/* * VC3/DNxHD decoder. * Copyright (c) 2007 SmartJog S.A., Baptiste Coudurier * Copyright (c) 2011 MirriAd Ltd * Copyright (c) 2015 Christophe Gisquet * * 10 bit support added by MirriAd Ltd, Joseph Artsimovich * Slice multithreading and MB interlaced support added by Christophe Gisquet * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/imgutils.h" #include "libavutil/timer.h" #include "avcodec.h" #include "blockdsp.h" #define UNCHECKED_BITSTREAM_READER 1 #include "get_bits.h" #include "dnxhddata.h" #include "idctdsp.h" #include "internal.h" #include "thread.h" typedef struct RowContext { DECLARE_ALIGNED(16, int16_t, blocks)[12][64]; int luma_scale[64]; int chroma_scale[64]; GetBitContext gb; int last_dc[3]; int last_qscale; int errors; } RowContext; typedef struct DNXHDContext { AVCodecContext *avctx; RowContext *rows; BlockDSPContext bdsp; const uint8_t* buf; int buf_size; int64_t cid; ///< compression id unsigned int width, height; enum AVPixelFormat pix_fmt; unsigned int mb_width, mb_height; uint32_t mb_scan_index[68]; /* max for 1080p */ int cur_field; ///< current interlaced field VLC ac_vlc, dc_vlc, run_vlc; IDCTDSPContext idsp; ScanTable scantable; const CIDEntry *cid_table; int bit_depth; // 8, 10 or 0 if not initialized at all. int is_444; int mbaff; int act; int (*decode_dct_block)(const struct DNXHDContext *ctx, RowContext *row, int n); } DNXHDContext; #define DNXHD_VLC_BITS 9 #define DNXHD_DC_VLC_BITS 7 static int dnxhd_decode_dct_block_8(const DNXHDContext *ctx, RowContext *row, int n); static int dnxhd_decode_dct_block_10(const DNXHDContext *ctx, RowContext *row, int n); static int dnxhd_decode_dct_block_10_444(const DNXHDContext *ctx, RowContext *row, int n); static av_cold int dnxhd_decode_init(AVCodecContext *avctx) { DNXHDContext *ctx = avctx->priv_data; ctx->avctx = avctx; ctx->cid = -1; avctx->colorspace = AVCOL_SPC_BT709; ctx->rows = av_mallocz_array(avctx->thread_count, sizeof(RowContext)); if (!ctx->rows) return AVERROR(ENOMEM); return 0; } static int dnxhd_init_vlc(DNXHDContext *ctx, uint32_t cid) { if (cid != ctx->cid) { int index; if ((index = ff_dnxhd_get_cid_table(cid)) < 0) { av_log(ctx->avctx, AV_LOG_ERROR, "unsupported cid %d\n", cid); return AVERROR(ENOSYS); } if (ff_dnxhd_cid_table[index].bit_depth != ctx->bit_depth) { av_log(ctx->avctx, AV_LOG_ERROR, "bit depth mismatches %d %d\n", ff_dnxhd_cid_table[index].bit_depth, ctx->bit_depth); return AVERROR_INVALIDDATA; } ctx->cid_table = &ff_dnxhd_cid_table[index]; av_log(ctx->avctx, AV_LOG_VERBOSE, "Profile cid %d.\n", cid); ff_free_vlc(&ctx->ac_vlc); ff_free_vlc(&ctx->dc_vlc); ff_free_vlc(&ctx->run_vlc); init_vlc(&ctx->ac_vlc, DNXHD_VLC_BITS, 257, ctx->cid_table->ac_bits, 1, 1, ctx->cid_table->ac_codes, 2, 2, 0); init_vlc(&ctx->dc_vlc, DNXHD_DC_VLC_BITS, ctx->bit_depth + 4, ctx->cid_table->dc_bits, 1, 1, ctx->cid_table->dc_codes, 1, 1, 0); init_vlc(&ctx->run_vlc, DNXHD_VLC_BITS, 62, ctx->cid_table->run_bits, 1, 1, ctx->cid_table->run_codes, 2, 2, 0); ff_init_scantable(ctx->idsp.idct_permutation, &ctx->scantable, ff_zigzag_direct); ctx->cid = cid; } return 0; } static av_cold int dnxhd_decode_init_thread_copy(AVCodecContext *avctx) { DNXHDContext *ctx = avctx->priv_data; // make sure VLC