/* * Indeo Video Interactive v4 compatible decoder * Copyright (c) 2009-2011 Maxim Poliakovski * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Indeo Video Interactive version 4 decoder * * Indeo 4 data is usually transported within .avi or .mov files. * Known FOURCCs: 'IV41' */ #define BITSTREAM_READER_LE #include "avcodec.h" #include "get_bits.h" #include "dsputil.h" #include "ivi_dsp.h" #include "ivi_common.h" #include "indeo4data.h" #define IVI4_STREAM_ANALYSER 0 #define IVI4_DEBUG_CHECKSUM 0 /** * Indeo 4 frame types. */ enum { FRAMETYPE_INTRA = 0, FRAMETYPE_BIDIR1 = 1, ///< bidirectional frame FRAMETYPE_INTER = 2, ///< non-droppable P-frame FRAMETYPE_BIDIR = 3, ///< bidirectional frame FRAMETYPE_INTER_NOREF = 4, ///< droppable P-frame FRAMETYPE_NULL_FIRST = 5, ///< empty frame with no data FRAMETYPE_NULL_LAST = 6 ///< empty frame with no data }; #define IVI4_PIC_SIZE_ESC 7 typedef struct { GetBitContext gb; AVFrame frame; RVMapDesc rvmap_tabs[9]; ///< local corrected copy of the static rvmap tables uint32_t frame_num; int frame_type; int prev_frame_type; ///< frame type of the previous frame uint32_t data_size; ///< size of the frame data in bytes from picture header int is_scalable; int transp_status; ///< transparency mode status: 1 - enabled IVIPicConfig pic_conf; IVIPlaneDesc planes[3]; ///< color planes int buf_switch; ///< used to switch between three buffers int dst_buf; ///< buffer index for the currently decoded frame int ref_buf; ///< inter frame reference buffer index IVIHuffTab mb_vlc; ///< current macroblock table descriptor IVIHuffTab blk_vlc; ///< current block table descriptor uint16_t checksum; ///< frame checksum uint8_t rvmap_sel; uint8_t in_imf; uint8_t in_q; ///< flag for explicitly stored quantiser delta uint8_t pic_glob_quant; uint8_t unknown1; #if IVI4_STREAM_ANALYSER uint8_t has_b_frames; uint8_t has_transp; uint8_t uses_tiling; uint8_t uses_haar; uint8_t uses_fullpel; #endif } IVI4DecContext; static const struct { InvTransformPtr *inv_trans; DCTransformPtr *dc_trans; int is_2d_trans; } transforms[18] = { { ff_ivi_inverse_haar_8x8, ff_ivi_dc_haar_2d, 1 }, { NULL, NULL, 0 }, /* inverse Haar 8x1 */ { NULL, NULL, 0 }, /* inverse Haar 1x8 */ { ff_ivi_put_pixels_8x8, ff_ivi_put_dc_pixel_8x8, 1 }, { ff_ivi_inverse_slant_8x8, ff_ivi_dc_slant_2d, 1 }, { ff_ivi_row_slant8, ff_ivi_dc_row_slant, 1 }, { ff_ivi_col_slant8, ff_ivi_dc_col_slant, 1 }, { NULL, NULL, 0 }, /* inverse DCT 8x8 */ { NULL, NULL, 0 }, /* inverse DCT 8x1 */ { NULL, NULL, 0 }, /* inverse DCT 1x8 */ { NULL, NULL, 0 }, /* inverse Haar 4x4 */ { ff_ivi_inverse_slant_4x4, ff_ivi_dc_slant_2d, 1 }, { NULL, NULL, 0 }, /* no transform 4x4 */ { NULL, NULL, 0 }, /* inverse Haar 1x4 */ { NULL, NULL, 0 }, /* inverse Haar 4x1 */ { NULL, NULL, 0 }, /* inverse slant 1x4 */ { NULL, NULL, 0 }, /* inverse slant 4x1 */ { NULL, NULL, 0 }, /* inverse DCT 4x4 */ }; /** * Decode subdivision of a plane. * This is a simplified version