/* * Copyright (c) 2010-2011 Maxim Poliakovski * Copyright (c) 2010-2011 Elvis Presley * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License as published by the Free Software Foundation; * version 2 of the License. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file libavcodec/proresdec.c * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4c' (4444) */ //#define DEBUG #define A32_BITSTREAM_READER #include "avcodec.h" #include "get_bits.h" #include "dsputil.h" #include "simple_idct.h" typedef struct { const uint8_t *data; unsigned mb_x; unsigned mb_y; unsigned mb_count; unsigned data_size; } SliceContext; typedef struct { AVFrame frame; DSPContext dsp; int frame_type; ///< 0 = progressive, 1 = tff, 2 = bff uint8_t qmat_luma[64]; uint8_t qmat_chroma[64]; SliceContext *slices; int slice_count; ///< number of slices in the current picture unsigned mb_width; ///< width of the current picture in mb unsigned mb_height; ///< height of the current picture in mb uint8_t progressive_scan[64]; uint8_t interlaced_scan[64]; const uint8_t *scan; int first_field; void (*idct_put)(DCTELEM *, uint8_t *restrict, int); } ProresContext; static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64]) { int i; for (i = 0; i < 64; i++) dst[i] = permutation[src[i]]; } static av_always_inline void put_pixels(const DCTELEM *block, uint8_t *restrict pixels, int stride) { int16_t *p = (int16_t*)pixels; int i, j; stride >>= 1; for(i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { p[j] = av_clip(block[j], 4, 1019); } p += stride; block += 8; } } static void idct_put(DCTELEM *block, uint8_t *restrict pixels, int stride) { ff_simple_idct_10(block); put_pixels(block, pixels, stride); } static const uint8_t progressive_scan[64] = { 0, 1, 8, 9, 2, 3, 10, 11, 16, 17, 24, 25, 18, 19, 26, 27, 4, 5, 12, 20, 13, 6, 7, 14, 21, 28, 29, 22, 15, 23, 30, 31, 32, 33, 40, 48, 41, 34, 35, 42, 49, 56, 57, 50, 43, 36, 37, 44, 51, 58, 59, 52, 45, 38, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; static const uint8_t interlaced_scan[64] = { 0, 8, 1, 9, 16, 24, 17, 25, 2, 10, 3, 11, 18, 26, 19, 27, 32, 40, 33, 34, 41, 48, 56, 49, 42, 35, 43, 50, 57, 58, 51, 59, 4, 12, 5, 6, 13, 20, 28, 21, 14, 7, 15, 22, 29, 36, 44, 37, 30, 23, 31, 38, 45, 52, 60, 53, 46, 39, 47, 54, 61, 62, 55, 63, }; static av_cold int decode_init(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; avctx->bits_per_raw_sample = 10; dsputil_init(&ctx->dsp, avctx); avctx->coded_frame = &ctx->frame; ctx->frame.type = FF_I_TYPE; ctx->frame.key_frame = 1; ctx->idct_put = idct_put; memcpy(ctx->progressive_scan, progressive_scan, sizeof(progressive_scan)); memcpy(ctx->interlaced_scan, interlaced_scan, sizeof(interlaced_scan)); return 0; } static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, const int data_size, AVCodecContext *avctx) { int hdr_size, width, height, flags; int version; const uint8_t *ptr; const uint8_t *scan; hdr_size = AV_RB16(buf); av_dlog(avctx, "header size %d\n", hdr_size); if (hdr_size > data_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n"); return -1; } version = AV_RB16(buf + 2); av_dlog(avctx, "%.4s version %d\n", buf+4, version); if (version > 1) { av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version); return -1; } width = AV_RB16(buf + 8); height = AV_RB16(buf + 10); if (width != avctx->width || height != avctx->height) { av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n", avctx->width, avctx->height, width, height); return -1; } ctx->frame_type = (buf[12] >> 2) & 3; av_dlog(avctx, "frame type %d\n", ctx->frame_type); if (ctx->frame_type == 0) { scan = progressive_scan; ctx->scan = ctx->progressive_scan; // permuted } else { scan = interlaced_scan; ctx->scan = ctx->interlaced_scan; // permuted