/* * Bink video decoder * Copyright (c) 2009 Konstantin Shishkov * Copyright (C) 2011 Peter Ross <pross@xvid.org> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/imgutils.h" #include "avcodec.h" #include "dsputil.h" #include "binkdata.h" #include "binkdsp.h" #include "mathops.h" #define ALT_BITSTREAM_READER_LE #include "get_bits.h" #define BINK_FLAG_ALPHA 0x00100000 #define BINK_FLAG_GRAY 0x00020000 static VLC bink_trees[16]; /** * IDs for different data types used in old version of Bink video codec */ enum OldSources { BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types BINKB_SRC_COLORS, ///< pixel values used for different block types BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill BINKB_SRC_X_OFF, ///< X components of motion value BINKB_SRC_Y_OFF, ///< Y components of motion value BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks BINKB_NB_SRC }; static const int binkb_bundle_sizes[BINKB_NB_SRC] = { 4, 8, 8, 5, 5, 11, 11, 4, 4, 7 }; static const int binkb_bundle_signed[BINKB_NB_SRC] = { 0, 0, 0, 1, 1, 0, 1, 0, 0, 0 }; static int32_t binkb_intra_quant[16][64]; static int32_t binkb_inter_quant[16][64]; /** * IDs for different data types used in Bink video codec */ enum Sources { BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types) BINK_SRC_COLORS, ///< pixel values used for different block types BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill BINK_SRC_X_OFF, ///< X components of motion value BINK_SRC_Y_OFF, ///< Y components of motion value BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT BINK_SRC_RUN, ///< run lengths for special fill block BINK_NB_SRC }; /** * data needed to decode 4-bit Huffman-coded value */ typedef struct Tree { int vlc_num; ///< tree number (in bink_trees[]) uint8_t syms[16]; ///< leaf value to symbol mapping } Tree; #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\ bink_trees[(tree).vlc_num].bits, 1)] /** * data structure used for decoding single Bink data type */ typedef struct Bundle { int len; ///< length of number of entries to decode (in bits) Tree tree; ///< Huffman tree-related data uint8_t *data; ///< buffer for decoded symbols uint8_t *data_end; ///< buffer end uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet } Bundle; /* * Decoder context */ typedef struct BinkContext { AVCodecContext *avctx; DSPContext dsp; BinkDSPContext bdsp; AVFrame pic, last; int version; ///< internal Bink file version int has_alpha; int swap_planes; Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type int col_lastval; ///< value of last decoded high nibble in "colours" data type } BinkContext; /** * Bink video block types */ enum BlockTypes { SKIP_BLOCK = 0, ///< skipped block SCALED_BLOCK, ///< block has size 16x16 MOTION_BLOCK, ///< block is copied from previous frame with some offset RUN_BLOCK, ///< block is composed from runs of colours with custom scan order RESIDUE_BLOCK, ///< motion block with some difference added INTRA_BLOCK, ///< intra DCT block FILL_BLOCK, ///< block is filled with single colour INTER_BLOCK, ///< motion block with DCT applied to the difference PATTERN_BLOCK, ///< block is filled with two colours following custom pattern RAW_BLOCK, ///< uncoded 8x8 block }; /** * Initialize length length in all bundles. * * @param c decoder context * @param width plane width * @param bw plane width in 8x8 blocks */ static void init_lengths(BinkContext *c, int width, int bw) { c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1; c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1; c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1; c->bundle[BINK_SRC_INTRA_DC].len = c->bundle[BINK_SRC_INTER_DC].len = c->bundle[BINK_SRC_X_OFF].len = c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1; c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1; c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1; } /** * Allocate memory for bundles. * * @param c decoder context */ static av_cold void init_bundles(BinkContext *c) { int bw, bh, blocks; int i; bw = (c->avctx->width + 7) >> 3; bh = (c->avctx->height + 7) >> 3; blocks = bw * bh; for (i = 0; i < BINKB_NB_SRC; i++) { c->bundle[i].data = av_malloc(blocks * 64); c->bundle[i].data_end = c->bundle[i].data + blocks * 64; } } /** * Free memory used by bundles. * * @param c decoder context */ static av_cold void free_bundles(BinkContext *c) { int i; for (i = 0; i < BINKB_NB_SRC; i++) av_freep(&c->bundle[i].data); } /** * Merge two consequent lists of equal size depending on bits read. * * @param gb context for reading bits * @param dst buffer where merged list will be written to * @param src pointer to the head of the first list (the second lists starts at src+size) * @param size input lists size */ static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size) { uint8_t *src2 = src + size; int size2 = size; do { if (!get_bits1(gb)) { *dst++ = *src++; size--; } else { *dst++ = *src2++; size2--; } } while (size && size2); while (size--) *dst++ = *src++; while (size2--) *dst++ = *src2++; } /** * Read information about Huffman tree used to decode data. * * @param gb context for reading bits * @param tree pointer for storing tree data */ static void read_tree(GetBitContext *gb, Tree *tree) { uint8_t tmp1[16], tmp2[16], *in = tmp1, *out = tmp2; int i, t, len; tree->vlc_num = get_bits(gb, 4); if (!tree->vlc_num) { for (i = 0; i < 16; i++) tree->syms[i] = i; return; } if (get_bits1(gb)) { len = get_bits(gb, 3); memset(tmp1, 0, sizeof(tmp1)); for (i = 0; i <= len; i++) { tree->syms[i] = get_bits(gb, 4); tmp1[tree->syms[i]] = 1; } for (i = 0; i < 16; i++) if (!tmp1[i]) tree->syms[++len] = i; } else { len = get_bits(gb, 2); for (i = 0; i < 16; i++) in[i] = i; for (i = 0; i <= len; i++) { int size = 1 << i; for (t = 0; t < 16; t += size << 1) merge(gb, out + t, in + t, size); FFSWAP(uint8_t*, in, out); } memcpy(tree->syms, in, 16); } } /** * Prepare bundle for decoding data. * * @param gb context for reading bits * @param c decoder context * @param bundle_num number of the bundle to initialize */ static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num) { int i; if (bundle_num == BINK_SRC_COLORS) { for (i = 0; i < 16; i++) read_tree(gb, &c->col_high[i]); c->col_lastval = 0; } if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC) read_tree(gb, &c->bundle[bundle_num].tree); c->bundle[bundle_num].cur_dec = c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data; } /** * common check before starting decoding bundle data * * @param gb context for reading bits * @param b bundle * @param t variable where number of elements to decode will be stored */ #define CHECK_READ_VAL(gb, b, t) \ if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \ return 0; \ t = get_bits(gb, b->len); \ if (!t) { \ b->cur_dec = NULL; \ return 0; \ } \ static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) { int t, v; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n"); return -1; } if (get_bits1(gb)) { v = get_bits(gb, 4); memset(b->cur_dec, v, t); b->cur_dec += t; } else { while (b->cur_dec < dec_end) *b->cur_dec++ = GET_HUFF(gb, b->tree); } return 0; } static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) { int t, sign, v; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(avctx, AV_LOG_ERROR, "Too many motion values\n"); return -1; } if (get_bits1(gb)) { v = get_bits(gb, 4); if (v) { sign = -get_bits1(gb); v = (v ^ sign) - sign; } memset(b->cur_dec, v, t); b->cur_dec += t; } else { do { v = GET_HUFF(gb, b->tree); if (v) { sign = -get_bits1(gb); v = (v ^ sign) - sign; } *b->cur_dec++ = v; } while (b->cur_dec < dec_end); } return 0; } static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 }; static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) { int t, v; int last = 0; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(avctx, AV_LOG_ERROR, "Too many block type values\n"); return -1; } if (get_bits1(gb)) { v = get_bits(gb, 4); memset(b->cur_dec, v, t); b->cur_dec += t; } else { do { v = GET_HUFF(gb, b->tree); if (v < 12) { last = v; *b->cur_dec++ = v; } else { int run = bink_rlelens[v - 12]; memset(b->cur_dec, last, run); b->cur_dec += run; } } while (b->cur_dec < dec_end); } return 0; } static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b) { int t, v; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n"); return -1; } while (b->cur_dec < dec_end) { v = GET_HUFF(gb, b->tree); v |= GET_HUFF(gb, b->tree) << 4; *b->cur_dec++ = v; } return 0; } static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c) { int t, sign, v; const uint8_t *dec_end; CHECK_READ_VAL(gb, b, t); dec_end = b->cur_dec + t; if (dec_end > b->data_end) { av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n"); return -1; } if (get_bits1(gb)) { c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]); v = GET_HUFF(gb, b->tree); v = (c->col_lastval << 4) | v; if (c->version < 'i') { sign = ((int8_t) v) >> 7; v = ((v & 0x7F) ^ sign) - sign; v += 0x80; } memset(b->cur_dec, v, t); b->cur_dec += t; } else { while (b->cur_dec < dec_end) { c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]); v = GET_HUFF(gb, b->tree); v = (c->col_lastval << 4) | v; if (c->version < 'i') { sign = ((int8_t) v) >> 7; v = ((v & 0x7F) ^ sign) - sign; v += 0x80; } *b->cur_dec++ = v; } } return 0; } /** number of bits used to store first DC value in bundle */ #define DC_START_BITS 11 static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b, int start_bits, int has_sign) { int i, j, len, len2, bsize, sign, v, v2; int16_t *dst = (int16_t*)b->cur_dec; CHECK_READ_VAL(gb, b, len); v = get_bits(gb, start_bits - has_sign); if (v && has_sign) { sign = -get_bits1(gb); v = (v ^ sign) - sign; } *dst++ = v; len--; for (i = 0; i < len; i += 8) { len2 = FFMIN(len - i, 8); bsize = get_bits(gb, 4); if (bsize) { for (j = 0; j < len2; j++) { v2 = get_bits(gb, bsize); if (v2) { sign = -get_bits1(gb); v2 = (v2 ^ sign) - sign; } v += v2; *dst++ = v; if (v < -32768 || v > 32767) { av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v); return -1; } } } else { for (j = 0; j < len2; j++) *dst++ = v; } } b->cur_dec = (uint8_t*)dst; return 0; } /** * Retrieve next value from bundle. * * @param c decoder context * @param bundle bundle number */ static inline int get_value(BinkContext *c, int bundle) { int ret; if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN) return *c->bundle[bundle].cur_ptr++; if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF) return (int8_t)*c->bundle[bundle].cur_ptr++; ret = *(int16_t*)c->bundle[bundle].cur_ptr; c->bundle[bundle].cur_ptr += 2; return ret; } static void binkb_init_bundle(BinkContext *c, int bundle_num) { c->bundle[bundle_num].cur_dec = c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data; c->bundle[bundle_num].len = 13; } static void binkb_init_bundles(BinkContext *c) { int i; for (i = 0; i < BINKB_NB_SRC; i++) binkb_init_bundle(c, i); } static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num) { const int bits = binkb_bundle_sizes[bundle_num]; const int mask = 1 << (bits - 1); const int issigned = binkb_bundle_signed[bundle_num]; Bundle *b = &c->bundle[bundle_num]; int i, len; CHECK_READ_VAL(gb, b, len); if (bits <= 8) { if (!issigned) { for (i = 0; i < len; i++) *b->cur_dec++ = get_bits(gb, bits); } else { for (i = 0; i < len; i++) *b->cur_dec++ = get_bits(gb, bits) - mask; } } else { int16_t *dst = (int16_t*)b->cur_dec; if (!issigned) { for (i = 0; i < len; i++) *dst++ = get_bits(gb, bits); } else { for (i = 0; i < len; i++) *dst++ = get_bits(gb, bits) - mask; } b->cur_dec = (uint8_t*)dst; } return 0; } static inline int binkb_get_value(BinkContext *c, int bundle_num) { int16_t ret; const int bits = binkb_bundle_sizes[bundle_num]; if (bits <= 8) { int val = *c->bundle[bundle_num].cur_ptr++; return binkb_bundle_signed[bundle_num] ? (int8_t)val : val; } ret = *(int16_t*)c->bundle[bundle_num].cur_ptr; c->bundle[bundle_num].cur_ptr += 2; return ret; } /** * Read 8x8 block of DCT coefficients. * * @param gb context for reading bits * @param block place for storing coefficients * @param scan scan order table * @param quant_matrices quantization matrices * @return 0 for success, negative value in other cases */ static int read_dct_coeffs(GetBitContext *gb, int32_t block[64], const uint8_t *scan, const int32_t quant_matrices[16][64], int q) { int coef_list[128]; int mode_list[128]; int i, t, mask, bits, ccoef, mode, sign; int list_start = 64, list_end = 64, list_pos; int coef_count = 0; int coef_idx[64]; int quant_idx; const int32_t *quant; coef_list[list_end] = 4; mode_list[list_end++] = 0; coef_list[list_end] = 24; mode_list[list_end++] = 0; coef_list[list_end] = 44; mode_list[list_end++] = 0; coef_list[list_end] = 1; mode_list[list_end++] = 3; coef_list[list_end] = 2; mode_list[list_end++] = 3; coef_list[list_end] = 3; mode_list[list_end++] = 3; bits = get_bits(gb, 4) - 1; for (mask = 1 << bits; bits >= 0; mask >>= 1, bits--) { list_pos = list_start; while (list_pos < list_end) { if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) { list_pos++; continue; } ccoef = coef_list[list_pos]; mode = mode_list[list_pos]; switch (mode) { case 0: coef_list[list_pos] = ccoef + 4; mode_list[list_pos] = 1; case 2: if (mode == 2) { coef_list[list_pos] = 0; mode_list[list_pos++] = 0; } for (i = 0; i < 4; i++, ccoef++) { if (get_bits1(gb)) { coef_list[--list_start] = ccoef; mode_list[ list_start] = 3; } else { if (!bits) { t = 1 - (get_bits1(gb) << 1); } else { t = get_bits(gb, bits) | mask; sign = -get_bits1(gb); t = (t ^ sign) - sign; } block[scan[ccoef]] = t; coef_idx[coef_count++] = ccoef; } } break; case 1: mode_list[list_pos] = 2; for (i = 0; i < 3; i++) { ccoef += 4; coef_list[list_end] = ccoef; mode_list[list_end++] = 2; } break; case 3: if (!bits) { t = 1 - (get_bits1(gb) << 1); } else { t = get_bits(gb, bits) | mask; sign = -get_bits1(gb); t = (t ^ sign) - sign; } block[scan[ccoef]] = t; coef_idx[coef_count++] = ccoef; coef_list[list_pos] = 0; mode_list[list_pos++] = 0; break; } } } if (q == -1) { quant_idx = get_bits(gb, 4); } else { quant_idx = q; } quant = quant_matrices[quant_idx]; block[0] = (block[0] * quant[0]) >> 11; for (i = 0; i < coef_count; i++) { int idx = coef_idx[i]; block[scan[idx]] = (block[scan[idx]] * quant[idx]) >> 11; } return 0; } /** * Read 8x8 block with residue after motion compensation. * * @param gb context for reading bits * @param block place to store read data * @param masks_count number of masks to decode * @return 0 on success, negative value in other cases */ static int read_residue(GetBitContext *gb, DCTELEM block[64], int masks_count) { int coef_list[128]; int mode_list[128]; int i, sign, mask, ccoef, mode; int list_start = 64, list_end = 64, list_pos; int nz_coeff[64]; int nz_coeff_count = 0; coef_list[list_end] = 4; mode_list[list_end++] = 0; coef_list[list_end] = 24; mode_list[list_end++] = 0; coef_list[list_end] = 44; mode_list[list_end++] = 0; coef_list[list_end] = 0; mode_list[list_end++] = 2; for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) { for (i = 0; i < nz_coeff_count; i++) { if (!get_bits1(gb)) continue; if (block[nz_coeff[i]] < 0) block[nz_coeff[i]] -= mask; else