that checks for two supported subdivisions: * - 1 wavelet band per plane, size factor 1:1, code pattern: 3 * - 4 wavelet bands per plane, size factor 1:4, code pattern: 2,3,3,3,3 * Anything else is either unsupported or corrupt. * * @param[in,out] gb the GetBit context * @return number of wavelet bands or 0 on error */ static int decode_plane_subdivision(GetBitContext *gb) { int i; switch (get_bits(gb, 2)) { case 3: return 1; case 2: for (i = 0; i < 4; i++) if (get_bits(gb, 2) != 3) return 0; return 4; default: return 0; } } static inline int scale_tile_size(int def_size, int size_factor) { return size_factor == 15 ? def_size : (size_factor + 1) << 5; } /** * Decode Indeo 4 picture header. * * @param[in,out] ctx pointer to the decoder context * @param[in] avctx pointer to the AVCodecContext * @return result code: 0 = OK, negative number = error */ static int decode_pic_hdr(IVI4DecContext *ctx, AVCodecContext *avctx) { int pic_size_indx, i, p; IVIPicConfig pic_conf; if (get_bits(&ctx->gb, 18) != 0x3FFF8) { av_log(avctx, AV_LOG_ERROR, "Invalid picture start code!\n"); return AVERROR_INVALIDDATA; } ctx->prev_frame_type = ctx->frame_type; ctx->frame_type = get_bits(&ctx->gb, 3); if (ctx->frame_type == 7) { av_log(avctx, AV_LOG_ERROR, "Invalid frame type: %d\n", ctx->frame_type); return AVERROR_INVALIDDATA; } #if IVI4_STREAM_ANALYSER if ( ctx->frame_type == FRAMETYPE_BIDIR1 || ctx->frame_type == FRAMETYPE_BIDIR) ctx->has_b_frames = 1; #endif ctx->transp_status = get_bits1(&ctx->gb); #if IVI4_STREAM_ANALYSER if (ctx->transp_status) { ctx->has_transp = 1; } #endif /* unknown bit: Mac decoder ignores this bit, XANIM returns error */ if (get_bits1(&ctx->gb)) { av_log(avctx, AV_LOG_ERROR, "Sync bit is set!\n"); return AVERROR_INVALIDDATA; } ctx->data_size = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 24) : 0; /* null frames don't contain anything else so we just return */ if (ctx->frame_type >= FRAMETYPE_NULL_FIRST) { av_dlog(avctx, "Null frame encountered!\n"); return 0; } /* Check key lock status. If enabled - ignore lock word. */ /* Usually we have to prompt the user for the password, but */ /* we don't do that because Indeo 4 videos can be decoded anyway */ if (get_bits1(&ctx->gb)) { skip_bits_long(&ctx->gb, 32); av_dlog(avctx, "Password-protected clip!\n"); } pic_size_indx = get_bits(&ctx->gb, 3); if (pic_size_indx == IVI4_PIC_SIZE_ESC) { pic_conf.pic_height = get_bits(&ctx->gb, 16); pic_conf.pic_width = get_bits(&ctx->gb, 16); } else { pic_conf.pic_height = ivi4_common_pic_sizes[pic_size_indx * 2 + 1]; pic_conf.pic_width = ivi4_common_pic_sizes[pic_size_indx * 2 ]; } /* Decode tile dimensions. */ if (get_bits1(&ctx->gb)) { pic_conf.tile_height = scale_tile_size(pic_conf.pic_height, get_bits(&ctx->gb, 4)); pic_conf.tile_width = scale_tile_size(pic_conf.pic_width, get_bits(&ctx->gb, 4)); #if IVI4_STREAM_ANALYSER ctx->uses_tiling = 1; #endif } else { pic_conf.tile_height = pic_conf.pic_height; pic_conf.tile_width = pic_conf.pic_width; } /* Decode chroma subsampling. We support only 4:4 aka YVU9. */ if (get_bits(&ctx->gb, 2)) { av_log(avctx, AV_LOG_ERROR, "Only YVU9 picture format is supported!