ctx->frame.interlaced_frame = 1; ctx->frame.top_field_first = ctx->frame_type == 1; } avctx->pix_fmt = ((buf[12] & 0xC0) == 0xC0) ? PIX_FMT_YUV444P10 : PIX_FMT_YUV422P10; ptr = buf + 20; flags = buf[19]; av_dlog(avctx, "flags %x\n", flags); if (flags & 2) { permute(ctx->qmat_luma, scan, ptr); ptr += 64; } else { memset(ctx->qmat_luma, 4, 64); } if (flags & 1) { permute(ctx->qmat_chroma, scan, ptr); } else { memset(ctx->qmat_chroma, 4, 64); } return hdr_size; } static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size) { ProresContext *ctx = avctx->priv_data; int i, hdr_size, slice_count; unsigned pic_data_size; int log2_slice_mb_width, log2_slice_mb_height; int slice_mb_count, mb_x, mb_y; const uint8_t *data_ptr, *index_ptr; hdr_size = buf[0] >> 3; if (hdr_size < 8 || hdr_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n"); return -1; } pic_data_size = AV_RB32(buf + 1); if (pic_data_size > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n"); return -1; } log2_slice_mb_width = buf[7] >> 4; log2_slice_mb_height = buf[7] & 0xF; if (log2_slice_mb_width > 3 || log2_slice_mb_height) { av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n", 1 << log2_slice_mb_width, 1 << log2_slice_mb_height); return -1; } ctx->mb_width = (avctx->width + 15) >> 4; ctx->mb_height = (avctx->height + 15) >> 4; slice_count = AV_RB16(buf + 5); if (ctx->slice_count != slice_count || !ctx->slices) { av_freep(&ctx->slices); ctx->slices = av_mallocz(slice_count * sizeof(*ctx->slices)); if (!ctx->slices) return AVERROR(ENOMEM); ctx->slice_count = slice_count; } if (!slice_count) return AVERROR(EINVAL); if (hdr_size + slice_count*2 > buf_size) { av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n"); return -1; } // parse slice information index_ptr = buf + hdr_size; data_ptr = index_ptr + slice_count*2; slice_mb_count = 1 << log2_slice_mb_width; mb_x = 0; mb_y = 0; for (i = 0; i < slice_count; i++) { SliceContext *slice = &ctx->slices[i]; slice->data = data_ptr; data_ptr += AV_RB16(index_ptr + i*2); while (ctx->mb_width - mb_x < slice_mb_count) slice_mb_count >>= 1; slice->mb_x = mb_x; slice->mb_y = mb_y; slice->mb_count = slice_mb_count; slice->data_size = data_ptr - slice->data; if (slice->data_size < 6) { av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n"); return -1; } mb_x += slice_mb_count; if (mb_x == ctx->mb_width) { slice_mb_count = 1 << log2_slice_mb_width; mb_x = 0; mb_y++; } if (data_ptr > buf + buf_size) { av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n"); return -1; } } return pic_data_size; } #define DECODE_CODEWORD(val, codebook) \ do { \ unsigned int rice_order, exp_order, switch_bits; \ unsigned int q, buf, bits; \ \ UPDATE_CACHE(re, gb); \ buf = GET_CACHE(re, gb); \ \ /* number of bits to switch between rice and exp golomb */ \ switch_bits = codebook & 3; \ rice_order = codebook >> 5; \ exp_order = (codebook >> 2) & 7; \ \ q = 31-av_log2(buf); \ \ if (q > switch_bits) { /* exp golomb */ \ bits = exp_order - switch_bits + (q<<1); \ val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) + \ ((switch_bits + 1) << rice_order); \ SKIP_BITS(re, gb, bits); \ } else if (rice_order) { \ SKIP_BITS(re, gb, q+1); \ val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order); \ SKIP_BITS(re, gb, rice_order); \ } else { \ val = q; \ SKIP_BITS(re, gb, q+1); \ } \ } while (0); \ #define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1))) #define FIRST_DC_CB 0xB8 static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70}; static av_always_inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out, int blocks_per_slice, const int *qmat) { DCTELEM prev_dc; int code, i, sign; OPEN_READER(re, gb); DECODE_CODEWORD(code, FIRST_DC_CB); prev_dc = TOSIGNED(code); out[0] = 