************** %include "libavutil/x86/x86util.asm" SECTION_RODATA pb_f: times 16 db 15 pb_zzzzzzzz77777777: times 8 db -1 pb_7: times 8 db 7 pb_zzzz3333zzzzbbbb: db -1,-1,-1,-1,3,3,3,3,-1,-1,-1,-1,11,11,11,11 pb_zz11zz55zz99zzdd: db -1,-1,1,1,-1,-1,5,5,-1,-1,9,9,-1,-1,13,13 pb_bswap32: db 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 cextern pb_80 SECTION_TEXT %macro SCALARPRODUCT 0 ; int ff_scalarproduct_int16(int16_t *v1, int16_t *v2, int order) cglobal scalarproduct_int16, 3,3,3, v1, v2, order shl orderq, 1 add v1q, orderq add v2q, orderq neg orderq pxor m2, m2 .loop: movu m0, [v1q + orderq] movu m1, [v1q + orderq + mmsize] pmaddwd m0, [v2q + orderq] pmaddwd m1, [v2q + orderq + mmsize] paddd m2, m0 paddd m2, m1 add orderq, mmsize*2 jl .loop HADDD m2, m0 movd eax, m2 %if mmsize == 8 emms %endif RET ; int ff_scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, ; int order, int mul) cglobal scalarproduct_and_madd_int16, 4,4,8, v1, v2, v3, order, mul shl orderq, 1 movd m7, mulm %if mmsize == 16 pshuflw m7, m7, 0 punpcklqdq m7, m7 %else pshufw m7, m7, 0 %endif pxor m6, m6 add v1q, orderq add v2q, orderq add v3q, orderq neg orderq .loop: movu m0, [v2q + orderq] movu m1, [v2q + orderq + mmsize] mova m4, [v1q + orderq] mova m5, [v1q + orderq + mmsize] movu m2, [v3q + orderq] movu m3, [v3q + orderq + mmsize] pmaddwd m0, m4 pmaddwd m1, m5 pmullw m2, m7 pmullw m3, m7 paddd m6, m0 paddd m6, m1 paddw m2, m4 paddw m3, m5 mova [v1q + orderq], m2 mova [v1q + orderq + mmsize], m3 add orderq, mmsize*2 jl .loop HADDD m6, m0 movd eax, m6 RET %endmacro INIT_MMX mmxext SCALARPRODUCT INIT_XMM sse2 SCALARPRODUCT %macro SCALARPRODUCT_LOOP 1 align 16 .loop%1: sub orderq, mmsize*2 %if %1 mova m1, m4 mova m4, [v2q + orderq] mova m0, [v2q + orderq + mmsize] palignr m1, m0, %1 palignr m0, m4, %1 mova m3, m5 mova m5, [v3q + orderq] mova m2, [v3q + orderq + mmsize] palignr m3, m2, %1 palignr m2, m5, %1 %else mova m0, [v2q + orderq] mova m1, [v2q + orderq + mmsize] mova m2, [v3q + orderq] mova m3, [v3q + orderq + mmsize] %endif %define t0 [v1q + orderq] %define t1 [v1q + orderq + mmsize] %if ARCH_X86_64 mova m8, t0 mova m9, t1 %define t0 m8 %define t1 m9 %endif pmaddwd m0, t0 pmaddwd m1, t1 pmullw m2, m7 pmullw m3, m7 paddw m2, t0 paddw m3, t1 paddd m6, m0 paddd m6, m1 mova [v1q + orderq], m2 mova [v1q + orderq + mmsize], m3 jg .loop%1 %if %1 jmp .end %endif %endmacro ; int ff_scalarproduct_and_madd_int16(int16_t *v1, int16_t *v2, int16_t *v3, ; int order, int mul) INIT_XMM ssse3 cglobal scalarproduct_and_madd_int16, 4,5,10, v1, v2, v3, order, mul shl orderq, 1 movd m7, mulm pshuflw m7, m7, 0 punpcklqdq m7, m7 pxor m6, m6 mov r4d, v2d and r4d, 15 and v2q, ~15 and v3q, ~15 mova m4, [v2q + orderq] mova m5, [v3q + orderq] ; linear is faster than branch tree or jump table, because the branches taken are cyclic (i.e. predictable) cmp r4d, 0 je .loop0 cmp r4d, 2 je .loop2 cmp r4d, 4 je .loop4 cmp r4d, 6 je .loop6 cmp r4d, 8 je .loop8 cmp r4d, 10 je .loop10 cmp r4d, 12 je .loop12 SCALARPRODUCT_LOOP 14 SCALARPRODUCT_LOOP 12 SCALARPRODUCT_LOOP 