/* * huffyuv codec for libavcodec * * Copyright (c) 2002-2003 Michael Niedermayer * * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of * the algorithm used * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * huffyuv codec for libavcodec. */ #include "avcodec.h" #include "get_bits.h" #include "put_bits.h" #include "dsputil.h" #include "thread.h" #define VLC_BITS 11 #if HAVE_BIGENDIAN #define B 3 #define G 2 #define R 1 #define A 0 #else #define B 0 #define G 1 #define R 2 #define A 3 #endif typedef enum Predictor{ LEFT= 0, PLANE, MEDIAN, } Predictor; typedef struct HYuvContext{ AVCodecContext *avctx; Predictor predictor; GetBitContext gb; PutBitContext pb; int interlaced; int decorrelate; int bitstream_bpp; int version; int yuy2; //use yuy2 instead of 422P int bgr32; //use bgr32 instead of bgr24 int width, height; int flags; int context; int picture_number; int last_slice_end; uint8_t *temp[3]; uint64_t stats[3][256]; uint8_t len[3][256]; uint32_t bits[3][256]; uint32_t pix_bgr_map[1<dsp.diff_bytes(dst+16, src+16, src+15, w-16); return src[w-1]; } } static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){ int i; int r,g,b,a; r= *red; g= *green; b= *blue; a= *alpha; for(i=0; idsp.diff_bytes(dst+16, src+16, src+12, w*4-16); *red= src[(w-1)*4+R]; *green= src[(w-1)*4+G]; *blue= src[(w-1)*4+B]; *alpha= src[(w-1)*4+A]; } static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){ int i; int r,g,b; r= *red; g= *green; b= *blue; for(i=0; idsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48); *red= src[(w-1)*3+0]; *green= src[(w-1)*3+1]; *blue= src[(w-1)*3+2]; } static int read_len_table(uint8_t *dst, GetBitContext *gb){ int i, val, repeat; for(i=0; i<256;){ repeat= get_bits(gb, 3); val = get_bits(gb, 5); if(repeat==0) repeat= get_bits(gb, 8); //printf("%d %d\n", val, repeat); if(i+repeat > 256 || get_bits_left(gb) < 0) { av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n"); return -1; } while (repeat--) dst[i++] = val; } return 0; } static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){ int len, index; uint32_t bits=0; for(len=32; len>0; len--){ for(index=0; index<256; index++){ if(len_table[index]==len) dst[index]= bits++; } if(bits & 1){ av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n"); return -1; } bits >>= 1; } return 0; } #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER typedef struct { uint64_t val; int name; } HeapElem; static void heap_sift(HeapElem *h, int root, int size) { while(root*2+1 < size) { int child = root*2+1; if(child < size-1 && h[child].val > h[child+1].val) child++; if(h[root].val > h[child].val) { FFSWAP(HeapElem, h[root], h[child]); root = child; } else break; } } static void generate_len_table(uint8_t *dst, const uint64_t *stats){ HeapElem h[256]; int up[2*256]; int len[2*256]; int offset, i, next; int size = 256; for(offset=1; ; offset<<=1){ for(i=0; i=0; i--) heap_sift(h, i, size); for(next=size; next=size; i--) len[i] = len[up[i]] + 1; for(i=0; i= 32) break; } if(i==size) break; } } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ static void generate_joint_tables(HYuvContext *s){ uint16_t symbols[1<bitstream_bpp < 24){ int p, i, y, u; for(p=0; p<3; p++){ for(i=y=0; y<256; y++){ int len0 = s->len[0][y]; int limit = VLC_BITS - len0; if(limit <= 0) continue; for(u=0; u<256; u++){ int len1 = s->len[p][u]; if(len1 > limit) continue; len[i] = len0 + len1; bits[i] = (s->bits[0][y] << len1) + s->bits[p][u]; symbols[i] = (y<<8) + u; if(symbols[i] != 0xffff) // reserved to mean "invalid" i++; } } ff_free_vlc(&s->vlc[3+p]); ff_init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0); } }else{ uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map; int i, b, g, r, code; int p0 = s->decorrelate; int p1 = !s->decorrelate; // restrict the range to +/-16 becaues that's pretty much guaranteed to // cover all the combinations that fit in 11 bits total, and it doesn't // matter if we miss a few rare codes. for(i=0, g=-16; g<16; g++){ int len0 = s->len[p0][g&255]; int limit0 = VLC_BITS - len0; if(limit0 < 2) continue; for(b=-16; b<16; b++){ int len1 = s->len[p1][b&255]; int limit1 = limit0 - len1; if(limit1 < 1) continue; code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255]; for(r=-16; r<16; r++){ int len2 = s->len[2][r&255]; if(len2 > limit1) continue; len[i] = len0 + len1 + len2; bits[i] = (code << len2) + s->bits[2][r&255]; if(s->decorrelate){ map[i][G] = g; map[i][B] = g+b; map[i][R] = g+r; }else{ map[i][B] = g; map[i][G] = b; map[i][R] = r; } i++; } } } ff_free_vlc(&s->vlc[3]); init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0); } } static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){ GetBitContext gb; int i; init_get_bits(&gb, src, length*8); for(i=0; i<3; i++){ if(read_len_table(s->len[i], &gb)<0) return -1; if(generate_bits_table(s->bits[i], s->len[i])<0){ return -1; } ff_free_vlc(&s->vlc[i]); init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0); } generate_joint_tables(s); return (get_bits_count(&gb)+7)/8; } static int read_old_huffman_tables(HYuvContext *s){ #if 1 GetBitContext gb; int i; init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size*8); if(read_len_table(s->len[0], &gb)<0) return -1; init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size*8); if(read_len_table(s->len[1], &gb)<0) return -1; for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i]; for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i]; if(s->bitstream_bpp >= 24){ memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t)); memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t)); } memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t)); memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t)); for(i=0; i<3; i++){ ff_free_vlc(&s->vlc[i]); init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0); } generate_joint_tables(s); return 0; #else av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n"); return -1; #endif } static av_cold void alloc_temp(HYuvContext *s){ int i; if(s->bitstream_bpp<24){ for(i=0; i<3; i++){ s->temp[i]= av_malloc(s->width + 16); } }else{ s->temp[0]= av_mallocz(4*s->width + 16); } } static av_cold int common_init(AVCodecContext *avctx){ HYuvContext *s = avctx->priv_data; s->avctx= avctx; s->flags= avctx->flags; ff_dsputil_init(&s->dsp, avctx); s->width= avctx->width; s->height= avctx->height; assert(s->width>0 && s->height>0); return 0; } #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER static av_cold int decode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; common_init(avctx); memset(s->vlc, 0, 3*sizeof(VLC)); avctx->coded_frame= &s->picture; avcodec_get_frame_defaults(&s->picture); s->interlaced= s->height > 288; s->bgr32=1; //if(avctx->extradata) // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size); if(avctx->extradata_size){ if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12) s->version=1; // do such files exist at all? else s->version=2; }else s->version=0; if(s->version==2){ int method, interlace; if (avctx->extradata_size < 4) return -1; method= ((uint8_t*)avctx->extradata)[0]; s->decorrelate= method&64 ? 1 : 0; s->predictor= method&63; s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1]; if(s->bitstream_bpp==0) s->bitstream_bpp= avctx->bits_per_coded_sample&~7; interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4; s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced; s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0; if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0) return -1; }else{ switch(avctx->bits_per_coded_sample&7){ case 1: s->predictor= LEFT; s->decorrelate= 0; break; case 2: s->predictor= LEFT; s->decorrelate= 1; break; case 3: s->predictor= PLANE; s->decorrelate= avctx->bits_per_coded_sample >= 24; break; case 4: s->predictor= MEDIAN; s->decorrelate= 0; break; default: s->predictor= LEFT; //OLD s->decorrelate= 0; break; } s->bitstream_bpp= avctx->bits_per_coded_sample & ~7; s->context= 0; if(read_old_huffman_tables(s) < 0) return -1; } switch(s->bitstream_bpp){ case 12: avctx->pix_fmt = PIX_FMT_YUV420P; break; case 16: if(s->yuy2){ avctx->pix_fmt = PIX_FMT_YUYV422; }else{ avctx->pix_fmt = PIX_FMT_YUV422P; } break; case 24: case 32: if(s->bgr32){ avctx->pix_fmt = PIX_FMT_RGB32; }else{ avctx->pix_fmt = PIX_FMT_BGR24; } break; default: return AVERROR_INVALIDDATA; } alloc_temp(s); // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced); return 0; } static av_cold int decode_init_thread_copy(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; avctx->coded_frame= &s->picture; alloc_temp(s); for (i = 0; i < 6; i++) s->vlc[i].table = NULL; if(s->version==2){ if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0) return -1; }else{ if(read_old_huffman_tables(s) < 0) return -1; } return 0; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){ int i; int index= 0; for(i=0; i<256;){ int val= len[i]; int repeat=0; for(; i<256 && len[i]==val && repeat<255; i++) repeat++; assert(val < 32 && val >0 && repeat<256 && repeat>0); if(repeat>7){ buf[index++]= val; buf[index++]= repeat; }else{ buf[index++]= val | (repeat<<5); } } return index; } static av_cold int encode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i, j; common_init(avctx); avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772 avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132 