/* * Copyright (c) 2001-2003 The ffmpeg Project * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "get_bits.h" #include "put_bits.h" #include "bytestream.h" #include "adpcm.h" #include "adpcm_data.h" /** * @file * ADPCM decoders * First version by Francois Revol (revol@free.fr) * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood) * by Mike Melanson (melanson@pcisys.net) * CD-ROM XA ADPCM codec by BERO * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) * EA IMA EACS decoder by Peter Ross (pross@xvid.org) * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) * * Features and limitations: * * Reference documents: * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead] * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead] * http://openquicktime.sourceforge.net/ * XAnim sources (xa_codec.c) http://xanim.polter.net/ * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead] * SoX source code http://sox.sourceforge.net/ * * CD-ROM XA: * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead] * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead] * readstr http://www.geocities.co.jp/Playtown/2004/ */ /* These are for CD-ROM XA ADPCM */ static const int xa_adpcm_table[5][2] = { { 0, 0 }, { 60, 0 }, { 115, -52 }, { 98, -55 }, { 122, -60 } }; static const int ea_adpcm_table[] = { 0, 240, 460, 392, 0, 0, -208, -220, 0, 1, 3, 4, 7, 8, 10, 11, 0, -1, -3, -4 }; // padded to zero where table size is less then 16 static const int swf_index_tables[4][16] = { /*2*/ { -1, 2 }, /*3*/ { -1, -1, 2, 4 }, /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 }, /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 } }; /* end of tables */ typedef struct ADPCMDecodeContext { ADPCMChannelStatus status[6]; } ADPCMDecodeContext; static av_cold int adpcm_decode_init(AVCodecContext * avctx) { ADPCMDecodeContext *c = avctx->priv_data; unsigned int max_channels = 2; switch(avctx->codec->id) { case CODEC_ID_ADPCM_EA_R1: case CODEC_ID_ADPCM_EA_R2: case CODEC_ID_ADPCM_EA_R3: case CODEC_ID_ADPCM_EA_XAS: max_channels = 6; break; } if(avctx->channels > max_channels){ return -1; } switch(avctx->codec->id) { case CODEC_ID_ADPCM_CT: c->status[0].step = c->status[1].step = 511; break; case CODEC_ID_ADPCM_IMA_WAV: if (avctx->bits_per_coded_sample != 4) { av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n"); return -1; } break; case CODEC_ID_ADPCM_IMA_WS: if (avctx->extradata && avctx->extradata_size == 2 * 4) { c->status[0].predictor = AV_RL32(avctx->extradata); c->status[1].predictor = AV_RL32(avctx->extradata + 4); } break; default: break; } avctx->sample_fmt = AV_SAMPLE_FMT_S16; return 0; } static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift) { int step_index; int predictor; int sign, delta, diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble]; if (step_index < 0) step_index = 0; else if (step_index > 88) step_index = 88; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * step) >> shift; predictor = c->predictor; if (sign) predictor -= diff; else predictor += diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return (short)c->predictor; } static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift) { int step_index; int predictor; int diff, step; step = ff_adpcm_step_table[c->step_index]; step_index = c->step_index + ff_adpcm_index_table[nibble]; step_index = av_clip(step_index, 0, 88); diff = step >> 3; if (nibble & 4) diff += step; if (nibble & 2) diff += step >> 1; if (nibble & 1) diff += step >> 2; if (nibble & 8) predictor = c->predictor - diff; else predictor = c->predictor + diff; c->predictor = av_clip_int16(predictor); c->step_index = step_index; return c->predictor; } static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) { int predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64; predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; c->sample2 = c->sample1; c->sample1 = av_clip_int16(predictor); c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; return c->sample1; } static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) { int sign, delta, diff; int new_step; sign = nibble & 8; delta = nibble & 7; /* perform direct multiplication instead of series of jumps proposed by * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * c->step) >> 3; /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); c->predictor = av_clip_int16(c->predictor); /* calculate new step and clamp it to range 511..32767 */ new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8; c->step = av_clip(new_step, 511, 32767); return (short)c->predictor; } static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) { int sign, delta, diff; sign = nibble & (1<<(size-1)); delta = nibble & ((1<<(size-1))-1); diff = delta << (7 + c->step + shift); /* clamp result */ c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); /* calculate new step */ if (delta >= (2*size - 3) && c->step < 3) c->step++; else if (delta == 0 && c->step > 0) c->step--; return (short) c->predictor; } static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) { if(!c->step) { c->predictor = 0; c->step = 127; } c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8; c->predictor = av_clip_int16(c->predictor); c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8; c->step = av_clip(c->step, 127, 24567); return c->predictor; } static void xa_decode(short *out, const unsigned char *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc) { int i, j; int shift,filter,f0,f1; int s_1,s_2; int d,s,t; for(i=0;i<4;i++) { shift = 12 - (in[4+i*2] & 15); filter = in[4+i*2] >> 4; f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; s_1 = left->sample1; s_2 = left->sample2; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = (signed char)(d<<4)>>4; s = ( t<>6); s_2 = s_1; s_1 = av_clip_int16(s); *out = s_1; out += inc; } if (inc==2) { /* stereo */ left->sample1 = s_1; left->sample2 = s_2; s_1 = right->sample1; s_2 = right->sample2; out = out + 1 - 28*2; } shift = 12 - (in[5+i*2] & 15); filter = in[5+i*2] >> 4; f0 = xa_adpcm_table[filter][0]; f1 = xa_adpcm_table[filter][1]; for(j=0;j<28;j++) { d = in[16+i+j*4]; t = (signed char)d >> 4; s = ( t<>6); s_2 = s_1; s_1 = av_clip_int16(s); *out = s_1; out += inc; } if (inc==2) { /* stereo */ right->sample1 = s_1; right->sample2 = s_2; out -= 1; } else { left->sample1 = s_1; left->sample2 = s_2; } } } /* DK3 ADPCM support macro */ #define DK3_GET_NEXT_NIBBLE() \ if (decode_top_nibble_next) \ { \ nibble = last_byte >> 4; \ decode_top_nibble_next = 0; \ } \ else \ { \ last_byte = *src++; \ if (src >= buf + buf_size) break; \ nibble = last_byte & 0x0F; \ decode_top_nibble_next = 1; \ } static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; ADPCMDecodeContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int block_predictor[2]; short *samples; short *samples_end; const uint8_t *src; int st; /* stereo */ /* DK3 ADPCM accounting variables */ unsigned char last_byte = 0; unsigned char nibble; int decode_top_nibble_next = 0; int diff_channel; /* EA ADPCM state variables */ uint32_t samples_in_chunk; int32_t previous_left_sample, previous_right_sample; int32_t current_left_sample, current_right_sample; int32_t next_left_sample, next_right_sample; int32_t coeff1l, coeff2l, coeff1r, coeff2r; uint8_t shift_left, shift_right; int count1, count2; int coeff[2][2], shift[2];//used in EA MAXIS ADPCM if (!buf_size) return 0; //should protect all 4bit ADPCM variants //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels // if(*data_size/4 < buf_size + 8) return -1; samples = data; samples_end= samples + *data_size/2; *data_size= 0; src = buf; st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples). Channel data is interleaved per-chunk. */ if (buf_size / 34 < avctx->channels) { av_log(avctx, AV_LOG_ERROR, "packet is too small\n"); return AVERROR(EINVAL); } for (channel = 0; channel < avctx->channels; channel++) { int16_t predictor; int step_index; cs = &(c->status[channel]); /* (pppppp) (piiiiiii) */ /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ predictor = AV_RB16(src); step_index = predictor & 0x7F; predictor &= 0xFF80; src += 2; if (cs->step_index == step_index) { int diff = (int)predictor - cs->predictor; if (diff < 0) diff = - diff; if (diff > 0x7f) goto update; } else { update: cs->step_index = step_index; cs->predictor = predictor; } if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } samples = (short*)data + channel; for (m = 0; m < 32; m++) { *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3); samples += avctx->channels; *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3); samples += avctx->channels; src ++; } } if (st) samples--; break; case