/* * Copyright (c) 2010 Stefano Sabatini * Copyright (c) 2010 Baptiste Coudurier * Copyright (c) 2007 Bobby Bingham * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * overlay one video on top of another */ /* #define DEBUG */ #include "avfilter.h" #include "formats.h" #include "libavutil/common.h" #include "libavutil/eval.h" #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/imgutils.h" #include "libavutil/mathematics.h" #include "libavutil/timestamp.h" #include "internal.h" #include "bufferqueue.h" #include "drawutils.h" #include "video.h" static const char *const var_names[] = { "main_w", "W", ///< width of the main video "main_h", "H", ///< height of the main video "overlay_w", "w", ///< width of the overlay video "overlay_h", "h", ///< height of the overlay video NULL }; enum var_name { VAR_MAIN_W, VAR_MW, VAR_MAIN_H, VAR_MH, VAR_OVERLAY_W, VAR_OW, VAR_OVERLAY_H, VAR_OH, VAR_VARS_NB }; #define MAIN 0 #define OVERLAY 1 #define R 0 #define G 1 #define B 2 #define A 3 #define Y 0 #define U 1 #define V 2 typedef struct { const AVClass *class; int x, y; ///< position of overlayed picture int allow_packed_rgb; uint8_t frame_requested; uint8_t overlay_eof; uint8_t main_is_packed_rgb; uint8_t main_rgba_map[4]; uint8_t main_has_alpha; uint8_t overlay_is_packed_rgb; uint8_t overlay_rgba_map[4]; uint8_t overlay_has_alpha; AVFilterBufferRef *overpicref; struct FFBufQueue queue_main; struct FFBufQueue queue_over; int main_pix_step[4]; ///< steps per pixel for each plane of the main output int overlay_pix_step[4]; ///< steps per pixel for each plane of the overlay int hsub, vsub; ///< chroma subsampling values int shortest; ///< terminate stream when the shortest input terminates char *x_expr, *y_expr; } OverlayContext; #define OFFSET(x) offsetof(OverlayContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption overlay_options[] = { { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS }, { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, CHAR_MIN, CHAR_MAX, FLAGS }, {"rgb", "force packed RGB in input and output", OFFSET(allow_packed_rgb), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS }, { "shortest", "force termination when the shortest input terminates", OFFSET(shortest), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS }, {NULL}, }; AVFILTER_DEFINE_CLASS(overlay); static av_cold int init(AVFilterContext *ctx, const char *args) { OverlayContext *over = ctx->priv; static const char *shorthand[] = { "x", "y", NULL }; over->class = &overlay_class; av_opt_set_defaults(over); return av_opt_set_from_string(over, args, shorthand, "=", ":"); } static av_cold void uninit(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; av_opt_free(over); avfilter_unref_bufferp(&over->overpicref); ff_bufqueue_discard_all(&over->queue_main); ff_bufqueue_discard_all(&over->queue_over); } static int query_formats(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; /* overlay formats contains alpha, for avoiding conversion with alpha information loss */ static const enum AVPixelFormat main_pix_fmts_yuv[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_yuv[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE }; static const enum AVPixelFormat main_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_NONE }; static const enum AVPixelFormat overlay_pix_fmts_rgb[] = { AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE }; AVFilterFormats *main_formats; AVFilterFormats *overlay_formats; if (over->allow_packed_rgb) { main_formats = ff_make_format_list(main_pix_fmts_rgb); overlay_formats = ff_make_format_list(overlay_pix_fmts_rgb); } else { main_formats = ff_make_format_list(main_pix_fmts_yuv); overlay_formats = ff_make_format_list(overlay_pix_fmts_yuv); } ff_formats_ref(main_formats, &ctx->inputs [MAIN ]->out_formats); ff_formats_ref(overlay_formats, &ctx->inputs [OVERLAY]->out_formats); ff_formats_ref(main_formats, &ctx->outputs[MAIN ]->in_formats ); return 0; } static const enum AVPixelFormat