s->version=2; avctx->coded_frame= &s->picture; switch(avctx->pix_fmt){ case PIX_FMT_YUV420P: s->bitstream_bpp= 12; break; case PIX_FMT_YUV422P: s->bitstream_bpp= 16; break; case PIX_FMT_RGB32: s->bitstream_bpp= 32; break; case PIX_FMT_RGB24: s->bitstream_bpp= 24; break; default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } avctx->bits_per_coded_sample= s->bitstream_bpp; s->decorrelate= s->bitstream_bpp >= 24; s->predictor= avctx->prediction_method; s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0; if(avctx->context_model==1){ s->context= avctx->context_model; if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){ av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n"); return -1; } }else s->context= 0; if(avctx->codec->id==CODEC_ID_HUFFYUV){ if(avctx->pix_fmt==PIX_FMT_YUV420P){ av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n"); return -1; } if(avctx->context_model){ av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n"); return -1; } if(s->interlaced != ( s->height > 288 )) av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n"); } if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){ av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n"); return -1; } ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6); ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp; ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20; if(s->context) ((uint8_t*)avctx->extradata)[2]|= 0x40; ((uint8_t*)avctx->extradata)[3]= 0; s->avctx->extradata_size= 4; if(avctx->stats_in){ char *p= avctx->stats_in; for(i=0; i<3; i++) for(j=0; j<256; j++) s->stats[i][j]= 1; for(;;){ for(i=0; i<3; i++){ char *next; for(j=0; j<256; j++){ s->stats[i][j]+= strtol(p, &next, 0); if(next==p) return -1; p=next; } } if(p[0]==0 || p[1]==0 || p[2]==0) break; } }else{ for(i=0; i<3; i++) for(j=0; j<256; j++){ int d= FFMIN(j, 256-j); s->stats[i][j]= 100000000/(d+1); } } for(i=0; i<3; i++){ generate_len_table(s->len[i], s->stats[i]); if(generate_bits_table(s->bits[i], s->len[i])<0){ return -1; } s->avctx->extradata_size+= store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]); } if(s->context){ for(i=0; i<3; i++){ int pels = s->width*s->height / (i?40:10); for(j=0; j<256; j++){ int d= FFMIN(j, 256-j); s->stats[i][j]= pels/(d+1); } } }else{ for(i=0; i<3; i++) for(j=0; j<256; j++) s->stats[i][j]= 0; } // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced); alloc_temp(s); s->picture_number=0; return 0; } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ /* TODO instead of restarting the read when the code isn't in the first level * of the joint table, jump into the 2nd level of the individual table. */ #define READ_2PIX(dst0, dst1, plane1){\ uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\ if(code != 0xffff){\ dst0 = code>>8;\ dst1 = code;\ }else{\ dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\ dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\ }\ } static void decode_422_bitstream(HYuvContext *s, int count){ int i; count/=2; if(count >= (get_bits_left(&s->gb))/(31*4)){ for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2); } }else{ for(i=0; itemp[0][2*i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2); } } } static void decode_gray_bitstream(HYuvContext *s, int count){ int i; count/=2; if(count >= (get_bits_left(&s->gb))/(31*2)){ for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0); } }else{ for(i=0; itemp[0][2*i ], s->temp[0][2*i+1], 0); } } } #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int encode_422_bitstream(HYuvContext *s, int offset, int count){ int i; const uint8_t *y = s->temp[0] + offset; const uint8_t *u = s->temp[1] + offset/2; const uint8_t *v = s->temp[2] + offset/2; if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD4\ int y0 = y[2*i];\ int y1 = y[2*i+1];\ int u0 = u[i];\ int v0 = v[i]; count/=2; if(s->flags&CODEC_FLAG_PASS1){ for(i=0; istats[0][y0]++; s->stats[1][u0]++; s->stats[0][y1]++; s->stats[2][v0]++; } } if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT) return 0; if(s->context){ for(i=0; istats[0][y0]++; put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]); s->stats[1][u0]++; put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); s->stats[0][y1]++; put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); s->stats[2][v0]++; put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } }else{ for(i=0; ipb, s->len[0][y0], s->bits[0][y0]); put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } } return 0; } static int encode_gray_bitstream(HYuvContext *s, int count){ int i; if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD2\ int y0 = s->temp[0][2*i];\ int y1 = s->temp[0][2*i+1]; #define STAT2\ s->stats[0][y0]++;\ s->stats[0][y1]++; #define WRITE2\ put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\ put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); count/=2; if(s->flags&CODEC_FLAG_PASS1){ for(i=0; iavctx->flags2&CODEC_FLAG2_NO_OUTPUT) return 0; if(s->context){ for(i=0; igb, s->vlc[3].table, VLC_BITS, 1); if(code != -1){ *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code]; }else if(decorrelate){ s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G]; s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G]; }else{ s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } if(alpha) s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } } static void decode_bgr_bitstream(HYuvContext *s, int count){ if(s->decorrelate){ if(s->bitstream_bpp==24) decode_bgr_1(s, count, 1, 0); else decode_bgr_1(s, count, 1, 1); }else{ if(s->bitstream_bpp==24) decode_bgr_1(s, count, 0, 0); else decode_bgr_1(s, count, 0, 1); } } static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){ int i; if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){ av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD3\ int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\ int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\ int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\ int a= s->temp[0][planes*i+A]; #define STAT3\ s->stats[0][b]++;\ s->stats[1][g]++;\ s->stats[2][r]++;\ if(planes==4) s->stats[2][a]++; #define WRITE3\ put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\ put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\ put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\ if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]); if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){ for(i=0; icontext || (s->flags&CODEC_FLAG_PASS1)){ for(i=0; iavctx->draw_horiz_band==NULL) return; h= y - s->last_slice_end; y -= h; if(s->bitstream_bpp==12){ cy= y>>1; }else{ cy= y; } offset[0] = s->picture.linesize[0]*y; offset[1] = s->picture.linesize[1]*cy; offset[2] = s->picture.linesize[2]*cy; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h); s->last_slice_end= y + h; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){ const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; HYuvContext *s = avctx->priv_data; const int width= s->width; const int width2= s->width>>1; const int height= s->height; int fake_ystride, fake_ustride, fake_vstride; AVFrame * const p= &s->picture; int table_size= 0; AVFrame *picture = data; av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->bitstream_buffer) return AVERROR(ENOMEM); memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE); s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4); if(p->data[0]) ff_thread_release_buffer(avctx, p); p->reference= 0; if(ff_thread_get_buffer(avctx, p) < 0){ av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if(s->context){ table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size); if(table_size < 0) return -1; } if((unsigned)(buf_size-table_size) >= INT_MAX/8) return -1; init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8); fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0]; fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1]; fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2]; s->last_slice_end= 0; if(s->bitstream_bpp<24){ int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if(s->yuy2){ p->data[0][3]= get_bits(&s->gb, 8); p->data[0][2]= get_bits(&s->gb, 8); p->data[0][1]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n"); return -1; }else{ leftv= p->data[2][0]= get_bits(&s->gb, 8); lefty= p->data[0][1]= get_bits(&s->gb, 8); leftu= p->data[1][0]= get_bits(&s->gb, 8); p->data[0][0]= get_bits(&s->gb, 8); switch(s->predictor){ case LEFT: case PLANE: decode_422_bitstream(s, width-2); lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } for(cy=y=1; yheight; y++,cy++){ uint8_t *ydst, *udst, *vdst; if(s->bitstream_bpp==12){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty); if(s->predictor == PLANE){ if(y>s->interlaced) s->dsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if(y>=s->height) break; } draw_slice(s, y); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; decode_422_bitstream(s, width); lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu); leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv); } if(s->predictor == PLANE){ if(cy>s->interlaced){ s->dsp.add_bytes(ydst, ydst - fake_ystride, width); if(!