4096 + ((prev_dc * qmat[0]) >> 2); out += 64; // dc coeff for the next block code = 5; sign = 0; for (i = 1; i < blocks_per_slice; i++, out += 64) { DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6)]); if(code) sign ^= -(code & 1); else sign = 0; prev_dc += (((code + 1) >> 1) ^ sign) - sign; out[0] = 4096 + ((prev_dc * qmat[0]) >> 2); } CLOSE_READER(re, gb); } // adaptive codebook switching lut according to previous run/level values static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C }; static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C }; static av_always_inline void decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb, DCTELEM *out, int blocks_per_slice, const int *qmat) { ProresContext *ctx = avctx->priv_data; int block_mask, sign; unsigned pos, run, level; int max_coeffs, i, bits_left; int log2_block_count = av_log2(blocks_per_slice); OPEN_READER(re, gb); run = 4; level = 2; max_coeffs = 64 << log2_block_count; block_mask = blocks_per_slice - 1; for (pos = block_mask;;) { bits_left = gb->size_in_bits - (((uint8_t*)re_buffer_ptr - gb->buffer)*8 - 32 + re_bit_count); if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left))) break; DECODE_CODEWORD(run, run_to_cb[FFMIN(run, 15)]); pos += run + 1; if (pos >= max_coeffs) { av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs); return; } DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]); level += 1; i = pos >> log2_block_count; sign = SHOW_SBITS(re, gb, 1); SKIP_BITS(re, gb, 1); out[((pos & block_mask) << 6) + ctx->scan[i]] = (((level ^ sign) - sign) * qmat[i]) >> 2; } CLOSE_READER(re, gb); } static void decode_slice_luma(AVCodecContext *avctx, SliceContext *slice, uint8_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int *qmat) { ProresContext *ctx = avctx->priv_data; LOCAL_ALIGNED_16(DCTELEM, blocks, [8*4*64]); DCTELEM *block; GetBitContext gb; int i, blocks_per_slice = slice->mb_count<<2; for (i = 0; i < blocks_per_slice; i++) ctx->dsp.clear_block(blocks+(i<<6)); init_get_bits(&gb, buf, buf_size << 3); decode_dc_coeffs(&gb, blocks, blocks_per_slice, qmat); decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice, qmat); block = blocks; for (i = 0; i < slice->mb_count; i++) { ctx->idct_put(block+(0<<6), dst, dst_stride); ctx->idct_put(block+(1<<6), dst+16, dst_stride); ctx->idct_put(block+(2<<6), dst+8*dst_stride, dst_stride); ctx->idct_put(block+(3<<6), dst+8*dst_stride+16, dst_stride); block += 4*64; dst += 32; } } static void decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice, uint8_t *dst, int dst_stride, const uint8_t *buf, unsigned buf_size, const int *qmat, int log2_blocks_per_mb) { ProresContext *ctx = avctx->priv_data; LOCAL_ALIGNED_16(DCTELEM, blocks, [8*4*64]); DCTELEM *block; GetBitContext gb; int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb; for (i = 0; i < blocks_per_slice; i++) ctx->dsp.clear_block(blocks+(i<<6)); init_get_bits(&gb, buf, buf_size << 3); decode_dc_coeffs(&gb, blocks, blocks_per_slice, qmat); decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice, qmat); block = blocks; for (i = 0; i < slice->mb_count; i++) { for (j = 0; j < log2_blocks_per_mb; j++) { ctx->idct_put(block+(0<<6), dst, dst_stride); ctx->idct_put(block+(1<<6), dst+8*dst_stride, dst_stride); block += 2*64; dst += 16; } } } static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr) { ProresContext *ctx = avctx->priv_data; SliceContext *slice = &ctx->slices[jobnr]; const uint8_t *buf = slice->data; AVFrame *pic = avctx->coded_frame; int i, hdr_size, qscale, log2_chroma_blocks_per_mb; int luma_stride, chroma_stride; int y_data_size, u_data_size, v_data_size; uint8_t *dest_y, *dest_u, *dest_v; int qmat_luma_scaled[64]; int qmat_chroma_scaled[64]; int