block[nz_coeff[i]] += mask; masks_count--; if (masks_count < 0) return 0; } list_pos = list_start; while (list_pos < list_end) { if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) { list_pos++; continue; } ccoef = coef_list[list_pos]; mode = mode_list[list_pos]; switch (mode) { case 0: coef_list[list_pos] = ccoef + 4; mode_list[list_pos] = 1; case 2: if (mode == 2) { coef_list[list_pos] = 0; mode_list[list_pos++] = 0; } for (i = 0; i < 4; i++, ccoef++) { if (get_bits1(gb)) { coef_list[--list_start] = ccoef; mode_list[ list_start] = 3; } else { nz_coeff[nz_coeff_count++] = bink_scan[ccoef]; sign = -get_bits1(gb); block[bink_scan[ccoef]] = (mask ^ sign) - sign; masks_count--; if (masks_count < 0) return 0; } } break; case 1: mode_list[list_pos] = 2; for (i = 0; i < 3; i++) { ccoef += 4; coef_list[list_end] = ccoef; mode_list[list_end++] = 2; } break; case 3: nz_coeff[nz_coeff_count++] = bink_scan[ccoef]; sign = -get_bits1(gb); block[bink_scan[ccoef]] = (mask ^ sign) - sign; coef_list[list_pos] = 0; mode_list[list_pos++] = 0; masks_count--; if (masks_count < 0) return 0; break; } } } return 0; } /** * Copy 8x8 block from source to destination, where src and dst may be overlapped */ static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride) { uint8_t tmp[64]; int i; for (i = 0; i < 8; i++) memcpy(tmp + i*8, src + i*stride, 8); for (i = 0; i < 8; i++) memcpy(dst + i*stride, tmp + i*8, 8); } static int binkb_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx, int is_key, int is_chroma) { int blk; int i, j, bx, by; uint8_t *dst, *ref, *ref_start, *ref_end; int v, col[2]; const uint8_t *scan; int xoff, yoff; LOCAL_ALIGNED_16(DCTELEM, block, [64]); LOCAL_ALIGNED_16(int32_t, dctblock, [64]); int coordmap[64]; int ybias = is_key ? -15 : 0; int qp; const int stride = c->pic.linesize[plane_idx]; int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3; int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3; binkb_init_bundles(c); ref_start = c->pic.data[plane_idx]; ref_end = c->pic.data[plane_idx] + (bh * c->pic.linesize[plane_idx] + bw) * 8; for (i = 0; i < 64; i++) coordmap[i] = (i & 7) + (i >> 3) * stride; for (by = 0; by < bh; by++) { for (i = 0; i < BINKB_NB_SRC; i++) { if (binkb_read_bundle(c, gb, i) < 0) return -1; } dst = c->pic.data[plane_idx] + 8*by*stride; for (bx = 0; bx < bw; bx++, dst += 8) { blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES); switch (blk) { case 0: break; case 1: scan = bink_patterns[get_bits(gb, 4)]; i = 0; do { int mode, run; mode = get_bits1(gb); run = get_bits(gb, binkb_runbits[i]) + 1; i += run; if (i > 64) { av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); return -1; } if (mode) { v = binkb_get_value(c, BINKB_SRC_COLORS); for (j = 0; j < run; j++) dst[coordmap[*scan++]] = v; } else { for (j = 0; j < run; j++) dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS); } } while (i < 63); if (i == 63) dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS); break; case 2: memset(dctblock, 0, sizeof(*dctblock) * 64); dctblock[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC); qp = binkb_get_value(c, BINKB_SRC_INTRA_Q); read_dct_coeffs(gb, dctblock, bink_scan, binkb_intra_quant, qp); c->bdsp.idct_put(dst, stride, dctblock); break; case 3: xoff = binkb_get_value(c, BINKB_SRC_X_OFF); yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; ref = dst + xoff + yoff * stride; if (ref < ref_start || ref + 8*stride > ref_end) { av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); } else { put_pixels8x8_overlapped(dst, ref, stride); } c->dsp.clear_block(block); v = binkb_get_value(c, BINKB_SRC_INTER_COEFS); read_residue(gb, block, v); c->dsp.add_pixels8(dst, block, stride); break; case 4: xoff = binkb_get_value(c, BINKB_SRC_X_OFF); yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; ref = dst + xoff + yoff * stride; if (ref < ref_start || ref + 8 * stride > ref_end) { av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); } else { put_pixels8x8_overlapped(dst, ref, stride); } memset(dctblock, 0, sizeof(*dctblock) * 64); dctblock[0] = binkb_get_value(c, BINKB_SRC_INTER_DC); qp = binkb_get_value(c, BINKB_SRC_INTER_Q); read_dct_coeffs(gb, dctblock, bink_scan, binkb_inter_quant, qp); c->bdsp.idct_add(dst, stride, dctblock); break; case 5: v = binkb_get_value(c, BINKB_SRC_COLORS); c->dsp.fill_block_tab[1](dst, v, stride, 8); break; case 6: for (i = 0; i < 2; i++) col[i] = binkb_get_value(c, BINKB_SRC_COLORS); for (i = 0; i < 8; i++) { v = binkb_get_value(c, BINKB_SRC_PATTERN); for (j = 0; j < 8; j++, v >>= 1) dst[i*stride + j] = col[v & 1]; } break; case 7: xoff = binkb_get_value(c, BINKB_SRC_X_OFF); yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias; ref = dst + xoff + yoff * stride; if (ref < ref_start || ref + 8 * stride > ref_end) { av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n"); } else if (ref + 8*stride < dst || ref >= dst + 8*stride) { c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); } else { put_pixels8x8_overlapped(dst, ref, stride); } break; case 8: for (i = 0; i < 8; i++) memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8); c->bundle[BINKB_SRC_COLORS].cur_ptr += 64; break; default: av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk); return -1; } } } if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F)); return 0; } static int bink_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx, int is_chroma) { int blk; int i, j, bx, by; uint8_t *dst, *prev, *ref, *ref_start, *ref_end; int v, col[2]; const uint8_t *scan; int xoff, yoff; LOCAL_ALIGNED_16(DCTELEM, block, [64]); LOCAL_ALIGNED_16(uint8_t, ublock, [64]); LOCAL_ALIGNED_16(int32_t, dctblock, [64]); int coordmap[64]; const int stride = c->pic.linesize[plane_idx]; int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3; int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3; int width = c->avctx->width >> is_chroma; init_lengths(c, FFMAX(width, 8), bw); for (i = 0; i < BINK_NB_SRC; i++) read_bundle(gb, c, i); ref_start = c->last.data[plane_idx]; ref_end = c->last.data[plane_idx] + (bw - 1 + c->last.linesize[plane_idx] * (bh - 1)) * 8; for (i = 0; i < 64; i++) coordmap[i] = (i & 7) + (i >> 3) * stride; for (by = 0; by < bh; by++) { if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES]) < 0) return -1; if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES]) < 0) return -1; if (read_colors(gb, &c->bundle[BINK_SRC_COLORS], c) < 0) return -1; if (read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN]) < 0) return -1; if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF]) < 0) return -1; if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF]) < 0) return -1; if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0) < 0) return -1; if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1) < 0) return -1; if (read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN]) < 0) return -1; if (by == bh) break; dst = c->pic.data[plane_idx] + 8*by*stride; prev = c->last.data[plane_idx] + 8*by*stride; for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) { blk = get_value(c, BINK_SRC_BLOCK_TYPES); // 16x16 block type on odd line means part of the already decoded block, so skip it if ((by & 1) && blk == SCALED_BLOCK) { bx++; dst += 8; prev += 8; continue; } switch (blk) { case SKIP_BLOCK: c->dsp.put_pixels_tab[1][0](dst, prev, stride, 8); break; case SCALED_BLOCK: blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES); switch (blk) { case RUN_BLOCK: scan = bink_patterns[get_bits(gb, 4)]; i = 0; do { int run = get_value(c, BINK_SRC_RUN) + 1; i += run; if (i > 64) { av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); return -1; } if (get_bits1(gb)) { v = get_value(c, BINK_SRC_COLORS); for (j = 0; j < run; j++) ublock[*scan++] = v; } else { for (j = 0; j < run; j++) ublock[*scan++] = get_value(c, BINK_SRC_COLORS); } } while (i < 63); if (i == 63) ublock[*scan++] = get_value(c, BINK_SRC_COLORS); break; case INTRA_BLOCK: memset(dctblock, 0, sizeof(*dctblock) * 64); dctblock[0] = get_value(c, BINK_SRC_INTRA_DC); read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1); c->bdsp.idct_put(ublock, 8, dctblock); break; case FILL_BLOCK: v = get_value(c, BINK_SRC_COLORS); c->dsp.fill_block_tab[0](dst, v, stride, 16); break; case PATTERN_BLOCK: for (i = 0; i < 2; i++) col[i] = get_value(c, BINK_SRC_COLORS); for (j = 0; j < 8; j++) { v = get_value(c, BINK_SRC_PATTERN); for (i = 0; i < 8; i++, v >>= 1) ublock[i + j*8] = col[v & 1]; } break; case RAW_BLOCK: for (j = 0; j < 8; j++) for (i = 0; i < 8; i++) ublock[i + j*8] = get_value(c, BINK_SRC_COLORS); break; default: av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk); return -1; } if (blk != FILL_BLOCK) c->bdsp.scale_block(ublock, dst, stride); bx++; dst += 8; prev += 8; break; case MOTION_BLOCK: xoff = get_value(c, BINK_SRC_X_OFF); yoff = get_value(c, BINK_SRC_Y_OFF); ref = prev + xoff + yoff * stride; if (ref < ref_start || ref > ref_end) { av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n", bx*8 + xoff, by*8 + yoff); return -1; } c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); break; case RUN_BLOCK: scan = bink_patterns[get_bits(gb, 4)]; i = 0; do { int run = get_value(c, BINK_SRC_RUN) + 1; i += run; if (i > 64) { av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n"); return -1; } if (get_bits1(gb)) { v = get_value(c, BINK_SRC_COLORS); for (j = 0; j < run; j++) dst[coordmap[*scan++]] = v; } else { for (j = 0; j < run; j++) dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS); } } while (i < 63); if (i == 63) dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS); break; case RESIDUE_BLOCK: xoff = get_value(c, BINK_SRC_X_OFF); yoff = get_value(c, BINK_SRC_Y_OFF); ref = prev + xoff + yoff * stride; if (ref < ref_start || ref > ref_end) { av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n", bx*8 + xoff, by*8 + yoff); return -1; } c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); c->dsp.clear_block(block); v = get_bits(gb, 7); read_residue(gb, block, v); c->dsp.add_pixels8(dst, block, stride); break; case INTRA_BLOCK: memset(dctblock, 0, sizeof(*dctblock) * 64); dctblock[0] = get_value(c, BINK_SRC_INTRA_DC); read_dct_coeffs(gb, dctblock, bink_scan, bink_intra_quant, -1); c->bdsp.idct_put(dst, stride, dctblock); break; case FILL_BLOCK: v = get_value(c, BINK_SRC_COLORS); c->dsp.fill_block_tab[1](dst, v, stride, 8); break; case INTER_BLOCK: xoff = get_value(c, BINK_SRC_X_OFF); yoff = get_value(c, BINK_SRC_Y_OFF); ref = prev + xoff + yoff * stride; c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8); memset(dctblock, 0, sizeof(*dctblock) * 64); dctblock[0] = get_value(c, BINK_SRC_INTER_DC); read_dct_coeffs(gb, dctblock, bink_scan, bink_inter_quant, -1); c->bdsp.idct_add(dst, stride, dctblock); break; case PATTERN_BLOCK: for (i = 0; i < 2; i++) col[i] = get_value(c, BINK_SRC_COLORS); for (i = 0; i < 8; i++) { v = get_value(c, BINK_SRC_PATTERN); for (j = 0; j < 8; j++, v >>= 1) dst[i*stride + j] = col[v & 1]; } break; case RAW_BLOCK: for (i = 0; i < 8; i++) memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8); c->bundle[BINK_SRC_COLORS].cur_ptr += 64; break; default: av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk); return -1; } } } if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F)); return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *pkt) { BinkContext * const c = avctx->priv_data; GetBitContext gb; int plane, plane_idx; int bits_count = pkt->size << 3; if (c->version > 'b') { if(c->pic.data[0]) avctx->release_buffer(avctx, &c->pic); if(avctx->get_buffer(avctx, &c->pic) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } } else { if(avctx->reget_buffer(avctx, &c->pic) < 0){ av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return -1; } } init_get_bits(&gb, pkt->data, bits_count); if (c->has_alpha) { if (c->version >= 'i') skip_bits_long(&gb, 32); if (bink_decode_plane(c, &gb, 3, 0) < 0) return -1; } if (c->version >= 'i') skip_bits_long(&gb, 32); for (plane = 0; plane < 3; plane++) { plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3); if (c->version > 'b') { if (bink_decode_plane(c, &gb, plane_idx, !!plane) < 0) return -1; } else { if (binkb_decode_plane(c, &gb, plane_idx, !pkt->pts, !!plane) < 0) return -1; } if (get_bits_count(&gb) >= bits_count) break; } emms_c(); *data_size = sizeof(AVFrame); *(AVFrame*)data = c->pic; if (c->version > 'b') FFSWAP(AVFrame, c->pic, c->last); /* always report that the buffer was completely consumed */ return pkt->size; } /** * Caclulate quantization tables for version b */ static av_cold void binkb_calc_quant(void) { uint8_t inv_bink_scan[64]; double s[64]; int i, j; for (j = 0; j < 8; j++) { for (i = 0; i < 8; i++) { if (j && j != 4) if (i && i != 4) s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0; else s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0); else if (i && i != 4) s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0); else s[j*8 + i] = 1.0; } } for (i = 0; i < 64; i++) inv_bink_scan[bink_scan[i]] = i; for (j = 0; j < 16; j++) { for (i = 0; i < 64; i++) { int k = inv_bink_scan[i]; if (s[i] == 1.0) { binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * binkb_num[j]/binkb_den[j]; binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * binkb_num[j]/binkb_den[j]; } else { binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] * binkb_num[j]/(double)binkb_den[j]; binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] * binkb_num[j]/(double)binkb_den[j]; } } } } static av_cold int decode_init(AVCodecContext *avctx) { BinkContext * const c = avctx->priv_data; static VLC_TYPE table[16 * 128][2]; static int binkb_initialised = 0; int i; int flags; c->version = avctx->codec_tag >> 24; if (avctx->extradata_size < 4) { av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n"); return -1; } flags = AV_RL32(avctx->extradata); c->has_alpha = flags & BINK_FLAG_ALPHA; c->swap_planes = c->version >= 'h'; if (!bink_trees[15].table) { for (i = 0; i < 16; i++) { const int maxbits = bink_tree_lens[i][15]; bink_trees[i].table = table + i*128; bink_trees[i].table_allocated = 1 << maxbits; init_vlc(&bink_trees[i], maxbits, 16, bink_tree_lens[i], 1, 1, bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE); } } c->avctx = avctx; c->pic.data[0] = NULL; if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0) { return 1; } avctx->pix_fmt = c->has_alpha ? PIX_FMT_YUVA420P : PIX_FMT_YUV420P; avctx->idct_algo = FF_IDCT_BINK; dsputil_init(&c->dsp, avctx); ff_binkdsp_init(&c->bdsp); init_bundles(c); if (c->version == 'b') { if (!binkb_initialised) { binkb_calc_quant(); binkb_initialised = 1; } } return 0; } static av_cold int decode_end(AVCodecContext *avctx) { BinkContext * const c = avctx->priv_data; if (c->pic.data[0]) avctx->release_buffer(avctx, &c->pic); if (c->last.data[0]) avctx->release_buffer(avctx, &c->last); free_bundles(c); return 0; } AVCodec ff_bink_decoder = { .name = "binkvideo", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_BINKVIDEO, .priv_data_size = sizeof(BinkContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .long_name = NULL_IF_CONFIG_SMALL("Bink video"), };