(s->flags&CODEC_FLAG_GRAY)){ s->dsp.add_bytes(udst, udst - fake_ustride, width2); s->dsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width-2); lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu); leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv); } cy=y=1; /* second line is left predicted for interlaced case */ if(s->interlaced){ decode_422_bitstream(s, width); lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if(!(s->flags&CODEC_FLAG_GRAY)){ leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy= p->data[0][3]; decode_422_bitstream(s, width-4); s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ lefttopu= p->data[1][1]; lefttopv= p->data[2][1]; s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu); s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv); } y++; cy++; for(; ybitstream_bpp==12){ while(2*cy > y){ decode_gray_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if(y>=height) break; } draw_slice(s, y); decode_422_bitstream(s, width); ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if(!(s->flags&CODEC_FLAG_GRAY)){ s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, height); break; } } }else{ int y; int leftr, leftg, leftb, lefta; const int last_line= (height-1)*p->linesize[0]; if(s->bitstream_bpp==32){ lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8); leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8); }else{ leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8); leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8); leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8); lefta= p->data[0][last_line+A]= 255; skip_bits(&s->gb, 8); } if(s->bgr32){ switch(s->predictor){ case LEFT: case PLANE: decode_bgr_bitstream(s, width-1); s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta); for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down. decode_bgr_bitstream(s, width); s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta); if(s->predictor == PLANE){ if(s->bitstream_bpp!=32) lefta=0; if((y&s->interlaced)==0 && yheight-1-s->interlaced){ s->dsp.add_bytes(p->data[0] + p->linesize[0]*y, p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride); } } } draw_slice(s, height); // just 1 large slice as this is not possible in reverse order break; default: av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n"); } }else{ av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n"); return -1; } } emms_c(); *picture= *p; *data_size = sizeof(AVFrame); return (get_bits_count(&s->gb)+31)/32*4 + table_size; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ static int common_end(HYuvContext *s){ int i; for(i=0; i<3; i++){ av_freep(&s->temp[i]); } return 0; } #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER static av_cold int decode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; if (s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); common_end(s); av_freep(&s->bitstream_buffer); for(i=0; i<6; i++){ ff_free_vlc(&s->vlc[i]); } return 0; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { HYuvContext *s = avctx->priv_data; const int width= s->width; const int width2= s->width>>1; const int height= s->height; const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0]; const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1]; const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2]; AVFrame * const p= &s->picture; int i, j, size = 0, ret; if (!pkt->data && (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) { av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n"); return ret; } *p = *pict; p->pict_type= AV_PICTURE_TYPE_I; p->key_frame= 1; if(s->context){ for(i=0; i<3; i++){ generate_len_table(s->len[i], s->stats[i]); if(generate_bits_table(s->bits[i], s->len[i])<0) return -1; size += store_table(s, s->len[i], &pkt->data[size]); } for(i=0; i<3; i++) for(j=0; j<256; j++) s->stats[i][j] >>= 1; } init_put_bits(&s->pb, pkt->data + size, pkt->size - size); if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){ int lefty, leftu, leftv, y, cy; put_bits(&s->pb, 8, leftv= p->data[2][0]); put_bits(&s->pb, 8, lefty= p->data[0][1]); put_bits(&s->pb, 8, leftu= p->data[1][0]); put_bits(&s->pb, 8, p->data[0][0]); lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0); leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0); leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0); encode_422_bitstream(s, 2, width-2); if(s->predictor==MEDIAN){ int lefttopy, lefttopu, lefttopv; cy=y=1; if(s->interlaced){ lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty); leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu); leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv); encode_422_bitstream(s, 0, width); y++; cy++; } lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty); leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu); leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv); encode_422_bitstream(s, 