alpha_pix_fmts[] = { AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_NONE }; static int config_input_main(AVFilterLink *inlink) { OverlayContext *over = inlink->dst->priv; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(over->main_pix_step, NULL, pix_desc); over->hsub = pix_desc->log2_chroma_w; over->vsub = pix_desc->log2_chroma_h; over->main_is_packed_rgb = ff_fill_rgba_map(over->main_rgba_map, inlink->format) >= 0; over->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); return 0; } static int config_input_overlay(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = inlink->dst->priv; char *expr; double var_values[VAR_VARS_NB], res; int ret; const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format); av_image_fill_max_pixsteps(over->overlay_pix_step, NULL, pix_desc); /* Finish the configuration by evaluating the expressions now when both inputs are configured. */ var_values[VAR_MAIN_W ] = var_values[VAR_MW] = ctx->inputs[MAIN ]->w; var_values[VAR_MAIN_H ] = var_values[VAR_MH] = ctx->inputs[MAIN ]->h; var_values[VAR_OVERLAY_W] = var_values[VAR_OW] = ctx->inputs[OVERLAY]->w; var_values[VAR_OVERLAY_H] = var_values[VAR_OH] = ctx->inputs[OVERLAY]->h; if ((ret = av_expr_parse_and_eval(&res, (expr = over->x_expr), var_names, var_values, NULL, NULL, NULL, NULL, NULL, 0, ctx)) < 0) goto fail; over->x = res; if ((ret = av_expr_parse_and_eval(&res, (expr = over->y_expr), var_names, var_values, NULL, NULL, NULL, NULL, NULL, 0, ctx))) goto fail; over->y = res; /* x may depend on y */ if ((ret = av_expr_parse_and_eval(&res, (expr = over->x_expr), var_names, var_values, NULL, NULL, NULL, NULL, NULL, 0, ctx)) < 0) goto fail; over->x = res; over->overlay_is_packed_rgb = ff_fill_rgba_map(over->overlay_rgba_map, inlink->format) >= 0; over->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts); av_log(ctx, AV_LOG_VERBOSE, "main w:%d h:%d fmt:%s overlay x:%d y:%d w:%d h:%d fmt:%s\n", ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h, av_get_pix_fmt_name(ctx->inputs[MAIN]->format), over->x, over->y, ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h, av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format)); if (over->x < 0 || over->y < 0 || over->x + var_values[VAR_OVERLAY_W] > var_values[VAR_MAIN_W] || over->y + var_values[VAR_OVERLAY_H] > var_values[VAR_MAIN_H]) { av_log(ctx, AV_LOG_ERROR, "Overlay area (%d,%d)<->(%d,%d) not within the main area (0,0)<->(%d,%d) or zero-sized\n", over->x, over->y, (int)(over->x + var_values[VAR_OVERLAY_W]), (int)(over->y + var_values[VAR_OVERLAY_H]), (int)var_values[VAR_MAIN_W], (int)var_values[VAR_MAIN_H]); return AVERROR(EINVAL); } return 0; fail: av_log(NULL, AV_LOG_ERROR, "Error when evaluating the expression '%s'\n", expr); return ret; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; outlink->w = ctx->inputs[MAIN]->w; outlink->h = ctx->inputs[MAIN]->h; outlink->time_base = ctx->inputs[MAIN]->time_base; return 0; } // divide by 255 and round to nearest // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16) // calculate the unpremultiplied alpha, applying the general equation: // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) ) // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y) #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x))) /** * Blend image in src to destination buffer dst at position (x, y). * * It is assumed that the src image at position (x, y) is contained in * dst. */ static void blend_image(AVFilterContext *ctx, AVFilterBufferRef *dst, AVFilterBufferRef *src, int x, int y) { OverlayContext *over = ctx->priv; int i, j, k; int width = src->video->w; int height = src->video->h; if (over->main_is_packed_rgb) { uint8_t *dp = dst->data[0] + x * over->main_pix_step[0] + y * dst->linesize[0]; uint8_t *sp = src->data[0]; uint8_t alpha; ///< the amount of overlay to blend on to main const int dr = over->main_rgba_map[R]; const int dg = over->main_rgba_map[G]; const int db = over->main_rgba_map[B]; const int da = over->main_rgba_map[A]; const int dstep = over->main_pix_step[0]; const int sr = over->overlay_rgba_map[R]; const int sg = over->overlay_rgba_map[G]; const int sb = over->overlay_rgba_map[B]; const int sa = over->overlay_rgba_map[A]; const int sstep = over->overlay_pix_step[0]; const int main_has_alpha = over->main_has_alpha; for (i = 0; i < height; i++) { uint8_t *d = dp, *s = sp; for (j = 0; j < width; j++) { alpha = s[sa]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { uint8_t alpha_d = d[da]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: d[dr] = s[sr]; d[dg] = s[sg]; d[db] = s[sb]; break; default: // main_value = main_value * (1 - alpha) + overlay_value * alpha // since alpha is in the range 0-255, the result must divided by 255 d[dr] = FAST_DIV255(d[dr] * (255 - alpha) + s[sr] * alpha); d[dg] = FAST_DIV255(d[dg] * (255 - alpha) + s[sg] * alpha); d[db] = FAST_DIV255(d[db] * (255 - alpha) + s[sb] * alpha); } if (main_has_alpha) { switch (alpha) { case 0: break; case 255: d[da] = s[sa]; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha d[da] += FAST_DIV255((255 - d[da]) * s[sa]); } } d += dstep; s += sstep; } dp += dst->linesize[0]; sp += src->linesize[0]; } } else { const int main_has_alpha = over->main_has_alpha; if (main_has_alpha) { uint8_t *da = dst->data[3] + x * over->main_pix_step[3] + y * dst->linesize[3]; uint8_t *sa = src->data[3]; uint8_t alpha; ///< the amount of overlay to blend on to main for (i = 0; i < height; i++) { uint8_t *d = da, *s = sa; for (j = 0; j < width; j++) { alpha = *s; if (alpha != 0 && alpha != 255) { uint8_t alpha_d = *d; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } switch (alpha) { case 0: break; case 255: *d = *s; break; default: // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha *d += FAST_DIV255((255 - *d) * *s); } d += 1; s += 1; } da += dst->linesize[3]; sa += src->linesize[3]; } } for (i = 0; i < 3; i++) { int hsub = i ? over->hsub : 0; int vsub = i ? over->vsub : 0; uint8_t *dp = dst->data[i] + (x >> hsub) + (y >> vsub) * dst->linesize[i]; uint8_t *sp = src->data[i]; uint8_t *ap = src->data[3]; int wp = FFALIGN(width, 1<> hsub; int hp = FFALIGN(height, 1<> vsub; for (j = 0; j < hp; j++) { uint8_t *d = dp, *s = sp, *a = ap; for (k = 0; k < wp; k++) { // average alpha for color components, improve quality int alpha_v, alpha_h, alpha; if (hsub && vsub && j+1 < hp && k+1 < wp) { alpha = (a[0] + a[src->linesize[3]] + a[1] + a[src->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < wp ? (a[0] + a[1]) >> 1 : a[0]; alpha_v = vsub && j+1 < hp ? (a[0] + a[src->linesize[3]]) >> 1 : a[0]; alpha = (alpha_v + alpha_h) >> 1; } else alpha = a[0]; // if the main channel has an alpha channel, alpha has to be calculated // to create an un-premultiplied (straight) alpha value if (main_has_alpha && alpha != 0 && alpha != 255) { // average alpha for color components, improve quality uint8_t alpha_d; if (hsub && vsub && j+1 < hp && k+1 < wp) { alpha_d = (d[0] + d[src->linesize[3]] + d[1] + d[src->linesize[3]+1]) >> 2; } else if (hsub || vsub) { alpha_h = hsub && k+1 < wp ? (d[0] + d[1]) >> 1 : d[0]; alpha_v = vsub && j+1 < hp ? (d[0] + d[src->linesize[3]]) >> 1 : d[0]; alpha_d = (alpha_v + alpha_h) >> 1; } else alpha_d = d[0]; alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); } *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha); s++; d++; a += 1 << hsub; } dp += dst->linesize[i]; sp += src->linesize[i]; ap += (1 << vsub) * src->linesize[3]; } } } } static int try_filter_frame(AVFilterContext *ctx, AVFilterBufferRef *mainpic) { OverlayContext *over = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFilterBufferRef *next_overpic; int ret; /* Discard obsolete overlay frames: if there is a next overlay frame with pts * before the main frame, we can drop the current overlay. */ while (1) { next_overpic = ff_bufqueue_peek(&over->queue_over, 0); if (!next_overpic || av_compare_ts(next_overpic->pts, ctx->inputs[OVERLAY]->time_base, mainpic->pts , ctx->inputs[MAIN]->time_base) > 