tables will be loaded when cid is parsed ctx->cid = -1; ctx->rows = av_mallocz_array(avctx->thread_count, sizeof(RowContext)); if (!ctx->rows) return AVERROR(ENOMEM); return 0; } static int dnxhd_decode_header(DNXHDContext *ctx, AVFrame *frame, const uint8_t *buf, int buf_size, int first_field) { static const uint8_t header_prefix[] = { 0x00, 0x00, 0x02, 0x80, 0x01 }; static const uint8_t header_prefix444[] = { 0x00, 0x00, 0x02, 0x80, 0x02 }; int i, cid, ret; int old_bit_depth = ctx->bit_depth; if (buf_size < 0x280) { av_log(ctx->avctx, AV_LOG_ERROR, "buffer too small (%d < 640).\n", buf_size); return AVERROR_INVALIDDATA; } if (memcmp(buf, header_prefix, 5) && memcmp(buf, header_prefix444, 5)) { av_log(ctx->avctx, AV_LOG_ERROR, "unknown header 0x%02X 0x%02X 0x%02X 0x%02X 0x%02X\n", buf[0], buf[1], buf[2], buf[3], buf[4]); return AVERROR_INVALIDDATA; } if (buf[5] & 2) { /* interlaced */ ctx->cur_field = buf[5] & 1; frame->interlaced_frame = 1; frame->top_field_first = first_field ^ ctx->cur_field; av_log(ctx->avctx, AV_LOG_DEBUG, "interlaced %d, cur field %d\n", buf[5] & 3, ctx->cur_field); } else { ctx->cur_field = 0; } ctx->mbaff = buf[0x6] & 32; ctx->height = AV_RB16(buf + 0x18); ctx->width = AV_RB16(buf + 0x1a); ff_dlog(ctx->avctx, "width %d, height %d\n", ctx->width, ctx->height); if (buf[0x21] == 0x58) { /* 10 bit */ ctx->bit_depth = ctx->avctx->bits_per_raw_sample = 10; if (buf[0x4] == 0x2) { ctx->decode_dct_block = dnxhd_decode_dct_block_10_444; ctx->pix_fmt = AV_PIX_FMT_YUV444P10; ctx->is_444 = 1; } else { ctx->decode_dct_block = dnxhd_decode_dct_block_10; ctx->pix_fmt = AV_PIX_FMT_YUV422P10; ctx->is_444 = 0; } } else if (buf[0x21] == 0x38) { /* 8 bit */ ctx->bit_depth = ctx->avctx->bits_per_raw_sample = 8; ctx->pix_fmt = AV_PIX_FMT_YUV422P; ctx->is_444 = 0; ctx->decode_dct_block = dnxhd_decode_dct_block_8; } else { av_log(ctx->avctx, AV_LOG_ERROR, "invalid bit depth value (%d).\n", buf[0x21]); return AVERROR_INVALIDDATA; } if (ctx->bit_depth != old_bit_depth) { ff_blockdsp_init(&ctx->bdsp, ctx->avctx); ff_idctdsp_init(&ctx->idsp, ctx->avctx); } cid = AV_RB32(buf + 0x28); ff_dlog(ctx->avctx, "compression id %d\n", cid); if ((ret = dnxhd_init_vlc(ctx, cid)) < 0) return ret; if (ctx->mbaff && ctx->cid_table->cid != 1260) av_log(ctx->avctx, AV_LOG_WARNING, "Adaptive MB interlace flag in an unsupported profile.\n"); ctx->act = buf[0x2C] & 7; if (ctx->act && ctx->cid_table->cid != 1256) av_log(ctx->avctx, AV_LOG_WARNING, "Adaptive color transform in an unsupported profile.\n"); // make sure profile size constraints are respected // DNx100 allows 1920->1440 and 1280->960 subsampling if (ctx->width != ctx->cid_table->width) { av_reduce(&ctx->avctx->sample_aspect_ratio.num, &ctx->avctx->sample_aspect_ratio.den, ctx->width, ctx->cid_table->width, 255); ctx->width = ctx->cid_table->width; } if (buf_size < ctx->cid_table->coding_unit_size) { av_log(ctx->avctx, AV_LOG_ERROR, "incorrect frame size (%d < %d).