\n"); return AVERROR_INVALIDDATA; } pic_conf.chroma_height = (pic_conf.pic_height + 3) >> 2; pic_conf.chroma_width = (pic_conf.pic_width + 3) >> 2; /* decode subdivision of the planes */ pic_conf.luma_bands = decode_plane_subdivision(&ctx->gb); if (pic_conf.luma_bands) pic_conf.chroma_bands = decode_plane_subdivision(&ctx->gb); ctx->is_scalable = pic_conf.luma_bands != 1 || pic_conf.chroma_bands != 1; if (ctx->is_scalable && (pic_conf.luma_bands != 4 || pic_conf.chroma_bands != 1)) { av_log(avctx, AV_LOG_ERROR, "Scalability: unsupported subdivision! Luma bands: %d, chroma bands: %d\n", pic_conf.luma_bands, pic_conf.chroma_bands); return AVERROR_INVALIDDATA; } /* check if picture layout was changed and reallocate buffers */ if (ivi_pic_config_cmp(&pic_conf, &ctx->pic_conf)) { if (ff_ivi_init_planes(ctx->planes, &pic_conf)) { av_log(avctx, AV_LOG_ERROR, "Couldn't reallocate color planes!\n"); return AVERROR(ENOMEM); } ctx->pic_conf = pic_conf; /* set default macroblock/block dimensions */ for (p = 0; p <= 2; p++) { for (i = 0; i < (!p ? pic_conf.luma_bands : pic_conf.chroma_bands); i++) { ctx->planes[p].bands[i].mb_size = !p ? (!ctx->is_scalable ? 16 : 8) : 4; ctx->planes[p].bands[i].blk_size = !p ? 8 : 4; } } if (ff_ivi_init_tiles(ctx->planes, ctx->pic_conf.tile_width, ctx->pic_conf.tile_height)) { av_log(avctx, AV_LOG_ERROR, "Couldn't reallocate internal structures!\n"); return AVERROR(ENOMEM); } } ctx->frame_num = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 20) : 0; /* skip decTimeEst field if present */ if (get_bits1(&ctx->gb)) skip_bits(&ctx->gb, 8); /* decode macroblock and block huffman codebooks */ if (ff_ivi_dec_huff_desc(&ctx->gb, get_bits1(&ctx->gb), IVI_MB_HUFF, &ctx->mb_vlc, avctx) || ff_ivi_dec_huff_desc(&ctx->gb, get_bits1(&ctx->gb), IVI_BLK_HUFF, &ctx->blk_vlc, avctx)) return AVERROR_INVALIDDATA; ctx->rvmap_sel = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 3) : 8; ctx->in_imf = get_bits1(&ctx->gb); ctx->in_q = get_bits1(&ctx->gb); ctx->pic_glob_quant = get_bits(&ctx->gb, 5); /* TODO: ignore this parameter if unused */ ctx->unknown1 = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 3) : 0; ctx->checksum = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 16) : 0; /* skip picture header extension if any */ while (get_bits1(&ctx->gb)) { av_dlog(avctx, "Pic hdr extension encountered!\n"); skip_bits(&ctx->gb, 8); } if (get_bits1(&ctx->gb)) { av_log(avctx, AV_LOG_ERROR, "Bad blocks bits encountered!