10 SCALARPRODUCT_LOOP 8 SCALARPRODUCT_LOOP 6 SCALARPRODUCT_LOOP 4 SCALARPRODUCT_LOOP 2 SCALARPRODUCT_LOOP 0 .end: HADDD m6, m0 movd eax, m6 RET ; void ff_add_hfyu_median_prediction_mmxext(uint8_t *dst, const uint8_t *top, ; const uint8_t *diff, int w, ; int *left, int *left_top) INIT_MMX mmxext cglobal add_hfyu_median_prediction, 6,6,0, dst, top, diff, w, left, left_top movq mm0, [topq] movq mm2, mm0 movd mm4, [left_topq] psllq mm2, 8 movq mm1, mm0 por mm4, mm2 movd mm3, [leftq] psubb mm0, mm4 ; t-tl add dstq, wq add topq, wq add diffq, wq neg wq jmp .skip .loop: movq mm4, [topq+wq] movq mm0, mm4 psllq mm4, 8 por mm4, mm1 movq mm1, mm0 ; t psubb mm0, mm4 ; t-tl .skip: movq mm2, [diffq+wq] %assign i 0 %rep 8 movq mm4, mm0 paddb mm4, mm3 ; t-tl+l movq mm5, mm3 pmaxub mm3, mm1 pminub mm5, mm1 pminub mm3, mm4 pmaxub mm3, mm5 ; median paddb mm3, mm2 ; +residual %if i==0 movq mm7, mm3 psllq mm7, 56 %else movq mm6, mm3 psrlq mm7, 8 psllq mm6, 56 por mm7, mm6 %endif %if i<7 psrlq mm0, 8 psrlq mm1, 8 psrlq mm2, 8 %endif %assign i i+1 %endrep movq [dstq+wq], mm7 add wq, 8 jl .loop movzx r2d, byte [dstq-1] mov [leftq], r2d movzx r2d, byte [topq-1] mov [left_topq], r2d RET %macro ADD_HFYU_LEFT_LOOP 2 ; %1 = dst_is_aligned, %2 = src_is_aligned add srcq, wq add dstq, wq neg wq %%.loop: %if %2 mova m1, [srcq+wq] %else movu m1, [srcq+wq] %endif mova m2, m1 psllw m1, 8 paddb m1, m2 mova m2, m1 pshufb m1, m3 paddb m1, m2 pshufb m0, m5 mova m2, m1 pshufb m1, m4 paddb m1, m2 %if mmsize == 16 mova m2, m1 pshufb m1, m6 paddb m1, m2 %endif paddb m0, m1 %if %1 mova [dstq+wq], m0 %else movq [dstq+wq], m0 movhps [dstq+wq+8], m0 %endif add wq, mmsize jl %%.loop mov eax, mmsize-1 sub eax, wd movd m1, eax pshufb m0, m1 movd eax, m0 RET %endmacro ; int ff_add_hfyu_left_prediction(uint8_t *dst, const uint8_t *src, ; int w, int left) INIT_MMX ssse3 cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left .skip_prologue: mova m5, [pb_7] mova m4, [pb_zzzz3333zzzzbbbb] mova m3, [pb_zz11zz55zz99zzdd] movd m0, leftm psllq m0, 56 ADD_HFYU_LEFT_LOOP 1, 1 INIT_XMM sse4 cglobal add_hfyu_left_prediction, 3,3,7, dst, src, w, left mova m5, [pb_f] mova m6, [pb_zzzzzzzz77777777] mova m4, [pb_zzzz3333zzzzbbbb] mova m3, [pb_zz11zz55zz99zzdd] movd m0, leftm pslldq m0, 15 test srcq, 15 jnz .src_unaligned test dstq, 15 jnz .dst_unaligned ADD_HFYU_LEFT_LOOP 1, 1 .dst_unaligned: ADD_HFYU_LEFT_LOOP 0, 1 .src_unaligned: ADD_HFYU_LEFT_LOOP 0, 0 ;----------------------------------------------------------------------------- ; void ff_vector_clip_int32(int32_t *dst, const int32_t *src, int32_t min, ; int32_t max, unsigned int len) ;----------------------------------------------------------------------------- ; %1 = number of xmm registers used ; %2 = number of inline load/process/store loops per asm loop ; %3 = process 4*mmsize (%3=0) or 8*mmsize (%3=1) bytes per loop ; %4 = CLIPD function takes min/max as float instead of int (CLIPD_SSE2) ; %5 = suffix %macro VECTOR_CLIP_INT32 4-5 cglobal vector_clip_int32%5, 5,5,%1, dst, src, min, max, len %if %4 cvtsi2ss m4, minm cvtsi2ss