\n", buf_size, ctx->cid_table->coding_unit_size); return AVERROR_INVALIDDATA; } ctx->mb_width = ctx->width >> 4; ctx->mb_height = buf[0x16d]; ff_dlog(ctx->avctx, "mb width %d, mb height %d\n", ctx->mb_width, ctx->mb_height); if ((ctx->height + 15) >> 4 == ctx->mb_height && frame->interlaced_frame) ctx->height <<= 1; if (ctx->mb_height > 68 || (ctx->mb_height << frame->interlaced_frame) > (ctx->height + 15) >> 4) { av_log(ctx->avctx, AV_LOG_ERROR, "mb height too big: %d\n", ctx->mb_height); return AVERROR_INVALIDDATA; } for (i = 0; i < ctx->mb_height; i++) { ctx->mb_scan_index[i] = AV_RB32(buf + 0x170 + (i << 2)); ff_dlog(ctx->avctx, "mb scan index %d\n", ctx->mb_scan_index[i]); if (buf_size < ctx->mb_scan_index[i] + 0x280LL) { av_log(ctx->avctx, AV_LOG_ERROR, "invalid mb scan index (%d < %d).\n", buf_size, ctx->mb_scan_index[i] + 0x280); return AVERROR_INVALIDDATA; } } return 0; } static av_always_inline int dnxhd_decode_dct_block(const DNXHDContext *ctx, RowContext *row, int n, int index_bits, int level_bias, int level_shift) { int i, j, index1, index2, len, flags; int level, component, sign; const int *scale; const uint8_t *weight_matrix; const uint8_t *ac_level = ctx->cid_table->ac_level; const uint8_t *ac_flags = ctx->cid_table->ac_flags; int16_t *block = row->blocks[n]; const int eob_index = ctx->cid_table->eob_index; int ret = 0; OPEN_READER(bs, &row->gb); ctx->bdsp.clear_block(block); if (!ctx->is_444) { if (n & 2) { component = 1 + (n & 1); scale = row->chroma_scale; weight_matrix = ctx->cid_table->chroma_weight; } else { component = 0; scale = row->luma_scale; weight_matrix = ctx->cid_table->luma_weight; } } else { component = (n >> 1) % 3; if (component) { scale = row->chroma_scale; weight_matrix = ctx->cid_table->chroma_weight; } else { scale = row->luma_scale; weight_matrix = ctx->cid_table->luma_weight; } } UPDATE_CACHE(bs, &row->gb); GET_VLC(len, bs, &row->gb, ctx->dc_vlc.table, DNXHD_DC_VLC_BITS, 1); if (len) { level = GET_CACHE(bs, &row->gb); LAST_SKIP_BITS(bs, &row->gb, len); sign = ~level >> 31; level = (NEG_USR32(sign ^ level, len) ^ sign) - sign; row->last_dc[component] += level; } block[0] = row->last_dc[component]; i = 0; UPDATE_CACHE(bs, &row->gb); GET_VLC(index1, bs, &row->gb, ctx->ac_vlc.table, DNXHD_VLC_BITS, 2); while (index1 != eob_index) { level = ac_level[index1]; flags = ac_flags[index1]; sign = SHOW_SBITS(bs, &row->gb, 1); SKIP_BITS(bs, &row->gb, 1); if (flags & 1) { level += SHOW_UBITS(bs, &row->gb, index_bits) << 7; SKIP_BITS(bs, &row->gb, index_bits); } if (flags & 2) { UPDATE_CACHE(bs, &row->gb); GET_VLC(index2, bs, &row->gb, ctx->run_vlc.table, DNXHD_VLC_BITS, 2); i += ctx->cid_table->run[index2]; } if (++i > 63) { av_log(ctx->avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", n, i); ret = -1; break; } j = ctx->scantable.permutated[i]; level *= scale[i]; if (level_bias < 32 || weight_matrix[i] != level_bias) level += level_bias; level >>= level_shift; block[j] = (level ^ sign) - sign; UPDATE_CACHE(bs, &row->gb); GET_VLC(index1, bs, &row->gb, ctx->ac_vlc.table, DNXHD_VLC_BITS, 2); } CLOSE_READER(bs, &row->gb); return ret; } static int dnxhd_decode_dct_block_8(const DNXHDContext *ctx, RowContext *row, int n) { return dnxhd_decode_dct_block(ctx, row, n, 4, 32, 6); } static int dnxhd_decode_dct_block_10(const DNXHDContext *ctx, RowContext *row, int n) { return dnxhd_decode_dct_block(ctx, row, n, 6, 8, 4); } static int dnxhd_decode_dct_block_10_444(const DNXHDContext *ctx, RowContext *row, int n) { return