\n"); } align_get_bits(&ctx->gb); return 0; } /** * Decode Indeo 4 band header. * * @param[in,out] ctx pointer to the decoder context * @param[in,out] band pointer to the band descriptor * @param[in] avctx pointer to the AVCodecContext * @return result code: 0 = OK, negative number = error */ static int decode_band_hdr(IVI4DecContext *ctx, IVIBandDesc *band, AVCodecContext *avctx) { int plane, band_num, indx, transform_id, scan_indx; int i; plane = get_bits(&ctx->gb, 2); band_num = get_bits(&ctx->gb, 4); if (band->plane != plane || band->band_num != band_num) { av_log(avctx, AV_LOG_ERROR, "Invalid band header sequence!\n"); return AVERROR_INVALIDDATA; } band->is_empty = get_bits1(&ctx->gb); if (!band->is_empty) { /* skip header size * If header size is not given, header size is 4 bytes. */ if (get_bits1(&ctx->gb)) skip_bits(&ctx->gb, 16); band->is_halfpel = get_bits(&ctx->gb, 2); if (band->is_halfpel >= 2) { av_log(avctx, AV_LOG_ERROR, "Invalid/unsupported mv resolution: %d!\n", band->is_halfpel); return AVERROR_INVALIDDATA; } #if IVI4_STREAM_ANALYSER if (!band->is_halfpel) ctx->uses_fullpel = 1; #endif band->checksum_present = get_bits1(&ctx->gb); if (band->checksum_present) band->checksum = get_bits(&ctx->gb, 16); indx = get_bits(&ctx->gb, 2); if (indx == 3) { av_log(avctx, AV_LOG_ERROR, "Invalid block size!\n"); return AVERROR_INVALIDDATA; } band->mb_size = 16 >> indx; band->blk_size = 8 >> (indx >> 1); band->inherit_mv = get_bits1(&ctx->gb); band->inherit_qdelta = get_bits1(&ctx->gb); band->glob_quant = get_bits(&ctx->gb, 5); if (!get_bits1(&ctx->gb) || ctx->frame_type == FRAMETYPE_INTRA) { transform_id = get_bits(&ctx->gb, 5); if (transform_id >= FF_ARRAY_ELEMS(transforms) || !transforms[transform_id].inv_trans) { av_log_ask_for_sample(avctx, "Unimplemented transform: %d!\n", transform_id); return AVERROR_PATCHWELCOME; } if ((transform_id >= 7 && transform_id <= 9) || transform_id == 17) { av_log_ask_for_sample(avctx, "DCT transform not supported yet!\n"); return AVERROR_PATCHWELCOME; } #if IVI4_STREAM_ANALYSER if ((transform_id >= 0 && transform_id <= 2) || transform_id == 10) ctx->uses_haar = 1; #endif band->inv_transform = transforms[transform_id].inv_trans; band->dc_transform = transforms[transform_id].dc_trans; band->is_2d_trans = transforms[transform_id].is_2d_trans; scan_indx = get_bits(&ctx->gb, 4); if ((scan_indx>4 && scan_indx<10) != (band->blk_size==4)) { av_log(avctx, AV_LOG_ERROR, "mismatching scan table!\n"); return AVERROR_INVALIDDATA; } if (scan_indx == 15) { av_log(avctx, AV_LOG_ERROR, "Custom scan pattern encountered!\n"); return AVERROR_INVALIDDATA; } band->scan = scan_index_to_tab[scan_indx]; band->quant_mat = get_bits(&ctx->gb, 5); if (band->quant_mat == 31) { av_log(avctx, AV_LOG_ERROR, "Custom quant matrix encountered!\n"); return AVERROR_INVALIDDATA; } if (band->quant_mat > 21) { av_log(avctx, AV_LOG_ERROR, "Invalid quant matrix encountered!