/* * (c) 2001 Fabrice Bellard * 2007 Marc Hoffman * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * DCT test (c) 2001 Fabrice Bellard * Started from sample code by Juan J. Sierralta P. */ #include "config.h" #include #include #include #if HAVE_UNISTD_H #include #endif #include #include "libavutil/cpu.h" #include "libavutil/common.h" #include "libavutil/lfg.h" #include "libavutil/time.h" #include "dct.h" #include "simple_idct.h" #include "aandcttab.h" #include "faandct.h" #include "faanidct.h" #include "x86/idct_xvid.h" #include "dctref.h" // BFIN void ff_bfin_idct(int16_t *block); void ff_bfin_fdct(int16_t *block); // ALTIVEC void ff_fdct_altivec(int16_t *block); // ARM void ff_j_rev_dct_arm(int16_t *data); void ff_simple_idct_arm(int16_t *data); void ff_simple_idct_armv5te(int16_t *data); void ff_simple_idct_armv6(int16_t *data); void ff_simple_idct_neon(int16_t *data); void ff_simple_idct_axp(int16_t *data); struct algo { const char *name; void (*func)(int16_t *block); enum formattag { NO_PERM, MMX_PERM, MMX_SIMPLE_PERM, SCALE_PERM, SSE2_PERM, PARTTRANS_PERM } format; int mm_support; int nonspec; }; static int cpu_flags; static const struct algo fdct_tab[] = { { "REF-DBL", ff_ref_fdct, NO_PERM }, { "FAAN", ff_faandct, NO_PERM }, { "IJG-AAN-INT", ff_fdct_ifast, SCALE_PERM }, { "IJG-LLM-INT", ff_jpeg_fdct_islow_8, NO_PERM }, #if HAVE_MMX_INLINE { "MMX", ff_fdct_mmx, NO_PERM, AV_CPU_FLAG_MMX }, #endif #if HAVE_MMXEXT_INLINE { "MMXEXT", ff_fdct_mmxext, NO_PERM, AV_CPU_FLAG_MMXEXT }, #endif #if HAVE_SSE2_INLINE { "SSE2", ff_fdct_sse2, NO_PERM, AV_CPU_FLAG_SSE2 }, #endif #if HAVE_ALTIVEC { "altivecfdct", ff_fdct_altivec, NO_PERM, AV_CPU_FLAG_ALTIVEC }, #endif #if ARCH_BFIN { "BFINfdct", ff_bfin_fdct, NO_PERM }, #endif { 0 } }; static const struct algo idct_tab[] = { { "FAANI", ff_faanidct, NO_PERM }, { "REF-DBL", ff_ref_idct, NO_PERM }, { "INT", ff_j_rev_dct, MMX_PERM }, { "SIMPLE-C", ff_simple_idct_8, NO_PERM }, #if HAVE_MMX_INLINE { "SIMPLE-MMX", ff_simple_idct_mmx, MMX_SIMPLE_PERM, AV_CPU_FLAG_MMX }, { "XVID-MMX", ff_idct_xvid_mmx, NO_PERM, AV_CPU_FLAG_MMX, 1 }, #endif #if HAVE_MMXEXT_INLINE { "XVID-MMXEXT", ff_idct_xvid_mmxext, NO_PERM, AV_CPU_FLAG_MMXEXT, 1 }, #endif #if HAVE_SSE2_INLINE { "XVID-SSE2", ff_idct_xvid_sse2, SSE2_PERM, AV_CPU_FLAG_SSE2, 1 }, #endif #if ARCH_BFIN { "BFINidct", ff_bfin_idct, NO_PERM }, #endif #if ARCH_ARM { "SIMPLE-ARM", ff_simple_idct_arm, NO_PERM }, { "INT-ARM", ff_j_rev_dct_arm, MMX_PERM }, #endif #if HAVE_ARMV5TE { "SIMPLE-ARMV5TE", ff_simple_idct_armv5te,NO_PERM, AV_CPU_FLAG_ARMV5TE }, #endif #if HAVE_ARMV6 { "SIMPLE-ARMV6", ff_simple_idct_armv6, MMX_PERM, AV_CPU_FLAG_ARMV6 }, #endif #if HAVE_NEON { "SIMPLE-NEON", ff_simple_idct_neon, PARTTRANS_PERM, AV_CPU_FLAG_NEON }, #endif #if ARCH_ALPHA { "SIMPLE-ALPHA", ff_simple_idct_axp, NO_PERM }, #endif { 0 } }; #define AANSCALE_BITS 12 #define NB_ITS 20000 #define NB_ITS_SPEED 50000 static short idct_mmx_perm[64]; static short idct_simple_mmx_perm[64] = { 0x00, 0x08, 0x04, 0x09, 0x01, 0x0C, 0x05, 0x0D, 0x10, 0x18, 0x14, 0x19, 0x11, 0x1C, 0x15, 0x1D, 0x20, 0x28, 0x24, 0x29, 0x21, 0x2C, 0x25, 0x2D, 0x12, 0x1A, 0x16, 0x1B, 0x13, 0x1E, 0x17, 0x1F, 0x02, 0x0A, 0x06, 0x0B, 0x03, 0x0E, 0x07, 0x0F, 0x30, 0x38, 0x34, 0x39, 0x31, 0x3C, 0x35, 0x3D, 0x22, 0x2A, 0x26, 0x2B, 0x23, 0x2E, 0x27, 0x2F, 0x32, 0x3A, 0x36, 0x3B, 0x33, 0x3E, 0x37, 0x3F, }; static const uint8_t idct_sse2_row_perm[8] = { 0, 4, 1, 5, 2, 6, 3, 7 }; static void idct_mmx_init(void) { int i; /* the mmx/mmxext idct uses a reordered input, so we patch scan tables */ for (i = 0; i < 64; i++) { idct_mmx_perm[i] = (i & 0x38) | ((i & 6) >> 1) | ((i & 1) << 2); } } DECLARE_ALIGNED(16, static int16_t, block)[64]; DECLARE_ALIGNED(8, static int16_t, block1)[64]; static void init_block(int16_t block[64], int test, int is_idct, AVLFG *prng) { int i, j; memset(block, 0, 64 * sizeof(*block)); switch (test) { case 0: for (i = 0; i < 64; i++) block[i] = (av_lfg_get(prng) % 512) - 256; if (is_idct) { ff_ref_fdct(block); for (i = 0; i < 64; i++) block[i] >>= 3; } break; case 1: j = av_lfg_get(prng) % 10 + 1; for (i = 0; i < j; i++) block[av_lfg_get(prng) % 64] = av_lfg_get(prng) % 512 - 256; break; case 2: block[ 0] = av_lfg_get(prng) % 4096 - 2048; block[63] = (block[0] & 1) ^ 1; break; } } static void permute(int16_t dst[64], const int16_t src[64], int perm) { int i; if (perm == MMX_PERM) { for (i = 0; i < 64; i++) dst[idct_mmx_perm[i]] = src[i]; } else if (perm == MMX_SIMPLE_PERM) { for (i = 0; i < 64; i++) dst[idct_simple_mmx_perm[i]] = src[i]; } else if (perm == SSE2_PERM) { for (i = 0; i < 64; i++) dst[(i & 0x38) | idct_sse2_row_perm[i & 7]] = src[i]; } else if (perm == PARTTRANS_PERM) { for (i = 0; i < 64; i++) dst[(i & 0x24) | ((i & 3) << 3) | ((i >> 3) & 3)] = src[i]; } else { for (i = 0; i < 64; i++) dst[i] = src[i]; } } static int dct_error(const struct algo *dct, int test, int is_idct, int speed) { void (*ref)(int16_t *block) = is_idct ? ff_ref_idct : ff_ref_fdct; int it, i, scale; int err_inf, v; int64_t err2, ti, ti1, it1, err_sum = 0; int64_t sysErr[64], sysErrMax = 0; int maxout = 0; int blockSumErrMax = 0, blockSumErr; AVLFG prng; double omse, ome; int spec_err; av_lfg_init(&prng, 1); err_inf = 0; err2 = 0; for (i = 0; i < 64; i++) sysErr[i] = 0; for (it = 0; it < NB_ITS; it++) { init_block(block1, test, is_idct, &prng); permute(block, block1, dct->format); dct->func(block); emms_c(); if (dct->format == SCALE_PERM) { for (i = 0; i < 64; i++) { scale = 8 * (1 << (AANSCALE_BITS + 11)) / ff_aanscales[i]; block[i] = (block[i] * scale) >> AANSCALE_BITS; } } ref(block1); blockSumErr = 0; for (i = 0; i < 64; i++) { int err = block[i] - block1[i]; err_sum += err; v = abs(err); if (v > err_inf) err_inf = v; err2 += v * v; sysErr[i] += block[i] - block1[i]; blockSumErr += v; if (abs(block[i]) > maxout) maxout = abs(block[i]); } if (blockSumErrMax < blockSumErr) blockSumErrMax = blockSumErr; } for (i = 0; i < 64; i++) sysErrMax = FFMAX(sysErrMax, FFABS(sysErr[i])); for (i = 0; i < 64; i++) { if (i % 8 == 0) printf("\n"); printf("%7d ", (int) sysErr[i]); } printf("\n"); omse = (double) err2 / NB_ITS / 64; ome = (double) err_sum / NB_ITS / 64; spec_err = is_idct && (err_inf > 1 || omse > 0.02 || fabs(ome) > 0.0015); printf("%s %s: ppe=%d omse=%0.8f ome=%0.8f syserr=%0.8f maxout=%d blockSumErr=%d\n", is_idct ? "IDCT" : "DCT", dct->name, err_inf, omse, ome, (double) sysErrMax / NB_ITS, maxout, blockSumErrMax); if (spec_err && !dct->nonspec) return 1; if (!speed) return 0; /* speed test */ init_block(block, test, is_idct, &prng); permute(block1, block, dct->format); ti = av_gettime(); it1 = 0; do { for (it = 0; it < NB_ITS_SPEED; it++) { memcpy(block, block1, sizeof(block)); dct->func(block); } it1 += NB_ITS_SPEED; ti1 = av_gettime() - ti; } while (ti1 < 1000000); emms_c(); printf("%s %s: %0.1f kdct/s\n", is_idct ? "IDCT" : "DCT", dct->name, (double) it1 * 1000.0 / (double) ti1); return 0; } DECLARE_ALIGNED(8, static uint8_t, img_dest)[64]; DECLARE_ALIGNED(8, static uint8_t, img_dest1)[64]; static void idct248_ref(uint8_t *dest, int linesize, int16_t *block) { static int init; static double c8[8][8]; static double c4[4][4]; double block1[64], block2[64], block3[64]; double s, sum, v; int i, j, k; if (!init) { init = 1; for (i = 0; i < 8; i++) { sum = 0; for (j = 0; j < 8; j++) { s = (i == 0) ? sqrt(1.0 / 8.0) : sqrt(1.0 / 4.0); c8[i][j] = s * cos(M_PI * i * (j + 0.5) / 8.0); sum += c8[i][j] * c8[i][j]; } } for (i = 0; i < 4; i++) { sum = 0; for (j = 0; j < 4; j++) { s = (i == 0) ? sqrt(1.0 / 4.0) : sqrt(1.0 / 2.0); c4[i][j] = s * cos(M_PI * i * (j + 0.5) / 4.0); sum += c4[i][j] * c4[i][j]; } } } /* butterfly */ s = 0.5 * sqrt(2.0); for (i = 0; i < 4; i++) { for (j = 0; j < 8; j++) { block1[8 * (2 * i) + j] = (block[8 * (2 * i) + j] + block[8 * (2 * i + 1) + j]) * s; block1[8 * (2 * i + 1) + j] = (block[8 * (2 * i) + j] - block[8 * (2 * i + 1) + j]) * s; } } /* idct8 on lines */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { sum = 0; for (k = 0; k < 8; k++) sum += c8[k][j] * block1[8 * i + k]; block2[8 * i + j] = sum; } } /* idct4 */ for (i = 0; i < 8; i++) { for (j = 0; j < 4; j++) { /* top */ sum = 0; for (k = 0; k < 4; k++) sum += c4[k][j] * block2[8 * (2 * k) + i]; block3[8 * (2 * j) + i] = sum; /* bottom */ sum = 0; for (k = 0; k < 4; k++) sum += c4[k][j] * block2[8 * (2 * k + 1) + i]; block3[8 * (2 * j + 1) + i] = sum; } } /* clamp and store the result */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { v = block3[8 * i + j]; if (v < 0) v = 0; else if (v > 255) v = 255; dest[i * linesize + j] = (int) rint(v); } } } static void idct248_error(const char *name, void (*idct248_put)(uint8_t *dest, int line_size, int16_t *block), int speed) { int it, i, it1, ti, ti1, err_max, v; AVLFG prng; av_lfg_init(&prng, 1); /* just one test to see if code is correct (precision is less important here) */ err_max = 0; for (it = 0; it < NB_ITS; it++) { /* XXX: use forward transform to generate values */ for (i = 0; i < 64; i++) block1[i] = av_lfg_get(&prng) % 256 - 128; block1[0] += 1024; for (i = 0; i < 64; i++) block[i] = block1[i]; idct248_ref(img_dest1, 8, block); for (i = 0; i < 64; i++) block[i] = block1[i]; idct248_put(img_dest, 8, block); for (i = 0; i < 64; i++) { v = abs((int) img_dest[i] - (int) img_dest1[i]); if (v == 255) printf("%d %d\n", img_dest[i], img_dest1[i]); if (v > err_max) err_max = v; } } printf("%s %s: err_inf=%d\n", 1 ? "IDCT248" : "DCT248", name, err_max); if (!speed) return; ti = av_gettime(); it1 = 0; do { for (it = 0; it < NB_ITS_SPEED; it++) { for (i = 0; i < 64; i++) block[i] = block1[i]; idct248_put(img_dest, 8, block); } it1 += NB_ITS_SPEED; ti1 = av_gettime() - ti; } while (ti1 < 1000000); emms_c(); printf("%s %s: %0.1f kdct/s\n", 1 ? "IDCT248" : "DCT248", name, (double) it1 * 1000.0 / (double) ti1); } static void help(void) { printf("dct-test [-i] []\n" "test-number 0 -> test with random matrixes\n" " 1 -> test with random sparse matrixes\n" " 2 -> do 3. test from mpeg4 std\n" "-i test IDCT implementations\n" "-4 test IDCT248 implementations\n" "-t speed test\n"); } #if !HAVE_GETOPT #include "compat/getopt.c" #endif int main(int argc, char **argv) { int test_idct = 0, test_248_dct = 0; int c, i; int test = 1; int speed = 0; int err = 0; cpu_flags = av_get_cpu_flags(); ff_ref_dct_init(); idct_mmx_init(); for (;;) { c = getopt(argc, argv, "ih4t"); if (c == -1) break; switch (c) { case 'i': test_idct = 1; break; case '4': test_248_dct = 1; break; case 't': speed = 1; break; default: case 'h': help(); return 0; } } if (optind < argc) test = atoi(argv[optind]); printf("Libav DCT/IDCT test\n"); if (test_248_dct) { idct248_error("SIMPLE-C", ff_simple_idct248_put, speed); } else { const struct algo *algos = test_idct ? idct_tab : fdct_tab; for (i = 0; algos[i].name; i++) if (!(~cpu_flags & algos[i].mm_support)) { err |= dct_error(&algos[i], test, test_idct, speed); } } if (err) printf("Error: %d.\n", err); return !!err; }