dnxhd_decode_dct_block(ctx, row, n, 6, 32, 6); } static int dnxhd_decode_macroblock(const DNXHDContext *ctx, RowContext *row, AVFrame *frame, int x, int y) { int shift1 = ctx->bit_depth == 10; int dct_linesize_luma = frame->linesize[0]; int dct_linesize_chroma = frame->linesize[1]; uint8_t *dest_y, *dest_u, *dest_v; int dct_y_offset, dct_x_offset; int qscale, i, act; int interlaced_mb = 0; if (ctx->mbaff) { interlaced_mb = get_bits1(&row->gb); qscale = get_bits(&row->gb, 10); } else { qscale = get_bits(&row->gb, 11); } act = get_bits1(&row->gb); if (act) { static int warned = 0; if (!warned) { warned = 1; av_log(ctx->avctx, AV_LOG_ERROR, "Unsupported adaptive color transform, patch welcome.\n"); } } if (qscale != row->last_qscale) { for (i = 0; i < 64; i++) { row->luma_scale[i] = qscale * ctx->cid_table->luma_weight[i]; row->chroma_scale[i] = qscale * ctx->cid_table->chroma_weight[i]; } row->last_qscale = qscale; } for (i = 0; i < 8 + 4 * ctx->is_444; i++) { if (ctx->decode_dct_block(ctx, row, i) < 0) return AVERROR_INVALIDDATA; } if (frame->interlaced_frame) { dct_linesize_luma <<= 1; dct_linesize_chroma <<= 1; } dest_y = frame->data[0] + ((y * dct_linesize_luma) << 4) + (x << (4 + shift1)); dest_u = frame->data[1] + ((y * dct_linesize_chroma) << 4) + (x << (3 + shift1 + ctx->is_444)); dest_v = frame->data[2] + ((y * dct_linesize_chroma) << 4) + (x << (3 + shift1 + ctx->is_444)); if (frame->interlaced_frame && ctx->cur_field) { dest_y += frame->linesize[0]; dest_u += frame->linesize[1]; dest_v += frame->linesize[2]; } if (interlaced_mb) { dct_linesize_luma <<= 1; dct_linesize_chroma <<= 1; } dct_y_offset = interlaced_mb ? frame->linesize[0] : (dct_linesize_luma << 3); dct_x_offset = 8 << shift1; if (!ctx->is_444) { ctx->idsp.idct_put(dest_y, dct_linesize_luma, row->blocks[0]); ctx->idsp.idct_put(dest_y + dct_x_offset, dct_linesize_luma, row->blocks[1]); ctx->idsp.idct_put(dest_y + dct_y_offset, dct_linesize_luma, row->blocks[4]); ctx->idsp.idct_put(dest_y + dct_y_offset + dct_x_offset, dct_linesize_luma, row->blocks[5]); if (!(ctx->avctx->flags & AV_CODEC_FLAG_GRAY)) { dct_y_offset = interlaced_mb ? frame->linesize[1] : (dct_linesize_chroma << 3); ctx->idsp.idct_put(dest_u, dct_linesize_chroma, row->blocks[2]); ctx->idsp.idct_put(dest_v, dct_linesize_chroma, row->blocks[3]); ctx->idsp.idct_put(dest_u + dct_y_offset, dct_linesize_chroma, row->blocks[6]); ctx->idsp.idct_put(dest_v + dct_y_offset, dct_linesize_chroma, row->blocks[7]); } } else { ctx->idsp.idct_put(dest_y, dct_linesize_luma, row->blocks[0]); ctx->idsp.idct_put(dest_y + dct_x_offset, dct_linesize_luma, row->blocks[1]); ctx->idsp.idct_put(dest_y + dct_y_offset, dct_linesize_luma, row->blocks[6]); ctx->idsp.idct_put(dest_y + dct_y_offset + dct_x_offset, dct_linesize_luma, row->blocks[7]); if (!