mb_x_shift; //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n", // jobnr, slice->mb_count, slice->mb_x, slice->mb_y); // slice header hdr_size = buf[0] >> 3; qscale = av_clip(buf[1], 1, 224); qscale = qscale > 128 ? qscale - 96 << 2: qscale; y_data_size = AV_RB16(buf + 2); u_data_size = AV_RB16(buf + 4); v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size; if (hdr_size > 7) v_data_size = AV_RB16(buf + 6); if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0) { av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n"); return -1; } buf += hdr_size; for (i = 0; i < 64; i++) { qmat_luma_scaled[i] = ctx->qmat_luma[i] * qscale; qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale; } if (ctx->frame_type == 0) { luma_stride = pic->linesize[0]; chroma_stride = pic->linesize[1]; } else { luma_stride = pic->linesize[0] << 1; chroma_stride = pic->linesize[1] << 1; } if (avctx->pix_fmt == PIX_FMT_YUV444P10) { mb_x_shift = 5; log2_chroma_blocks_per_mb = 2; } else { mb_x_shift = 4; log2_chroma_blocks_per_mb = 1; } dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5); dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift); dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift); if (ctx->frame_type && ctx->first_field ^ ctx->frame.top_field_first) { dest_y += pic->linesize[0]; dest_u += pic->linesize[1]; dest_v += pic->linesize[2]; } decode_slice_luma(avctx, slice, dest_y, luma_stride, buf, y_data_size, qmat_luma_scaled); if (!(avctx->flags & CODEC_FLAG_GRAY)) { decode_slice_chroma(avctx, slice, dest_u, chroma_stride, buf + y_data_size, u_data_size, qmat_chroma_scaled, log2_chroma_blocks_per_mb); decode_slice_chroma(avctx, slice, dest_v, chroma_stride, buf + y_data_size + u_data_size, v_data_size, qmat_chroma_scaled, log2_chroma_blocks_per_mb); } return 0; } static int decode_picture(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; int i, threads_ret[ctx->slice_count]; avctx->execute2(avctx, decode_slice_thread, NULL, threads_ret, ctx->slice_count); for (i = 0; i < ctx->slice_count; i++) if (threads_ret[i] < 0) return threads_ret[i]; return 0; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { ProresContext *ctx = avctx->priv_data; AVFrame *frame = avctx->coded_frame; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int frame_hdr_size, pic_size; if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) { av_log(avctx, AV_LOG_ERROR, "invalid frame header\n"); return -1; } ctx->first_field = 1; buf += 8; buf_size -= 8; frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); if (frame_hdr_size < 0) return -1; buf += frame_hdr_size; buf_size -= frame_hdr_size; decode_picture: pic_size = decode_picture_header(avctx, buf, buf_size); if (pic_size < 0) { av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n"); return -1; } if (frame->data[0]) avctx->release_buffer(avctx, frame); if (avctx->get_buffer(avctx, frame) < 0) return -1; if (decode_picture(avctx)) { av_log(avctx, AV_LOG_ERROR, "error decoding picture\n"); return -1; } buf += pic_size; buf_size -= pic_size; if (ctx->frame_type && buf_size > 0 && ctx->first_field) { ctx->first_field = 0; goto decode_picture; } *data_size = sizeof(AVFrame); *(AVFrame*)data = *frame; return avpkt->size; } static av_cold int decode_close(AVCodecContext *avctx) { ProresContext *ctx = avctx->priv_data; AVFrame *frame = avctx->coded_frame; if (frame->data[0]) avctx->release_buffer(avctx, frame); av_freep(&ctx->slices); return 0; } AVCodec ff_prores_decoder = { .name = "prores", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_PRORES, .priv_data_size = sizeof(ProresContext), .init = decode_init, .close = decode_close, .decode = decode_frame, .long_name = NULL_IF_CONFIG_SMALL("ProRes"), .capabilities = CODEC_CAP_SLICE_THREADS, };