/* * ADPCM codecs * Copyright (c) 2001 Fabrice Bellard. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "avcodec.h" /** * @file adpcm.c * ADPCM codecs. * First version by Francois Revol revol@free.fr * * Features and limitations: * * Reference documents: * http://www.pcisys.net/~melanson/codecs/adpcm.txt * http://www.geocities.com/SiliconValley/8682/aud3.txt * http://openquicktime.sourceforge.net/plugins.htm * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html * http://www.cs.ucla.edu/~leec/mediabench/applications.html * SoX source code http://home.sprynet.com/~cbagwell/sox.html */ #define BLKSIZE 1024 #define CLAMP_TO_SHORT(value) \ if (value > 32767) \ value = 32767; \ else if (value < -32768) \ value = -32768; \ /* step_table[] and index_table[] are from the ADPCM reference source */ /* This is the index table: */ static const int index_table[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, }; /** * This is the step table. Note that many programs use slight deviations from * this table, but such deviations are negligible: */ static const int step_table[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; /* Those are for MS-ADPCM */ /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */ static const int AdaptationTable[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; static const int AdaptCoeff1[] = { 256, 512, 0, 192, 240, 460, 392 }; static const int AdaptCoeff2[] = { 0, -256, 0, 64, 0, -208, -232 }; /* end of tables */ typedef struct ADPCMChannelStatus { int predictor; short int step_index; int step; /* for encoding */ int prev_sample; /* MS version */ short sample1; short sample2; int coeff1; int coeff2; int idelta; } ADPCMChannelStatus; typedef struct ADPCMContext { int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */ ADPCMChannelStatus status[2]; short sample_buffer[32]; /* hold left samples while waiting for right samples */ } ADPCMContext; /* XXX: implement encoding */ static int adpcm_encode_init(AVCodecContext *avctx) { if (avctx->channels > 2) return -1; /* only stereo or mono =) */ switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: fprintf(stderr, "ADPCM: codec admcp_ima_qt unsupported for encoding !\n"); avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */ return -1; break; case CODEC_ID_ADPCM_IMA_WAV: avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ /* and we have 4 bytes per channel overhead */ avctx->block_align = BLKSIZE; /* seems frame_size isn't taken into account... have to buffer the samples :-( */ break; case CODEC_ID_ADPCM_MS: fprintf(stderr, "ADPCM: codec admcp_ms unsupported for encoding !\n"); return -1; break; default: return -1; break; } avctx->coded_frame= avcodec_alloc_frame(); avctx->coded_frame->key_frame= 1; return 0; } static int adpcm_encode_close(AVCodecContext *avctx) { av_freep(&avctx->coded_frame); return 0; } static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) { int step_index; unsigned char nibble; int sign = 0; /* sign bit of the nibble (MSB) */ int delta, predicted_delta; delta = sample - c->prev_sample; if (delta < 0) { sign = 1; delta = -delta; } step_index = c->step_index; /* nibble = 4 * delta / step_table[step_index]; */ nibble = (delta << 2) / step_table[step_index]; if (nibble > 7) nibble = 7; step_index += index_table[nibble]; if (step_index < 0) step_index = 0; if (step_index > 88) step_index = 88; /* what the decoder will find */ predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8); if (sign) c->prev_sample -= predicted_delta; else c->prev_sample += predicted_delta; CLAMP_TO_SHORT(c->prev_sample); nibble += sign << 3; /* sign * 8 */ /* save back */ c->step_index = step_index; return nibble; } static int adpcm_encode_frame(AVCodecContext *avctx, unsigned char *frame, int buf_size, void *data) { int n; short *samples; unsigned char *dst; ADPCMContext *c = avctx->priv_data; dst = frame; samples = (short *)data; /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */ break; case CODEC_ID_ADPCM_IMA_WAV: n = avctx->frame_size / 8; c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */ *dst++ = (c->status[0].prev_sample >> 8) & 0xFF; *dst++ = (unsigned char)c->status[0].step_index; *dst++ = 0; /* unknown */ samples++; if (avctx->channels == 2) { c->status[1].prev_sample = (signed short)samples[0]; /* c->status[1].step_index = 0; */ *dst++ = (c->status[1].prev_sample) & 0xFF; *dst++ = (c->status[1].prev_sample >> 8) & 0xFF; *dst++ = (unsigned char)c->status[1].step_index; *dst++ = 