\n"); return AVERROR_INVALIDDATA; } } /* decode block huffman codebook */ if (ff_ivi_dec_huff_desc(&ctx->gb, get_bits1(&ctx->gb), IVI_BLK_HUFF, &band->blk_vlc, avctx)) return AVERROR_INVALIDDATA; /* select appropriate rvmap table for this band */ band->rvmap_sel = get_bits1(&ctx->gb) ? get_bits(&ctx->gb, 3) : 8; /* decode rvmap probability corrections if any */ band->num_corr = 0; /* there is no corrections */ if (get_bits1(&ctx->gb)) { band->num_corr = get_bits(&ctx->gb, 8); /* get number of correction pairs */ if (band->num_corr > 61) { av_log(avctx, AV_LOG_ERROR, "Too many corrections: %d\n", band->num_corr); return AVERROR_INVALIDDATA; } /* read correction pairs */ for (i = 0; i < band->num_corr * 2; i++) band->corr[i] = get_bits(&ctx->gb, 8); } } if (band->blk_size == 8) { band->intra_base = &ivi4_quant_8x8_intra[quant_index_to_tab[band->quant_mat]][0]; band->inter_base = &ivi4_quant_8x8_inter[quant_index_to_tab[band->quant_mat]][0]; } else { band->intra_base = &ivi4_quant_4x4_intra[quant_index_to_tab[band->quant_mat]][0]; band->inter_base = &ivi4_quant_4x4_inter[quant_index_to_tab[band->quant_mat]][0]; } /* Indeo 4 doesn't use scale tables */ band->intra_scale = NULL; band->inter_scale = NULL; align_get_bits(&ctx->gb); if (!band->scan) { av_log(avctx, AV_LOG_ERROR, "band->scan not set\n"); return AVERROR_INVALIDDATA; } return 0; } /** * Decode information (block type, cbp, quant delta, motion vector) * for all macroblocks in the current tile. * * @param[in,out] ctx pointer to the decoder context * @param[in,out] band pointer to the band descriptor * @param[in,out] tile pointer to the tile descriptor * @param[in] avctx pointer to the AVCodecContext * @return result code: 0 = OK, negative number = error */ static int decode_mb_info(IVI4DecContext *ctx, IVIBandDesc *band, IVITile *tile, AVCodecContext *avctx) { int x, y, mv_x, mv_y, mv_delta, offs, mb_offset, blks_per_mb, mv_scale, mb_type_bits, s; IVIMbInfo *mb, *ref_mb; int row_offset = band->mb_size * band->pitch; mb = tile->mbs; ref_mb = tile->ref_mbs; offs = tile->ypos * band->pitch + tile->xpos; blks_per_mb = band->mb_size != band->blk_size ? 4 : 1; mb_type_bits = ctx->frame_type == FRAMETYPE_BIDIR ? 2 : 1; /* scale factor for motion vectors */ mv_scale = (ctx->planes[0].bands[0].mb_size >> 3) - (band->mb_size >> 3); mv_x = mv_y = 0; for (y = tile->ypos; y < tile->ypos + tile->height; y += band->mb_size) { mb_offset = offs; for (x = tile->xpos; x < tile->xpos + tile->width; x += band->mb_size) { mb->xpos = x; mb->ypos = y; mb->buf_offs = mb_offset; if (get_bits1(&ctx->gb)) { if (ctx->frame_type == FRAMETYPE_INTRA) { av_log(avctx, AV_LOG_ERROR, "Empty macroblock in an INTRA picture!\n"); return AVERROR_INVALIDDATA; } mb->type = 1; /* empty macroblocks are always INTER */ mb->cbp = 0; /* all blocks are empty */ mb->q_delta = 0; if (!band->plane && !band->band_num && ctx->in_q) { mb->q_delta = get_vlc2(&ctx->gb, ctx->mb_vlc.tab->table, IVI_VLC_BITS, 1); mb->q_delta = IVI_TOSIGNED(mb->q_delta); } mb->mv_x = mb->mv_y = 0; /* no motion vector coded */ if (band->inherit_mv) { /* motion vector inheritance */ if (mv_scale) { mb->mv_x = ivi_scale_mv(ref_mb->mv_x, mv_scale); mb->mv_y = ivi_scale_mv(ref_mb->mv_y, mv_scale); } else { mb->mv_x = ref_mb->mv_x; mb->mv_y = ref_mb->mv_y; } } } else { if (band->inherit_mv && ref_mb) { mb->type = ref_mb->type; /* copy mb_type from corresponding reference mb */ } else if (ctx->frame_type == FRAMETYPE_INTRA) { mb->type = 0; /* mb_type is always INTRA for intra-frames */ } else { mb->type = get_bits(&ctx->gb, mb_type_bits); } mb->cbp = get_bits(&ctx->gb, blks_per_mb); mb->q_delta = 0; if (band->inherit_qdelta) { if (ref_mb) mb->q_delta = ref_mb->q_delta; } else if (mb->cbp || (!band->plane && !band->band_num && ctx->in_q)) { mb->q_delta = get_vlc2(&ctx->gb, ctx->mb_vlc.tab->table, IVI_VLC_BITS, 1); mb->q_delta = IVI_TOSIGNED(mb->q_delta); } if (!mb->type) { mb->mv_x = mb->mv_y = 0; /* there is no motion vector in intra-macroblocks */ } else { if (band->inherit_mv) { /* motion vector inheritance */ if (mv_scale) { mb->mv_x = ivi_scale_mv(ref_mb->mv_x, mv_scale); mb->mv_y = ivi_scale_mv(ref_mb->mv_y, mv_scale); } else { mb->mv_x = ref_mb->mv_x; mb->mv_y = ref_mb->mv_y; } } else { /* decode motion vector deltas */ mv_delta = get_vlc2(&ctx->gb, ctx->mb_vlc.tab->table, IVI_VLC_BITS, 1); mv_y += IVI_TOSIGNED(mv_delta); mv_delta = get_vlc2(&ctx->gb, ctx->mb_vlc.tab->table, IVI_VLC_BITS, 1); mv_x += IVI_TOSIGNED(mv_delta); mb->mv_x = mv_x; mb->mv_y = mv_y; } } } s= band->is_halfpel; if (mb->type) if ( x + (mb->mv_x >>s) + (y+ (mb->mv_y >>s))*band->pitch < 0 || x + ((mb->mv_x+s)>>s) + band->mb_size - 1 + (y+band->mb_size - 1 +((mb->mv_y+s)>>s))*band->pitch > band->bufsize -1) { av_log(avctx, AV_LOG_ERROR, "motion vector %d %d outside reference\n", x*s + mb->mv_x, y*s + mb->mv_y); return AVERROR_INVALIDDATA; } mb++; if (ref_mb) ref_mb++; mb_offset += band->mb_size; } offs += row_offset; } align_get_bits(&ctx->gb); return 0; } /** * Decode an Indeo 4 band. * * @param[in,out] ctx pointer to the decoder context * @param[in,out] band pointer to the band descriptor * @param[in] avctx pointer to the AVCodecContext * @return result code: 0 = OK, negative number = error */ static int decode_band(IVI4DecContext *ctx, int plane_num, IVIBandDesc *band, AVCodecContext *avctx) { int result, i, t, pos, idx1, idx2; IVITile *tile; int ret = 0; band->buf = band->bufs[ctx->dst_buf]; band->ref_buf = band->bufs[ctx->ref_buf]; result = decode_band_hdr(ctx, band, avctx); if (result) { av_log(avctx, AV_LOG_ERROR, "Error decoding band header\n"); return result; } if (band->is_empty) { av_log(avctx, AV_LOG_ERROR, "Empty band encountered!\n"); return AVERROR_INVALIDDATA; } band->rv_map = &ctx->rvmap_tabs[band->rvmap_sel]; /* apply corrections to the selected rvmap table if present */ for (i = 0; i < band->num_corr; i++) { idx1 = band->corr[i * 2]; idx2 = band->corr[i * 2 + 1]; FFSWAP(uint8_t, band->rv_map->runtab[idx1], band->rv_map->runtab[idx2]); FFSWAP(int16_t, band->rv_map->valtab[idx1], band->rv_map->valtab[idx2]); if (idx1 == band->rv_map->eob_sym || idx2 == band->rv_map->eob_sym) band->rv_map->eob_sym ^= idx1 ^ idx2; if (idx1 == band->rv_map->esc_sym || idx2 == band->rv_map->esc_sym) band->rv_map->esc_sym ^= idx1 ^ idx2; } pos = get_bits_count(&ctx->gb); for (t = 0; t < band->num_tiles; t++) { tile = &band->tiles[t]; tile->is_empty = get_bits1(&ctx->gb); if (tile->is_empty) { ff_ivi_process_empty_tile(avctx, band, tile, (ctx->planes[0].bands[0].mb_size >> 3) - (band->mb_size >> 3)); av_dlog(avctx, "Empty tile encountered!