m5, maxm %else movd m4, minm movd m5, maxm %endif SPLATD m4 SPLATD m5 .loop: %assign %%i 1 %rep %2 mova m0, [srcq+mmsize*0*%%i] mova m1, [srcq+mmsize*1*%%i] mova m2, [srcq+mmsize*2*%%i] mova m3, [srcq+mmsize*3*%%i] %if %3 mova m7, [srcq+mmsize*4*%%i] mova m8, [srcq+mmsize*5*%%i] mova m9, [srcq+mmsize*6*%%i] mova m10, [srcq+mmsize*7*%%i] %endif CLIPD m0, m4, m5, m6 CLIPD m1, m4, m5, m6 CLIPD m2, m4, m5, m6 CLIPD m3, m4, m5, m6 %if %3 CLIPD m7, m4, m5, m6 CLIPD m8, m4, m5, m6 CLIPD m9, m4, m5, m6 CLIPD m10, m4, m5, m6 %endif mova [dstq+mmsize*0*%%i], m0 mova [dstq+mmsize*1*%%i], m1 mova [dstq+mmsize*2*%%i], m2 mova [dstq+mmsize*3*%%i], m3 %if %3 mova [dstq+mmsize*4*%%i], m7 mova [dstq+mmsize*5*%%i], m8 mova [dstq+mmsize*6*%%i], m9 mova [dstq+mmsize*7*%%i], m10 %endif %assign %%i %%i+1 %endrep add srcq, mmsize*4*(%2+%3) add dstq, mmsize*4*(%2+%3) sub lend, mmsize*(%2+%3) jg .loop REP_RET %endmacro INIT_MMX mmx %define CLIPD CLIPD_MMX VECTOR_CLIP_INT32 0, 1, 0, 0 INIT_XMM sse2 VECTOR_CLIP_INT32 6, 1, 0, 0, _int %define CLIPD CLIPD_SSE2 VECTOR_CLIP_INT32 6, 2, 0, 1 INIT_XMM sse4 %define CLIPD CLIPD_SSE41 %ifdef m8 VECTOR_CLIP_INT32 11, 1, 1, 0 %else VECTOR_CLIP_INT32 6, 1, 0, 0 %endif ; %1 = aligned/unaligned %macro BSWAP_LOOPS 1 mov r3, r2 sar r2, 3 jz .left4_%1 .loop8_%1: mov%1 m0, [r1 + 0] mov%1 m1, [r1 + 16] %if cpuflag(ssse3) pshufb m0, m2 pshufb m1, m2 mov%1 [r0 + 0], m0 mov%1 [r0 + 16], m1 %else pshuflw m0, m0, 10110001b pshuflw m1, m1, 10110001b pshufhw m0, m0, 10110001b pshufhw m1, m1, 10110001b mova m2, m0 mova m3, m1 psllw m0, 8 psllw m1, 8 psrlw m2, 8 psrlw m3, 8 por m2, m0 por m3, m1 mov%1 [r0 + 0], m2 mov%1 [r0 + 16], m3 %endif add r0, 32 add r1, 32 dec r2 jnz .loop8_%1 .left4_%1: mov r2, r3 and r3, 4 jz .left mov%1 m0, [r1] %if cpuflag(ssse3) pshufb m0, m2 mov%1 [r0], m0 %else pshuflw m0, m0, 10110001b pshufhw m0, m0, 10110001b mova m2, m0 psllw m0, 8 psrlw m2, 8 por m2, m0 mov%1 [r0], m2 %endif add r1, 16 add r0, 16 %endmacro ; void ff_bswap_buf(uint32_t *dst, const uint32_t *src, int w); %macro BSWAP32_BUF 0 %if cpuflag(ssse3) cglobal bswap32_buf, 3,4,3 mov r3, r1 mova m2, [pb_bswap32] %else cglobal bswap32_buf, 3,4,5 mov r3, r1 %endif or r3, r0 and r3, 15 jz .start_align BSWAP_LOOPS u jmp .left .start_align: BSWAP_LOOPS a .left: %if cpuflag(ssse3) mov r3, r2 and r2, 2 jz .left1 movq m0, [r1] pshufb m0, m2 movq [r0], m0 add r1, 8 add r0, 8 .left1: and r3, 1 jz .end mov r2d, [r1] bswap r2d mov [r0], r2d %else and r2, 3 jz .end .loop2: mov r3d, [r1] bswap r3d mov [r0], r3d add r1, 4 add r0, 4 dec r2 jnz .loop2 %endif .end: RET %endmacro INIT_XMM sse2 BSWAP32_BUF INIT_XMM ssse3 BSWAP32_BUF ;---------------------------------------- ; void ff_clear_block(int16_t *blocks); ;---------------------------------------- ; %1 = number of xmm registers used ; %2 = number of inline store loops %macro CLEAR_BLOCK 2 cglobal clear_block, 1, 1, %1, blocks ZERO m0, m0 %assign %%i 0 %rep %2 mova [blocksq+mmsize*(0+%%i)], m0 mova [blocksq+mmsize*(1+%%i)], m0 mova [blocksq+mmsize*(2+%%i)], m0 mova [blocksq+mmsize*(3+%%i)], m0 