CODEC_ID_ADPCM_IMA_WAV: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; for(i=0; ichannels; i++){ cs = &(c->status[i]); cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src); cs->step_index = *src++; if (cs->step_index > 88){ av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); cs->step_index = 88; } if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ } while(src < buf + buf_size){ for (i = 0; i < avctx->channels; i++) { cs = &c->status[i]; for (m = 0; m < 4; m++) { uint8_t v = *src++; *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3); samples += avctx->channels; *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3); samples += avctx->channels; } samples -= 8 * avctx->channels - 1; } samples += 7 * avctx->channels; } break; case CODEC_ID_ADPCM_4XM: cs = &(c->status[0]); c->status[0].predictor= (int16_t)bytestream_get_le16(&src); if(st){ c->status[1].predictor= (int16_t)bytestream_get_le16(&src); } c->status[0].step_index= (int16_t)bytestream_get_le16(&src); if(st){ c->status[1].step_index= (int16_t)bytestream_get_le16(&src); } if (cs->step_index < 0) cs->step_index = 0; if (cs->step_index > 88) cs->step_index = 88; m= (buf_size - (src - buf))>>st; for(i=0; istatus[0], src[i] & 0x0F, 4); if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4); *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4); if (st) *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4); } src += m<block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; n = buf_size - 7 * avctx->channels; if (n < 0) return -1; block_predictor[0] = av_clip(*src++, 0, 6); block_predictor[1] = 0; if (st) block_predictor[1] = av_clip(*src++, 0, 6); c->status[0].idelta = (int16_t)bytestream_get_le16(&src); if (st){ c->status[1].idelta = (int16_t)bytestream_get_le16(&src); } c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[0]]; c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[0]]; c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor[1]]; c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor[1]]; c->status[0].sample1 = bytestream_get_le16(&src); if (st) c->status[1].sample1 = bytestream_get_le16(&src); c->status[0].sample2 = bytestream_get_le16(&src); if (st) c->status[1].sample2 = bytestream_get_le16(&src); *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; *samples++ = c->status[0].sample1; if (st) *samples++ = c->status[1].sample1; for(;n>0;n--) { *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); src ++; } break; case CODEC_ID_ADPCM_IMA_DK4: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; c->status[0].predictor = (int16_t)bytestream_get_le16(&src); c->status[0].step_index = *src++; src++; *samples++ = c->status[0].predictor; if (st) { c->status[1].predictor = (int16_t)bytestream_get_le16(&src); c->status[1].step_index = *src++; src++; *samples++ = c->status[1].predictor; } while (src < buf + buf_size) { uint8_t v = *src++; *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case CODEC_ID_ADPCM_IMA_DK3: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; if(buf_size + 16 > (samples_end - samples)*3/8) return -1; c->status[0].predictor = (int16_t)AV_RL16(src + 10); c->status[1].predictor = (int16_t)AV_RL16(src + 12); c->status[0].step_index = src[14]; c->status[1].step_index = src[15]; /* sign extend the predictors */ src += 16; diff_channel = c->status[1].predictor; /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when * the buffer is consumed */ while (1) { /* for this algorithm, c->status[0] is the sum channel and * c->status[1] is the diff channel */ /* process the first predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the diff channel predictor */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[1], nibble, 3); /* process the first pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; /* process the second predictor of the sum channel */ DK3_GET_NEXT_NIBBLE(); adpcm_ima_expand_nibble(&c->status[0], nibble, 3); /* process the second pair of stereo PCM samples */ diff_channel = (diff_channel + c->status[1].predictor) / 2; *samples++ = c->status[0].predictor + c->status[1].predictor; *samples++ = c->status[0].predictor - c->status[1].predictor; } break; case CODEC_ID_ADPCM_IMA_ISS: c->status[0].predictor = (int16_t)AV_RL16(src + 0); c->status[0].step_index = src[2]; src += 4; if(st) { c->status[1].predictor = (int16_t)AV_RL16(src + 0); c->status[1].step_index = src[2]; src += 4; } while (src < buf + buf_size) { uint8_t v1, v2; uint8_t v = *src++; /* nibbles are swapped for mono */ if (st) { v1 = v >> 4; v2 = v & 0x0F; } else { v2 = v >> 4; v1 = v & 0x0F; } *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3); } break; case CODEC_ID_ADPCM_IMA_WS: while (src < buf + buf_size) { uint8_t v = *src++; *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3); } break; case CODEC_ID_ADPCM_XA: while (buf_size >= 128) { xa_decode(samples, src, &c->status[0], &c->status[1], avctx->channels); src += 128; samples += 28 * 8; buf_size -= 128; } break; case CODEC_ID_ADPCM_IMA_EA_EACS: samples_in_chunk = bytestream_get_le32(&src) >> (1-st); if (samples_in_chunk > buf_size-4-(8<status[i].step_index = bytestream_get_le32(&src); for (i=0; i<=st; i++) c->status[i].predictor = bytestream_get_le32(&src); for (; samples_in_chunk; samples_in_chunk--, src++) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); } break; case CODEC_ID_ADPCM_IMA_EA_SEAD: for (; src < buf+buf_size; src++) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); } break; case CODEC_ID_ADPCM_EA: /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces, each coding 28 stereo samples. */ if (buf_size < 12) { av_log(avctx, AV_LOG_ERROR, "frame too small\n"); return AVERROR(EINVAL); } samples_in_chunk = AV_RL32(src); if (samples_in_chunk / 28 > (buf_size - 12) / 30) { av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); return AVERROR(EINVAL); } src += 4; current_left_sample = (int16_t)bytestream_get_le16(&src); previous_left_sample = (int16_t)bytestream_get_le16(&src); current_right_sample = (int16_t)bytestream_get_le16(&src); previous_right_sample = (int16_t)bytestream_get_le16(&src); for (count1 = 0; count1 < samples_in_chunk/28;count1++) { coeff1l = ea_adpcm_table[ *src >> 4 ]; coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; coeff1r = ea_adpcm_table[*src & 0x0F]; coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; src++; shift_left = (*src >> 4 ) + 8; shift_right = (*src & 0x0F) + 8; src++; for (count2 = 0; count2 < 28; count2++) { next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left; next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right; src++; next_left_sample = (next_left_sample + (current_left_sample * coeff1l) + (previous_left_sample * coeff2l) + 0x80) >> 8; next_right_sample = (next_right_sample + (current_right_sample * coeff1r) + (previous_right_sample * coeff2r) + 0x80) >> 8; previous_left_sample = current_left_sample; current_left_sample = av_clip_int16(next_left_sample); previous_right_sample = current_right_sample; current_right_sample = av_clip_int16(next_right_sample); *samples++ = (unsigned short)current_left_sample; *samples++ = (unsigned short)current_right_sample; } } if (src - buf == buf_size - 2) src += 2; // Skip terminating 0x0000 break; case CODEC_ID_ADPCM_EA_MAXIS_XA: for(channel = 0; channel < avctx->channels; channel++) { for (i=0; i<2; i++) coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; shift[channel] = (*src & 0x0F) + 8; src++; } for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) { for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ for(channel = 0; channel < avctx->channels; channel++) { int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel]; sample = (sample + c->status[channel].sample1 * coeff[channel][0] + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; c->status[channel].sample2 = c->status[channel].sample1; c->status[channel].sample1 = av_clip_int16(sample); *samples++ = c->status[channel].sample1; } } src+=avctx->channels; } break; case CODEC_ID_ADPCM_EA_R1: case CODEC_ID_ADPCM_EA_R2: case CODEC_ID_ADPCM_EA_R3: { /* channel numbering 2chan: 0=fl, 1=fr 4chan: 0=fl, 1=rl, 2=fr, 3=rr 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; int32_t previous_sample, current_sample, next_sample; int32_t coeff1, coeff2; uint8_t shift; unsigned int channel; uint16_t *samplesC; const uint8_t *srcC; const uint8_t *src_end = buf + buf_size; samples_in_chunk = (big_endian ? bytestream_get_be32(&src) : bytestream_get_le32(&src)) / 28; if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || 28*samples_in_chunk*avctx->channels > samples_end-samples) { src += buf_size - 4; break; } for (channel=0; channelchannels; channel++) { int32_t offset = (big_endian ? bytestream_get_be32(&src) : bytestream_get_le32(&src)) + (avctx->channels-channel-1) * 4; if ((offset < 0) || (offset >= src_end - src - 4)) break; srcC = src + offset; samplesC = samples + channel; if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { current_sample = (int16_t)bytestream_get_le16(&srcC); previous_sample = (int16_t)bytestream_get_le16(&srcC); } else { current_sample = c->status[channel].predictor; previous_sample = c->status[channel].prev_sample; } for (count1=0; count1 src_end - 30*2) break; current_sample = (int16_t)bytestream_get_be16(&srcC); previous_sample = (int16_t)bytestream_get_be16(&srcC); for (count2=0; count2<28; count2++) { *samplesC = (int16_t)bytestream_get_be16(&srcC); samplesC += avctx->channels; } } else { coeff1 = ea_adpcm_table[ *srcC>>4 ]; coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; shift = (*srcC++ & 0x0F) + 8; if (srcC > src_end - 14) break; for (count2=0; count2<28; count2++) { if (count2 & 1) next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift; else next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift; next_sample += (current_sample * coeff1) + (previous_sample * coeff2); next_sample = av_clip_int16(next_sample >> 8); previous_sample = current_sample; current_sample = next_sample; *samplesC = current_sample; samplesC += avctx->channels; } } } if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { c->status[channel].predictor = current_sample; c->status[channel].prev_sample = previous_sample; } } src = src + buf_size - (4 + 4*avctx->channels); samples += 28 * samples_in_chunk * avctx->channels; break; } case CODEC_ID_ADPCM_EA_XAS: if (samples_end-samples < 32*4*avctx->channels || buf_size < (4+15)*4*avctx->channels) { src += buf_size; break; } for (channel=0; channelchannels; channel++) { int coeff[2][4], shift[4]; short *s2, *s = &samples[channel]; for (n=0; n<4; n++, s+=32*avctx->channels) { for (i=0; i<2; i++) coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; shift[n] = (src[2]&0x0F) + 8; for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) s2[0] = (src[0]&0xF0) + (src[1]<<8); } for (m=2; m<32; m+=2) { s = &samples[m*avctx->channels + channel]; for (n=0; n<4; n++, src++, s+=32*avctx->channels) { for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n]; int pred = s2[-1*avctx->channels] * coeff[0][n] + s2[-2*avctx->channels] * coeff[1][n]; s2[0] = av_clip_int16((level + pred + 0x80) >> 8); } } } } samples += 32*4*avctx->channels; break; case CODEC_ID_ADPCM_IMA_AMV: case CODEC_ID_ADPCM_IMA_SMJPEG: c->status[0].predictor = (int16_t)bytestream_get_le16(&src); c->status[0].step_index = bytestream_get_le16(&src); if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) src+=4; while (src < buf + buf_size) { char hi, lo; lo = *src & 0x0F; hi = *src >> 4; if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) FFSWAP(char, hi, lo); *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3); src++; } break; case CODEC_ID_ADPCM_CT: while (src < buf + buf_size) { uint8_t v = *src++; *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 ); *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F); } break; case CODEC_ID_ADPCM_SBPRO_4: case CODEC_ID_ADPCM_SBPRO_3: case CODEC_ID_ADPCM_SBPRO_2: if (!c->status[0].step_index) { /* the first byte is a raw sample */ *samples++ = 128 * (*src++ - 0x80); if (st) *samples++ = 128 * (*src++ - 0x80); c->status[0].step_index = 1; } if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { while (src < buf + buf_size) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 4, 4, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], src[0] & 0x0F, 4, 0); src++; } } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { while (src < buf + buf_size && samples + 2 < samples_end) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 5 , 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (src[0] >> 2) & 0x07, 3, 0); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] & 0x03, 2, 0); src++; } } else { while (src < buf + buf_size && samples + 3 < samples_end) { *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], src[0] >> 6 , 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], (src[0] >> 4) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], (src[0] >> 2) & 0x03, 2, 2); *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], src[0] & 0x03, 2, 2); src++; } } break; case CODEC_ID_ADPCM_SWF: { GetBitContext gb; const int *table; int k0, signmask, nb_bits, count; int size = buf_size*8; init_get_bits(&gb, buf, size); //read bits & initial values nb_bits = get_bits(&gb, 2)+2; //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); table = swf_index_tables[nb_bits-2]; k0 = 1 << (nb_bits-2); signmask = 1 << (nb_bits-1); while (get_bits_count(&gb) <= size - 22*avctx->channels) { for (i = 0; i < avctx->channels; i++) { *samples++ = c->status[i].predictor = get_sbits(&gb, 16); c->status[i].step_index = get_bits(&gb, 6); } for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { int i; for (i = 0; i < avctx->channels; i++) { // similar to IMA adpcm int delta = get_bits(&gb, nb_bits); int step = ff_adpcm_step_table[c->status[i].step_index]; long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 int k = k0; do { if (delta & k) vpdiff += step; step >>= 1; k >>= 1; } while(k); vpdiff += step; if (delta & signmask) c->status[i].predictor -= vpdiff; else c->status[i].predictor += vpdiff; c->status[i].step_index += table[delta & (~signmask)]; c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); c->status[i].predictor = av_clip_int16(c->status[i].predictor); *samples++ = c->status[i].predictor; if (samples >= samples_end) { av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); return -1; } } } } src += buf_size; break; } case CODEC_ID_ADPCM_YAMAHA: while (src < buf + buf_size) { uint8_t v = *src++; *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 ); } break; case CODEC_ID_ADPCM_THP: { int table[2][16]; unsigned int samplecnt; int prev[2][2]; int ch; if (buf_size < 80) { av_log(avctx, AV_LOG_ERROR, "frame too small\n"); return -1; } src+=4; samplecnt = bytestream_get_be32(&src); for (i = 0; i < 32; i++) table[0][i] = (int16_t)bytestream_get_be16(&src); /* Initialize the previous sample. */ for (i = 0; i < 4; i++) prev[0][i] = (int16_t)bytestream_get_be16(&src); if (samplecnt >= (samples_end - samples) / (st + 1)) { av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); return -1; } for (ch = 0; ch <= st; ch++) { samples = (unsigned short *) data + ch; /* Read in every sample for this channel. */ for (i = 0; i < samplecnt / 14; i++) { int index = (*src >> 4) & 7; unsigned int exp = 28 - (*src++ & 15); int factor1 = table[ch][index * 2]; int factor2 = table[ch][index * 2 + 1]; /* Decode 14 samples. */ for (n = 0; n < 14; n++) { int32_t sampledat; if(n&1) sampledat= *src++ <<28; else sampledat= (*src&0xF0)<<24; sampledat = ((prev[ch][0]*factor1 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp); *samples = av_clip_int16(sampledat); prev[ch][1] = prev[ch][0]; prev[ch][0] = *samples++; /* In case of stereo, skip one sample, this sample is for the other channel. */ samples += st; } } } /* In the previous loop, in case stereo is used, samples is increased exactly one time too often. */ samples -= st; break; } default: return -1; } *data_size = (uint8_t *)samples - (uint8_t *)data; return src - buf; } #define ADPCM_DECODER(id_, name_, long_name_) \ AVCodec ff_ ## name_ ## _decoder = { \ .name = #name_, \ .type = AVMEDIA_TYPE_AUDIO, \ .id = id_, \ .priv_data_size = sizeof(ADPCMDecodeContext), \ .init = adpcm_decode_init, \ .decode = adpcm_decode_frame, \ .long_name = NULL_IF_CONFIG_SMALL(long_name_), \ } /* Note: Do not forget to add new entries to the Makefile as well. */ ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie"); ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology"); ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts"); ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA"); ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1"); ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2"); ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3"); ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV"); ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood"); ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft"); ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit"); ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit"); ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit"); ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash"); ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP"); ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA"); ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");