\n"); } else { tile->data_size = ff_ivi_dec_tile_data_size(&ctx->gb); if (!tile->data_size) { av_log(avctx, AV_LOG_ERROR, "Tile data size is zero!\n"); ret = AVERROR_INVALIDDATA; break; } result = decode_mb_info(ctx, band, tile, avctx); if (result < 0) break; result = ff_ivi_decode_blocks(&ctx->gb, band, tile); if (result < 0 || ((get_bits_count(&ctx->gb) - pos) >> 3) != tile->data_size) { av_log(avctx, AV_LOG_ERROR, "Corrupted tile data encountered!\n"); break; } pos += tile->data_size << 3; // skip to next tile } } /* restore the selected rvmap table by applying its corrections in reverse order */ for (i = band->num_corr - 1; i >= 0; i--) { idx1 = band->corr[i * 2]; idx2 = band->corr[i * 2 + 1]; FFSWAP(uint8_t, band->rv_map->runtab[idx1], band->rv_map->runtab[idx2]); FFSWAP(int16_t, band->rv_map->valtab[idx1], band->rv_map->valtab[idx2]); if (idx1 == band->rv_map->eob_sym || idx2 == band->rv_map->eob_sym) band->rv_map->eob_sym ^= idx1 ^ idx2; if (idx1 == band->rv_map->esc_sym || idx2 == band->rv_map->esc_sym) band->rv_map->esc_sym ^= idx1 ^ idx2; } #if defined(DEBUG) && IVI4_DEBUG_CHECKSUM if (band->checksum_present) { uint16_t chksum = ivi_calc_band_checksum(band); if (chksum != band->checksum) { av_log(avctx, AV_LOG_ERROR, "Band checksum mismatch! Plane %d, band %d, received: %x, calculated: %x\n", band->plane, band->band_num, band->checksum, chksum); } } #endif align_get_bits(&ctx->gb); return ret; } static av_cold int decode_init(AVCodecContext *avctx) { IVI4DecContext *ctx = avctx->priv_data; ff_ivi_init_static_vlc(); /* copy rvmap tables in our context so we can apply changes to them */ memcpy(ctx->rvmap_tabs, ff_ivi_rvmap_tabs, sizeof(ff_ivi_rvmap_tabs)); /* Force allocation of the internal buffers */ /* during picture header decoding. */ ctx->pic_conf.pic_width = 0; ctx->pic_conf.pic_height = 0; avctx->pix_fmt = PIX_FMT_YUV410P; return 0; } /** * Rearrange decoding and reference buffers. * * @param[in,out] ctx pointer to the decoder context */ static void switch_buffers(IVI4DecContext *ctx) { switch (ctx->prev_frame_type) { case FRAMETYPE_INTRA: case FRAMETYPE_INTER: ctx->buf_switch ^= 1; ctx->dst_buf = ctx->buf_switch; ctx->ref_buf = ctx->buf_switch ^ 1; break; case FRAMETYPE_INTER_NOREF: break; } switch (ctx->frame_type) { case FRAMETYPE_INTRA: ctx->buf_switch = 0; /* FALLTHROUGH */ case FRAMETYPE_INTER: ctx->dst_buf = ctx->buf_switch; ctx->ref_buf = ctx->buf_switch ^ 1; break; case FRAMETYPE_INTER_NOREF: case FRAMETYPE_NULL_FIRST: case FRAMETYPE_NULL_LAST: break; } } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { IVI4DecContext *ctx = avctx->priv_data; const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; int result, p, b; init_get_bits(&ctx->gb, buf, buf_size * 8); result = decode_pic_hdr(ctx, avctx); if (result) { av_log(avctx, AV_LOG_ERROR, "Error decoding picture header\n"); return result; } switch_buffers(ctx); if (ctx->frame_type < FRAMETYPE_NULL_FIRST) { for (p = 0; p < 3; p++) { for (b = 0; b < ctx->planes[p].num_bands; b++) { result = decode_band(ctx, p, &ctx->planes[p].bands[b], avctx); if (result) { av_log(avctx, AV_LOG_ERROR, "Error decoding band: %d, plane: %d\n", b, p); return result; } } } } /* If the bidirectional mode is enabled, next I and the following P frame will */ /* be sent together. Unfortunately the approach below seems to be the only way */ /* to handle the B-frames mode. That's exactly the same Intel decoders do. */ if (ctx->frame_type == FRAMETYPE_INTRA) { while (get_bits(&ctx->gb, 8)); // skip version string skip_bits_long(&ctx->gb, 64); // skip padding, TODO: implement correct 8-bytes alignment if (get_bits_left(&ctx->gb) > 18 && show_bits(&ctx->gb, 18) == 0x3FFF8) av_log(avctx, AV_LOG_ERROR, "Buffer contains IP frames!\n"); } if (ctx->frame_type >= FRAMETYPE_NULL_FIRST) return buf_size; if (ctx->frame.data[0]) avctx->release_buffer(avctx, &ctx->frame); ctx->frame.reference = 0; if ((result = avctx->get_buffer(avctx, &ctx->frame)) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return result; } if (ctx->is_scalable) { ff_ivi_recompose_haar(&ctx->planes[0], ctx->frame.data[0], ctx->frame.linesize[0], 4); } else { ff_ivi_output_plane(&ctx->planes[0], ctx->frame.data[0], ctx->frame.linesize[0]); } ff_ivi_output_plane(&ctx->planes[2], ctx->frame.data[1], ctx->frame.linesize[1]); ff_ivi_output_plane(&ctx->planes[1], ctx->frame.data[2], ctx->frame.linesize[2]); *data_size = sizeof(AVFrame); *(AVFrame*)data = ctx->frame; return buf_size; } static av_cold int decode_close(AVCodecContext *avctx) { IVI4DecContext *ctx = avctx->priv_data; ff_ivi_free_buffers(&ctx->planes[0]); if (ctx->frame.data[0]) avctx->release_buffer(avctx, &ctx->frame); #if IVI4_STREAM_ANALYSER if (ctx->is_scalable) av_log(avctx, AV_LOG_ERROR, "This video uses scalability mode!\n"); if (ctx->uses_tiling) av_log(avctx, AV_LOG_ERROR, "This video uses local decoding!\n"); if (ctx->has_b_frames) av_log(avctx, AV_LOG_ERROR, "This video contains B-frames!\n"); if (ctx->has_transp) av_log(avctx, AV_LOG_ERROR, "Transparency mode is enabled!\n"); if (ctx->uses_haar) av_log(avctx, AV_LOG_ERROR, "This video uses Haar transform!\n"); if (ctx->uses_fullpel) av_log(avctx, AV_LOG_ERROR, "This video uses fullpel motion vectors!\n"); #endif return 0; } AVCodec ff_indeo4_decoder = { .name = "indeo4", .type = AVMEDIA_TYPE_VIDEO, .id = CODEC_ID_INDEO4, .priv_data_size = sizeof(IVI4DecContext), .init = decode_init, .close = decode_close, .decode = decode_frame, .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo Video Interactive 4"), };