0, 4); lefttopy= p->data[0][3]; lefttopu= p->data[1][1]; lefttopv= p->data[2][1]; s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy); s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu); s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width-4); y++; cy++; for(; ybitstream_bpp==12){ while(2*cy > y){ ydst= p->data[0] + p->linesize[0]*y; s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); encode_gray_bitstream(s, width); y++; } if(y>=height) break; } ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu); s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width); } }else{ for(cy=y=1; ybitstream_bpp==12){ ydst= p->data[0] + p->linesize[0]*y; if(s->predictor == PLANE && s->interlaced < y){ s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); }else{ lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty); } encode_gray_bitstream(s, width); y++; if(y>=height) break; } ydst= p->data[0] + p->linesize[0]*y; udst= p->data[1] + p->linesize[1]*cy; vdst= p->data[2] + p->linesize[2]*cy; if(s->predictor == PLANE && s->interlaced < cy){ s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2); s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2); lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu); leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv); }else{ lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty); leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu); leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv); } encode_422_bitstream(s, 0, width); } } }else if(avctx->pix_fmt == PIX_FMT_RGB32){ uint8_t *data = p->data[0] + (height-1)*p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int y; int leftr, leftg, leftb, lefta; put_bits(&s->pb, 8, lefta= data[A]); put_bits(&s->pb, 8, leftr= data[R]); put_bits(&s->pb, 8, leftg= data[G]); put_bits(&s->pb, 8, leftb= data[B]); sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta); encode_bgra_bitstream(s, width-1, 4); for(y=1; yheight; y++){ uint8_t *dst = data + y*stride; if(s->predictor == PLANE && s->interlaced < y){ s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4); sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta); }else{ sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta); } encode_bgra_bitstream(s, width, 4); } }else if(avctx->pix_fmt == PIX_FMT_RGB24){ uint8_t *data = p->data[0] + (height-1)*p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int y; int leftr, leftg, leftb; put_bits(&s->pb, 8, leftr= data[0]); put_bits(&s->pb, 8, leftg= data[1]); put_bits(&s->pb, 8, leftb= data[2]); put_bits(&s->pb, 8, 0); sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb); encode_bgra_bitstream(s, width-1, 3); for(y=1; yheight; y++){ uint8_t *dst = data + y*stride; if(s->predictor == PLANE && s->interlaced < y){ s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3); sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb); }else{ sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb); } encode_bgra_bitstream(s, width, 3); } }else{ av_log(avctx, AV_LOG_ERROR, "Format not supported!\n"); } emms_c(); size+= (put_bits_count(&s->pb)+31)/8; put_bits(&s->pb, 16, 0); put_bits(&s->pb, 15, 0); size/= 4; if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){ int j; char *p= avctx->stats_out; char *end= p + 1024*30; for(i=0; i<3; i++){ for(j=0; j<256; j++){ snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]); p+= strlen(p); s->stats[i][j]= 0; } snprintf(p, end-p, "\n"); p++; } } else avctx->stats_out[0] = '\0'; if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){ flush_put_bits(&s->pb); s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size); } s->picture_number++; pkt->size = size*4; pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; common_end(s); av_freep(&avctx->extradata); av_freep(&avctx->stats_out); return 0; } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ #if CONFIG_HUFFYUV_DECODER AVCodec ff_huffyuv_decoder = { .name = "huffyuv", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"), }; #endif #if CONFIG_FFVHUFF_DECODER AVCodec ff_ffvhuff_decoder = { .name = "ffvhuff", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"), }; #endif #if CONFIG_HUFFYUV_ENCODER AVCodec ff_huffyuv_encoder = { .name = "huffyuv", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE}, .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"), }; #endif #if CONFIG_FFVHUFF_ENCODER AVCodec ff_ffvhuff_encoder = { .name = "ffvhuff", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE}, .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"), }; #endif