/* * RealAudio 2.0 (28.8K) * Copyright (c) 2003 the ffmpeg project * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #define ALT_BITSTREAM_READER_LE #include "bitstream.h" #include "ra288.h" typedef struct { float sp_lpc[36]; ///< LPC coefficients for speech data (spec: A) float gain_lpc[10]; ///< LPC coefficients for gain (spec: GB) float sp_hist[111]; ///< Speech data history (spec: SB) /** Speech part of the gain autocorrelation (spec: REXP) */ float sp_rec[37]; float gain_hist[38]; ///< Log-gain history (spec: SBLG) /** Recursive part of the gain autocorrelation (spec: REXPLG) */ float gain_rec[11]; float sp_block[41]; ///< Speech data of four blocks (spec: STTMP) float gain_block[10]; ///< Gain data of four blocks (spec: GSTATE) } RA288Context; static av_cold int ra288_decode_init(AVCodecContext *avctx) { avctx->sample_fmt = SAMPLE_FMT_S16; return 0; } static inline float scalar_product_float(const float * v1, const float * v2, int size) { float res = 0.; while (size--) res += *v1++ * *v2++; return res; } static void colmult(float *tgt, const float *m1, const float *m2, int n) { while (n--) *tgt++ = *m1++ * *m2++; } static void decode(RA288Context *ractx, float gain, int cb_coef) { int i, j; double sumsum; float sum, buffer[5]; memmove(ractx->sp_block + 5, ractx->sp_block, 36*sizeof(*ractx->sp_block)); for (i=4; i >= 0; i--) ractx->sp_block[i] = -scalar_product_float(ractx->sp_block + i + 1, ractx->sp_lpc, 36); /* block 46 of G.728 spec */ sum = 32. - scalar_product_float(ractx->gain_lpc, ractx->gain_block, 10); /* block 47 of G.728 spec */ sum = av_clipf(sum, 0, 60); /* block 48 of G.728 spec */ sumsum = exp(sum * 0.1151292546497) * gain; /* pow(10.0,sum/20)*gain */ for (i=0; i < 5; i++) buffer[i] = codetable[cb_coef][i] * sumsum; sum = scalar_product_float(buffer, buffer, 5) / 5; sum = FFMAX(sum, 1); /* shift and store */ memmove(ractx->gain_block, ractx->gain_block - 1, 10 * sizeof(*ractx->gain_block)); *ractx->gain_block = 10 * log10(sum) - 32; for (i=1; i < 5; i++) for (j=i-1; j >= 0; j--) buffer[i] -= ractx->sp_lpc[i-j-1] * buffer[j]; /* output */ for (i=0; i < 5; i++) ractx->sp_block[4-i] = av_clipf(ractx->sp_block[4-i] + buffer[i], -4095, 4095); } /** * Converts autocorrelation coefficients to LPC coefficients using the * Levinson-Durbin algorithm. See blocks 37 and 50 of the G.728 specification. * * @return 0 if success, -1 if fail */ static int eval_lpc_coeffs(const float *in, float *tgt, int n) { int i, j; double f0, f1, f2; if (in[n] == 0) return -1; if ((f0 = *in) <= 0) return -1; in--; // To avoid a -1 subtraction in the inner loop for (i=1; i <= n; i++) { f1 = in[i+1]; for (j=0; j < i - 1; j++) f1 += in[i-j]*tgt[j]; tgt[i-1] = f2 = -f1/f0; for (j=0; j < i >> 1; j++) { float temp = tgt[j] + tgt[i-j-2]*f2; tgt[i-j-2] += tgt[j]*f2; tgt[j] = temp; } if ((f0 += f1*f2) < 0) return -1; } return 0; } static void convolve(float *tgt, const float *src, int len, int n) { for (; n >= 0; n--) tgt[n] = scalar_product_float(src, src - n, len); } /** * Hybrid window filtering. See blocks 36 and 49 of the G.728 specification. * * @note This function is slightly different from that described in the spec. * It expects in[0] to be the newest sample and in[n-1] to be the oldest * one stored. The spec has in the more ordinary way (in[0] the oldest * and in[n-1] the newest). * * @param order the order of the filter * @param n the length of the input * @param non_rec the number of non-recursive samples * @param out the filter output * @param in pointer to the input of the filter * @param hist pointer to the input history of the filter. It is updated by * this function. * @param out pointer to the non-recursive part of the output * @param out2 pointer to the recursive part of the output * @param window pointer to the windowing function table */ static void do_hybrid_window(int order, int n, int non_rec, const float *in, float *out, float *hist, float *out2, const float *window) { int i; float buffer1[order + 1]; float buffer2[order + 1]; float work[order + n + non_rec]; /* update history */ memmove(hist, hist + n, (order + non_rec)*sizeof(*hist)); for (i=0; i < n; i++) hist[order + non_rec + i] = in[n-i-1]; colmult(work, window, hist, order + n + non_rec); convolve(buffer1, work + order , n , order); convolve(buffer2, work + order + n, non_rec, order); for (i=0; i <= order; i++) { out2[i] = out2[i] * 0.5625 + buffer1[i]; out [i] = out2[i] + buffer2[i]; } /* Multiply by the white noise correcting factor (WNCF) */ *out *= 257./256.; } /** * Backward synthesis filter. Find the LPC coefficients from past speech data. */ static void backward_filter(RA288Context *ractx) { float temp1[37]; // RTMP in the spec float temp2[11]; // GPTPMP in the spec do_hybrid_window(36, 40, 35, ractx->sp_block, temp1, ractx->sp_hist, ractx->sp_rec, syn_window); if (!eval_lpc_coeffs(temp1, ractx->sp_lpc, 36)) colmult(ractx->sp_lpc, ractx->sp_lpc, syn_bw_tab, 36); do_hybrid_window(10, 8, 20, ractx->gain_block, temp2, ractx->gain_hist, ractx->gain_rec, gain_window); if (!eval_lpc_coeffs(temp2, ractx->gain_lpc, 10)) colmult(ractx->gain_lpc, ractx->gain_lpc, gain_bw_tab, 10); } static int ra288_decode_frame(AVCodecContext * avctx, void *data, int *data_size, const uint8_t * buf, int buf_size) { int16_t *out = data; int i, j; RA288Context *ractx = avctx->priv_data; GetBitContext gb; if (buf_size < avctx->block_align) { av_log(avctx, AV_LOG_ERROR, "Error! Input buffer is too small [%d<%d]\n", buf_size, avctx->block_align); return 0; } init_get_bits(&gb, buf, avctx->block_align * 8); for (i=0; i < 32; i++) { float gain = amptable[get_bits(&gb, 3)]; int cb_coef = get_bits(&gb, 6 + (i&1)); decode(ractx, gain, cb_coef); for (j=0; j < 5; j++) *(out++) = 8 * ractx->sp_block[4 - j]; if ((i & 7) == 3) backward_filter(ractx); } *data_size = (char *)out - (char *)data; return avctx->block_align; } AVCodec ra_288_decoder = { "real_288", CODEC_TYPE_AUDIO, CODEC_ID_RA_288, sizeof(RA288Context), ra288_decode_init, NULL, NULL, ra288_decode_frame, .long_name = NULL_IF_CONFIG_SMALL("RealAudio 2.0 (28.8K)"), };