0) break; ff_bufqueue_get(&over->queue_over); avfilter_unref_buffer(over->overpicref); over->overpicref = next_overpic; } /* If there is no next frame and no EOF and the overlay frame is before * the main frame, we can not know yet if it will be superseded. */ if (!over->queue_over.available && !over->overlay_eof && (!over->overpicref || av_compare_ts(over->overpicref->pts, ctx->inputs[OVERLAY]->time_base, mainpic->pts , ctx->inputs[MAIN]->time_base) < 0)) return AVERROR(EAGAIN); /* At this point, we know that the current overlay frame extends to the * time of the main frame. */ av_dlog(ctx, "main_pts:%s main_pts_time:%s", av_ts2str(mainpic->pts), av_ts2timestr(mainpic->pts, &outlink->time_base)); if (over->overpicref) av_dlog(ctx, " over_pts:%s over_pts_time:%s", av_ts2str(over->overpicref->pts), av_ts2timestr(over->overpicref->pts, &outlink->time_base)); av_dlog(ctx, "\n"); if (over->overpicref) blend_image(ctx, mainpic, over->overpicref, over->x, over->y); ret = ff_filter_frame(ctx->outputs[0], mainpic); av_assert1(ret != AVERROR(EAGAIN)); over->frame_requested = 0; return ret; } static int try_filter_next_frame(AVFilterContext *ctx) { OverlayContext *over = ctx->priv; AVFilterBufferRef *next_mainpic = ff_bufqueue_peek(&over->queue_main, 0); int ret; if (!next_mainpic) return AVERROR(EAGAIN); if ((ret = try_filter_frame(ctx, next_mainpic)) == AVERROR(EAGAIN)) return ret; ff_bufqueue_get(&over->queue_main); return ret; } static int flush_frames(AVFilterContext *ctx) { int ret; while (!(ret = try_filter_next_frame(ctx))); return ret == AVERROR(EAGAIN) ? 0 : ret; } static int filter_frame_main(AVFilterLink *inlink, AVFilterBufferRef *inpicref) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = ctx->priv; int ret; if ((ret = flush_frames(ctx)) < 0) return ret; if ((ret = try_filter_frame(ctx, inpicref)) < 0) { if (ret != AVERROR(EAGAIN)) return ret; ff_bufqueue_add(ctx, &over->queue_main, inpicref); } if (!over->overpicref) return 0; flush_frames(ctx); return 0; } static int filter_frame_over(AVFilterLink *inlink, AVFilterBufferRef *inpicref) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = ctx->priv; int ret; if ((ret = flush_frames(ctx)) < 0) return ret; ff_bufqueue_add(ctx, &over->queue_over, inpicref); ret = try_filter_next_frame(ctx); return ret == AVERROR(EAGAIN) ? 0 : ret; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; OverlayContext *over = ctx->priv; int input, ret; if (!try_filter_next_frame(ctx)) return 0; over->frame_requested = 1; while (over->frame_requested) { /* TODO if we had a frame duration, we could guess more accurately */ input = !over->overlay_eof && (over->queue_main.available || over->queue_over.available < 2) ? OVERLAY : MAIN; ret = ff_request_frame(ctx->inputs[input]); /* EOF on main is reported immediately */ if (ret == AVERROR_EOF && input == OVERLAY) { over->overlay_eof = 1; if (over->shortest) return ret; if ((ret = try_filter_next_frame(ctx)) != AVERROR(EAGAIN)) return ret; ret = 0; /* continue requesting frames on main */ } if (ret < 0) return ret; } return 0; } static const AVFilterPad avfilter_vf_overlay_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .get_video_buffer = ff_null_get_video_buffer, .config_props = config_input_main, .filter_frame = filter_frame_main, .min_perms = AV_PERM_READ | AV_PERM_WRITE | AV_PERM_PRESERVE, }, { .name = "overlay", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_overlay, .filter_frame = filter_frame_over, .min_perms = AV_PERM_READ | AV_PERM_PRESERVE, }, { NULL } }; static const AVFilterPad avfilter_vf_overlay_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .rej_perms = AV_PERM_WRITE, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter avfilter_vf_overlay = { .name = "overlay", .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."), .init = init, .uninit = uninit, .priv_size = sizeof(OverlayContext), .query_formats = query_formats, .inputs = avfilter_vf_overlay_inputs, .outputs = avfilter_vf_overlay_outputs, .priv_class = &overlay_class, };