0; samples++; } /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ for (; n>0; n--) { *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F; *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0; dst++; *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F; *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0; dst++; *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F; *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0; dst++; *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F; *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0; dst++; /* right channel */ if (avctx->channels == 2) { *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]); *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4; dst++; *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]); *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4; dst++; *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]); *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4; dst++; *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]); *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4; dst++; } samples += 8 * avctx->channels; } break; default: return -1; } return dst - frame; } static int adpcm_decode_init(AVCodecContext * avctx) { ADPCMContext *c = avctx->priv_data; c->channel = 0; c->status[0].predictor = c->status[1].predictor = 0; c->status[0].step_index = c->status[1].step_index = 0; c->status[0].step = c->status[1].step = 0; switch(avctx->codec->id) { default: break; } return 0; } static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble) { int step_index; int predictor; int sign, delta, diff, step; step = step_table[c->step_index]; step_index = c->step_index + index_table[(unsigned)nibble]; if (step_index < 0) step_index = 0; else if (step_index > 88) step_index = 88; sign = nibble & 8; delta = nibble & 7; #if 0 diff = step >> 3; if (delta & 4) diff += step; if (delta & 2) diff += step >> 1; if (delta & 1) diff += step >> 2; #else diff = ((2 * delta + 1) * step) >> 3; // no jumps #endif predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; CLAMP_TO_SHORT(predictor); c->predictor = predictor; c->step_index = step_index; return (short)predictor; } static inline short adpcm_4xa_expand_nibble(ADPCMChannelStatus *c, char nibble) { int step_index; int predictor; int sign, delta, diff, step; step = step_table[c->step_index]; step_index = c->step_index + index_table[(unsigned)nibble]; if (step_index < 0) step_index = 0; else if (step_index > 88) step_index = 88; sign = nibble & 8; delta = nibble & 7; diff = (delta*step + (step>>1))>>3; // difference to code above predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; CLAMP_TO_SHORT(predictor); c->predictor = predictor; c->step_index = step_index; return (short)predictor; } static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) { int predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; CLAMP_TO_SHORT(predictor); c->sample2 = c->sample1; c->sample1 = predictor; c->idelta = (AdaptationTable[(int)nibble] * c->idelta) / 256; if (c->idelta < 16) c->idelta = 16; return (short)predictor; } static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size) { ADPCMContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int block_predictor[2]; short *samples; uint8_t *src; int st; /* stereo */ samples = data; src = buf; st = avctx->channels == 2; switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: n = (buf_size - 2);/* >> 2*avctx->channels;*/ channel = c->channel; cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ cs->predictor = (*src++) << 8; cs->predictor |= (*src & 0x80); cs->predictor &= 0xFF80; /* sign extension */ if(cs->predictor & 0x8000) cs->predictor -= 0x10000; CLAMP_TO_SHORT(cs->predictor); cs->step_index = (*src++) & 0x7F; if (cs->step_index > 88) fprintf(stderr, "ERROR: step_index = %i\n", cs->step_index); if (cs->step_index > 88) cs->step_index = 88; cs->step = step_table[cs->step_index]; if (st && channel) samples++; *samples++ = cs->predictor; samples += st; for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F); samples += avctx->channels; *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F); samples += avctx->channels; src ++; } if(st) { /* handle stereo interlacing */ c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */ if(channel == 0) { /* wait for the other packet before outputing anything */ *data_size = 0; return src - buf; } } break; case CODEC_ID_ADPCM_IMA_WAV: if (buf_size > BLKSIZE) { if (avctx->block_align != 0) buf_size = avctx->block_align; else buf_size = BLKSIZE; } // XXX: do as per-channel loop cs = &(c->status[0]); cs->predictor = (*src++) & 0x0FF; cs->predictor |= ((*src++) << 8) & 0x0FF00; if(cs->predictor & 0x8000) cs->predictor -= 0x10000; CLAMP_TO_SHORT(cs->predictor); // XXX: is this correct ??: *samples++ = cs->predictor; cs->step_index = *src++; if (cs->step_index < 0) cs->step_index = 0; if (cs->step_index > 88) cs->step_index = 88; if (*src++) fprintf(stderr, "unused byte should be null !!