(ctx->avctx->flags & AV_CODEC_FLAG_GRAY)) { dct_y_offset = interlaced_mb ? frame->linesize[1] : (dct_linesize_chroma << 3); ctx->idsp.idct_put(dest_u, dct_linesize_chroma, row->blocks[2]); ctx->idsp.idct_put(dest_u + dct_x_offset, dct_linesize_chroma, row->blocks[3]); ctx->idsp.idct_put(dest_u + dct_y_offset, dct_linesize_chroma, row->blocks[8]); ctx->idsp.idct_put(dest_u + dct_y_offset + dct_x_offset, dct_linesize_chroma, row->blocks[9]); ctx->idsp.idct_put(dest_v, dct_linesize_chroma, row->blocks[4]); ctx->idsp.idct_put(dest_v + dct_x_offset, dct_linesize_chroma, row->blocks[5]); ctx->idsp.idct_put(dest_v + dct_y_offset, dct_linesize_chroma, row->blocks[10]); ctx->idsp.idct_put(dest_v + dct_y_offset + dct_x_offset, dct_linesize_chroma, row->blocks[11]); } } return 0; } static int dnxhd_decode_row(AVCodecContext *avctx, void *data, int rownb, int threadnb) { const DNXHDContext *ctx = avctx->priv_data; uint32_t offset = ctx->mb_scan_index[rownb]; RowContext *row = ctx->rows + threadnb; int x; row->last_dc[0] = row->last_dc[1] = row->last_dc[2] = 1 << (ctx->bit_depth + 2); // for levels +2^(bitdepth-1) init_get_bits(&row->gb, ctx->buf + offset, (ctx->buf_size - offset) << 3); for (x = 0; x < ctx->mb_width; x++) { //START_TIMER; int ret = dnxhd_decode_macroblock(ctx, row, data, x, rownb); if (ret < 0) { row->errors++; return ret; } //STOP_TIMER("decode macroblock"); } return 0; } static int dnxhd_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; DNXHDContext *ctx = avctx->priv_data; ThreadFrame frame = { .f = data }; AVFrame *picture = data; int first_field = 1; int ret, i; ff_dlog(avctx, "frame size %d\n", buf_size); decode_coding_unit: if ((ret = dnxhd_decode_header(ctx, picture, buf, buf_size, first_field)) < 0) return ret; if ((avctx->width || avctx->height) && (ctx->width != avctx->width || ctx->height != avctx->height)) { av_log(avctx, AV_LOG_WARNING, "frame size changed: %dx%d -> %dx%d\n", avctx->width, avctx->height, ctx->width, ctx->height); first_field = 1; } if (avctx->pix_fmt != AV_PIX_FMT_NONE && avctx->pix_fmt != ctx->pix_fmt) { av_log(avctx, AV_LOG_WARNING, "pix_fmt changed: %s -> %s\n", av_get_pix_fmt_name(avctx->pix_fmt), av_get_pix_fmt_name(ctx->pix_fmt)); first_field = 1; } avctx->pix_fmt = ctx->pix_fmt; ret = ff_set_dimensions(avctx, ctx->width, ctx->height); if (ret < 0) return ret; if (first_field) { if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; picture->pict_type = AV_PICTURE_TYPE_I; picture->key_frame = 1; } ctx->buf_size = buf_size - 0x280; ctx->buf = buf + 0x280; avctx->execute2(avctx, dnxhd_decode_row, picture, NULL, ctx->mb_height); if (first_field && picture->interlaced_frame) { buf += ctx->cid_table->coding_unit_size; buf_size -= ctx->cid_table->coding_unit_size; first_field = 0; goto decode_coding_unit; } ret = 0; for (i = 0; i < avctx->thread_count; i++) { ret += ctx->rows[i].errors; ctx->rows[i].errors = 0; } if (ret) { av_log(ctx->avctx, AV_LOG_ERROR, "%d lines with errors\n", ret); return AVERROR_INVALIDDATA; } *got_frame = 1; return avpkt->size; } static av_cold int dnxhd_decode_close(AVCodecContext *avctx) { DNXHDContext *ctx = avctx->priv_data; ff_free_vlc(&ctx->ac_vlc); ff_free_vlc(&ctx->dc_vlc); ff_free_vlc(&ctx->run_vlc); av_freep(&ctx->rows); return 0; } AVCodec ff_dnxhd_decoder = { .name = "dnxhd", .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"), .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_DNXHD, .priv_data_size = sizeof(DNXHDContext), .init = dnxhd_decode_init, .close = dnxhd_decode_close, .decode = dnxhd_decode_frame, .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(dnxhd_decode_init_thread_copy), };