mova [blocksq+mmsize*(4+%%i)], m0 mova [blocksq+mmsize*(5+%%i)], m0 mova [blocksq+mmsize*(6+%%i)], m0 mova [blocksq+mmsize*(7+%%i)], m0 %assign %%i %%i+8 %endrep RET %endmacro INIT_MMX mmx %define ZERO pxor CLEAR_BLOCK 0, 2 INIT_XMM sse %define ZERO xorps CLEAR_BLOCK 1, 1 ;----------------------------------------- ; void ff_clear_blocks(int16_t *blocks); ;----------------------------------------- ; %1 = number of xmm registers used %macro CLEAR_BLOCKS 1 cglobal clear_blocks, 1, 2, %1, blocks, len add blocksq, 768 mov lenq, -768 ZERO m0, m0 .loop mova [blocksq+lenq+mmsize*0], m0 mova [blocksq+lenq+mmsize*1], m0 mova [blocksq+lenq+mmsize*2], m0 mova [blocksq+lenq+mmsize*3], m0 mova [blocksq+lenq+mmsize*4], m0 mova [blocksq+lenq+mmsize*5], m0 mova [blocksq+lenq+mmsize*6], m0 mova [blocksq+lenq+mmsize*7], m0 add lenq, mmsize*8 js .loop RET %endmacro INIT_MMX mmx %define ZERO pxor CLEAR_BLOCKS 0 INIT_XMM sse %define ZERO xorps CLEAR_BLOCKS 1 ;-------------------------------------------------------------------------- ;void ff_put_signed_pixels_clamped(const int16_t *block, uint8_t *pixels, ; int line_size) ;-------------------------------------------------------------------------- %macro PUT_SIGNED_PIXELS_CLAMPED_HALF 1 mova m1, [blockq+mmsize*0+%1] mova m2, [blockq+mmsize*2+%1] %if mmsize == 8 mova m3, [blockq+mmsize*4+%1] mova m4, [blockq+mmsize*6+%1] %endif packsswb m1, [blockq+mmsize*1+%1] packsswb m2, [blockq+mmsize*3+%1] %if mmsize == 8 packsswb m3, [blockq+mmsize*5+%1] packsswb m4, [blockq+mmsize*7+%1] %endif paddb m1, m0 paddb m2, m0 %if mmsize == 8 paddb m3, m0 paddb m4, m0 movq [pixelsq+lsizeq*0], m1 movq [pixelsq+lsizeq*1], m2 movq [pixelsq+lsizeq*2], m3 movq [pixelsq+lsize3q ], m4 %else movq [pixelsq+lsizeq*0], m1 movhps [pixelsq+lsizeq*1], m1 movq [pixelsq+lsizeq*2], m2 movhps [pixelsq+lsize3q ], m2 %endif %endmacro %macro PUT_SIGNED_PIXELS_CLAMPED 1 cglobal put_signed_pixels_clamped, 3, 4, %1, block, pixels, lsize, lsize3 mova m0, [pb_80] lea lsize3q, [lsizeq*3] PUT_SIGNED_PIXELS_CLAMPED_HALF 0 lea pixelsq, [pixelsq+lsizeq*4] PUT_SIGNED_PIXELS_CLAMPED_HALF 64 RET %endmacro INIT_MMX mmx PUT_SIGNED_PIXELS_CLAMPED 0 INIT_XMM sse2 PUT_SIGNED_PIXELS_CLAMPED 3 ;----------------------------------------------------- ;void ff_vector_clipf(float *dst, const float *src, ; float min, float max, int len) ;----------------------------------------------------- INIT_XMM sse %if ARCH_X86_32 cglobal vector_clipf, 5,5,6, dst, src, min, max, len %else cglobal vector_clipf, 3,3,6, dst, src, len %endif %if WIN64 SWAP 0, 2 SWAP 1, 3 %elif ARCH_X86_32 movss m0, minm movss m1, maxm %endif SPLATD m0 SPLATD m1 shl lenq, 2 add srcq, lenq add dstq, lenq neg lenq .loop: mova m2, [srcq+lenq+mmsize*0] mova m3, [srcq+lenq+mmsize*1] mova m4, [srcq+lenq+mmsize*2] mova m5, [srcq+lenq+mmsize*3] maxps m2, m0 maxps m3, m0 maxps m4, m0 maxps m5, m0 minps m2, m1 minps m3, m1 minps m4, m1 minps m5, m1 mova [dstq+lenq+mmsize*0], m2 mova [dstq+lenq+mmsize*1], m3 mova [dstq+lenq+mmsize*2], m4 mova [dstq+lenq+mmsize*3], m5 add lenq, mmsize*4 jl .loop REP_RET