\n"); /* unused */ if (st) { cs = &(c->status[1]); cs->predictor = (*src++) & 0x0FF; cs->predictor |= ((*src++) << 8) & 0x0FF00; if(cs->predictor & 0x8000) cs->predictor -= 0x10000; CLAMP_TO_SHORT(cs->predictor); // XXX: is this correct ??: *samples++ = cs->predictor; cs->step_index = *src++; if (cs->step_index < 0) cs->step_index = 0; if (cs->step_index > 88) cs->step_index = 88; src++; /* if != 0 -> out-of-sync */ } for(m=4; src < (buf + buf_size);) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F); if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F); *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F); if (st) { *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F); if (!--m) { m=4; src+=4; } } src++; } break; case CODEC_ID_ADPCM_4XM: cs = &(c->status[0]); c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; if(st){ c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2; } c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; if(st){ c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2; } // if (cs->step_index < 0) cs->step_index = 0; // if (cs->step_index > 88) cs->step_index = 88; m= (buf_size - (src - buf))>>st; //printf("%d %d %d %d\n", st, m, c->status[0].predictor, c->status[0].step_index); //FIXME / XXX decode chanels individual & interleave samples for(i=0; i<m; i++) { *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] & 0x0F); if (st) *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] & 0x0F); *samples++ = adpcm_4xa_expand_nibble(&c->status[0], src[i] >> 4); if (st) *samples++ = adpcm_4xa_expand_nibble(&c->status[1], src[i+m] >> 4); } src += m<<st; break; case CODEC_ID_ADPCM_MS: if (buf_size > BLKSIZE) { if (avctx->block_align != 0) buf_size = avctx->block_align; else buf_size = BLKSIZE; } n = buf_size - 7 * avctx->channels; if (n < 0) return -1; block_predictor[0] = (*src++); /* should be bound */ block_predictor[0] = (block_predictor[0] < 0)?(0):((block_predictor[0] > 7)?(7):(block_predictor[0])); block_predictor[1] = 0; if (st) block_predictor[1] = (*src++); block_predictor[1] = (block_predictor[1] < 0)?(0):((block_predictor[1] > 7)?(7):(block_predictor[1])); c->status[0].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); if (c->status[0].idelta & 0x08000) c->status[0].idelta -= 0x10000; src+=2; if (st) c->status[1].idelta = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); if (st && c->status[1].idelta & 0x08000) c->status[1].idelta |= 0xFFFF0000; if (st) src+=2; c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]]; c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]]; c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]]; c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]]; c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); src+=2; if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); if (st) src+=2; c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); src+=2; if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); if (st) src+=2; *samples++ = c->status[0].sample1; if (st) *samples++ = c->status[1].sample1; *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; for(;n>0;n--) { *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F); *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); src ++; } break; default: *data_size = 0; return -1; } *data_size = (uint8_t *)samples - (uint8_t *)data; return src - buf; } #define ADPCM_CODEC(id, name) \ AVCodec name ## _encoder = { \ #name, \ CODEC_TYPE_AUDIO, \ id, \ sizeof(ADPCMContext), \ adpcm_encode_init, \ adpcm_encode_frame, \ adpcm_encode_close, \ NULL, \ }; \ AVCodec name ## _decoder = { \ #name, \ CODEC_TYPE_AUDIO, \ id, \ sizeof(ADPCMContext), \ adpcm_decode_init, \ NULL, \ NULL, \ adpcm_decode_frame, \ }; ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt); ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav); ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms); ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm); #undef ADPCM_CODEC