/* * AAC encoder TNS * Copyright (C) 2015 Rostislav Pehlivanov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * AAC encoder temporal noise shaping * @author Rostislav Pehlivanov ( atomnuker gmail com ) */ #include "aacenc.h" #include "aacenc_tns.h" #include "aactab.h" #include "aacenc_utils.h" #include "aacenc_quantization.h" /** * Encode TNS data. * Coefficient compression saves a single bit per coefficient. */ void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce) { uint8_t u_coef; const uint8_t coef_res = TNS_Q_BITS == 4; int i, w, filt, coef_len, coef_compress = 0; const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; TemporalNoiseShaping *tns = &sce->tns; if (!sce->tns.present) return; for (i = 0; i < sce->ics.num_windows; i++) { put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]); if (tns->n_filt[i]) { put_bits(&s->pb, 1, coef_res); for (filt = 0; filt < tns->n_filt[i]; filt++) { put_bits(&s->pb, 6 - 2 * is8, tns->length[i][filt]); put_bits(&s->pb, 5 - 2 * is8, tns->order[i][filt]); if (tns->order[i][filt]) { put_bits(&s->pb, 1, !!tns->direction[i][filt]); put_bits(&s->pb, 1, !!coef_compress); coef_len = coef_res + 3 - coef_compress; for (w = 0; w < tns->order[i][filt]; w++) { u_coef = (tns->coef_idx[i][filt][w])&(~(~0<pb, coef_len, u_coef); } } } } } } static int quantize_coefs(double *coef, int *idx, float *lpc, int order) { int i; uint8_t u_coef; const float *quant_arr = tns_tmp2_map[TNS_Q_BITS == 4]; const double iqfac_p = ((1 << (TNS_Q_BITS-1)) - 0.5)/(M_PI/2.0); const double iqfac_m = ((1 << (TNS_Q_BITS-1)) + 0.5)/(M_PI/2.0); for (i = 0; i < order; i++) { idx[i] = ceilf(asin(coef[i])*((coef[i] >= 0) ? iqfac_p : iqfac_m)); u_coef = (idx[i])&(~(~0<tns; IndividualChannelStream *ics = &sce->ics; int w, filt, m, i, top, order, bottom, start, end, size, inc; const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); float lpc[TNS_MAX_ORDER]; for (w = 0; w < ics->num_windows; w++) { bottom = ics->num_swb; for (filt = 0; filt < tns->n_filt[w]; filt++) { top = bottom; bottom = FFMAX(0, top - tns->length[w][filt]); order = tns->order[w][filt]; if (order == 0) continue; // tns_decode_coef compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); start = ics->swb_offset[FFMIN(bottom, mmm)]; end = ics->swb_offset[FFMIN( top, mmm)]; if ((size = end - start) <= 0) continue; if (tns->direction[w][filt]) { inc = -1; start = end - 1; } else { inc = 1; } start += w * 128; // ar filter for (m = 0; m < size; m++, start += inc) for (i = 1; i <= FFMIN(m, order); i++) sce->coeffs[start] += lpc[i-1]*sce->pcoeffs[start - i*inc]; } } } void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce) { TemporalNoiseShaping *tns = &sce->tns; int w, w2, g, count = 0; const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb); const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE; int order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER; int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm); int sfb_end = av_clip(sce->ics.num_swb, 0, mmm); for (w = 0; w < sce->ics.num_windows; w++) { float en_low = 0.0f, en_high = 0.0f, threshold = 0.0f, spread = 0.0f; double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0}; int coef_start = w*sce->ics.num_swb + sce->ics.swb_offset[sfb_start]; int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start]; for (g = 0; g < sce->ics.num_swb; g++) { if (w*16+g < sfb_start || w*16+g > sfb_end) continue; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if ((w+w2)*16+g > sfb_start + ((sfb_end - sfb_start)/2)) en_high += band->energy; else en_low += band->energy; threshold += band->threshold; spread += band->spread; } } if (coef_len <= 0 || (sfb_end - sfb_start) <= 0) continue; /* LPC */ gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[coef_start], coef_len, order, coefs); gain *= s->lambda/110.0f; if (gain > TNS_GAIN_THRESHOLD_LOW && gain*0 < TNS_GAIN_THRESHOLD_HIGH && (en_low+en_high) > TNS_GAIN_THRESHOLD_LOW*threshold && spread > TNS_SPREAD_THRESHOLD) { tns->n_filt[w] = 1; for (g = 0; g < tns->n_filt[w]; g++) { tns->length[w][g] = sfb_end - sfb_start; tns->direction[w][g] = en_low < en_high && TNS_DIRECTION_VARY; tns->order[w][g] = quantize_coefs(coefs, tns->coef_idx[w][g], tns->coef[w][g], order); } count++; } } sce->tns.present = !!count; }