/* * Floating point AAN DCT * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at> * * this implementation is based upon the IJG integer AAN DCT (see jfdctfst.c) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file faandct.c * @brief * Floating point AAN DCT * @author Michael Niedermayer <michaelni@gmx.at> */ #include "dsputil.h" #include "faandct.h" #define FLOAT float #ifdef FAAN_POSTSCALE # define SCALE(x) postscale[x] #else # define SCALE(x) 1 #endif //numbers generated by simple c code (not as accurate as they could be) /* for(i=0; i<8; i++){ printf("#define B%d %1.20llf\n", i, (long double)1.0/(cosl(i*acosl(-1.0)/(long double)16.0)*sqrtl(2))); } */ #define B0 1.00000000000000000000 #define B1 0.72095982200694791383 // (cos(pi*1/16)sqrt(2))^-1 #define B2 0.76536686473017954350 // (cos(pi*2/16)sqrt(2))^-1 #define B3 0.85043009476725644878 // (cos(pi*3/16)sqrt(2))^-1 #define B4 1.00000000000000000000 // (cos(pi*4/16)sqrt(2))^-1 #define B5 1.27275858057283393842 // (cos(pi*5/16)sqrt(2))^-1 #define B6 1.84775906502257351242 // (cos(pi*6/16)sqrt(2))^-1 #define B7 3.62450978541155137218 // (cos(pi*7/16)sqrt(2))^-1 #define A1 0.70710678118654752438 // cos(pi*4/16) #define A2 0.54119610014619698435 // cos(pi*6/16)sqrt(2) #define A5 0.38268343236508977170 // cos(pi*6/16) #define A4 1.30656296487637652774 // cos(pi*2/16)sqrt(2) static FLOAT postscale[64]={ B0*B0, B0*B1, B0*B2, B0*B3, B0*B4, B0*B5, B0*B6, B0*B7, B1*B0, B1*B1, B1*B2, B1*B3, B1*B4, B1*B5, B1*B6, B1*B7, B2*B0, B2*B1, B2*B2, B2*B3, B2*B4, B2*B5, B2*B6, B2*B7, B3*B0, B3*B1, B3*B2, B3*B3, B3*B4, B3*B5, B3*B6, B3*B7, B4*B0, B4*B1, B4*B2, B4*B3, B4*B4, B4*B5, B4*B6, B4*B7, B5*B0, B5*B1, B5*B2, B5*B3, B5*B4, B5*B5, B5*B6, B5*B7, B6*B0, B6*B1, B6*B2, B6*B3, B6*B4, B6*B5, B6*B6, B6*B7, B7*B0, B7*B1, B7*B2, B7*B3, B7*B4, B7*B5, B7*B6, B7*B7, }; static av_always_inline void row_fdct(FLOAT temp[64], DCTELEM * data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT z1, z2, z3, z4, z5, z11, z13; int i; for (i=0; i<8*8; i+=8) { tmp0= data[0 + i] + data[7 + i]; tmp7= data[0 + i] - data[7 + i]; tmp1= data[1 + i] + data[6 + i]; tmp6= data[1 + i] - data[6 + i]; tmp2= data[2 + i] + data[5 + i]; tmp5= data[2 + i] - data[5 + i]; tmp3= data[3 + i] + data[4 + i]; tmp4= data[3 + i] - data[4 + i]; tmp10= tmp0 + tmp3; tmp13= tmp0 - tmp3; tmp11= tmp1 + tmp2; tmp12= tmp1 - tmp2; temp[0 + i]= tmp10 + tmp11; temp[4 + i]= tmp10 - tmp11; z1= (tmp12 + tmp13)*A1; temp[2 + i]= tmp13 + z1; temp[6 + i]= tmp13 - z1; tmp10= tmp4 + tmp5; tmp11= tmp5 + tmp6; tmp12= tmp6 + tmp7; z5= (tmp10 - tmp12) * A5; z2= tmp10*A2 + z5; z4= tmp12*A4 + z5; z3= tmp11*A1; z11= tmp7 + z3; z13= tmp7 - z3; temp[5 + i]= z13 + z2; temp[3 + i]= z13 - z2; temp[1 + i]= z11 + z4; temp[7 + i]= z11 - z4; } } void ff_faandct(DCTELEM * data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT z1, z2, z3, z4, z5, z11, z13; FLOAT temp[64]; int i; emms_c(); row_fdct(temp, data); for (i=0; i<8; i++) { tmp0= temp[8*0 + i] + temp[8*7 + i]; tmp7= temp[8*0 + i] - temp[8*7 + i]; tmp1= temp[8*1 + i] + temp[8*6 + i]; tmp6= temp[8*1 + i] - temp[8*6 + i]; tmp2= temp[8*2 + i] + temp[8*5 + i]; tmp5= temp[8*2 + i] - temp[8*5 + i]; tmp3= temp[8*3 + i] + temp[8*4 + i]; tmp4= temp[8*3 + i] - temp[8*4 + i]; tmp10= tmp0 + tmp3; tmp13= tmp0 - tmp3; tmp11= tmp1 + tmp2; tmp12= tmp1 - tmp2; data[8*0 + i]= lrintf(SCALE(8*0 + i) * (tmp10 + tmp11)); data[8*4 + i]= lrintf(SCALE(8*4 + i) * (tmp10 - tmp11)); z1= (tmp12 + tmp13)* A1; data[8*2 + i]= lrintf(SCALE(8*2 + i) * (tmp13 + z1)); data[8*6 + i]= lrintf(SCALE(8*6 + i) * (tmp13 - z1)); tmp10= tmp4 + tmp5; tmp11= tmp5 + tmp6; tmp12= tmp6 + tmp7; z5= (tmp10 - tmp12) * A5; z2= tmp10*A2 + z5; z4= tmp12*A4 + z5; z3= tmp11*A1; z11= tmp7 + z3; z13= tmp7 - z3; data[8*5 + i]= lrintf(SCALE(8*5 + i) * (z13 + z2)); data[8*3 + i]= lrintf(SCALE(8*3 + i) * (z13 - z2)); data[8*1 + i]= lrintf(SCALE(8*1 + i) * (z11 + z4)); data[8*7 + i]= lrintf(SCALE(8*7 + i) * (z11 - z4)); } } void ff_faandct248(DCTELEM * data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT z1; FLOAT temp[64]; int i; emms_c(); row_fdct(temp, data); for (i=0; i<8; i++) { tmp0 = temp[8*0 + i] + temp[8*1 + i]; tmp1 = temp[8*2 + i] + temp[8*3 + i]; tmp2 = temp[8*4 + i] + temp[8*5 + i]; tmp3 = temp[8*6 + i] + temp[8*7 + i]; tmp4 = temp[8*0 + i] - temp[8*1 + i]; tmp5 = temp[8*2 + i] - temp[8*3 + i]; tmp6 = temp[8*4 + i] - temp[8*5 + i]; tmp7 = temp[8*6 + i] - temp[8*7 + i]; tmp10 = tmp0 + tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; tmp13 = tmp0 - tmp3; data[8*0 + i] = lrintf(SCALE(8*0 + i) * (tmp10 + tmp11)); data[8*4 + i] = lrintf(SCALE(8*4 + i) * (tmp10 - tmp11)); z1 = (tmp12 + tmp13)* A1; data[8*2 + i] = lrintf(SCALE(8*2 + i) * (tmp13 + z1)); data[8*6 + i] = lrintf(SCALE(8*6 + i) * (tmp13 - z1)); tmp10 = tmp4 + tmp7; tmp11 = tmp5 + tmp6; tmp12 = tmp5 - tmp6; tmp13 = tmp4 - tmp7; data[8*1 + i] = lrintf(SCALE(8*0 + i) * (tmp10 + tmp11)); data[8*5 + i] = lrintf(SCALE(8*4 + i) * (tmp10 - tmp11)); z1 = (tmp12 + tmp13)* A1; data[8*3 + i] = lrintf(SCALE(8*2 + i) * (tmp13 + z1)); data[8*7 + i] = lrintf(SCALE(8*6 + i) * (tmp13 - z1)); } }